DRAFT FINAL

SITE INVESTIGATION REPORT ADDENDUM

for the

Open Burn/Open Detonation Area Fort Riley, Kansas

Prepared for

United States Army Engineer District, Kansas City CENWK-EP-EA 601 East 12th Street Kansas City, Missouri 64106-2896 Contract No. DACA41-92-D-0001

Prepared by

Louis Berger & Associates, Inc. 100 Halsted Street East Orange, NJ 07019

6 August 1998

TABLE OF CONTENTS

TABLE OF CONTENTS

EXEC	UTIVE	SUMMARY ES-1
1.0	INTRO	DDUCTION
	1.1	Purpose
	1.2	Supporting Documents
	1.3	Scope and Objectives
	1.4	OB/OD Area
		1.4.1 Site Description
		1.4.2 History of Operations
	1.5	Preliminary Evaluation of Regulatory Requirements
2.0	PREV	IOUS INVESTIGATIONS
	2.1	Impact Area Investigation (1992) 2-1
	2.2	Initial Site Investigation (1993)
		2.2.1 Surface Soil
		2.2.2 Subsurface Soil
		2.2.3 Surface Water and Sediment
		2.2.4 Groundwater
		2.2.5 Findings
	2.3	Confirmation Sampling (1995) 2-5
3.0	SITE	INVESTIGATION (1997)
	3.1	Mobilization #1
		3.1.1 Activities Conducted
		3.1.2 Deviations from the Sampling and Analysis Plan
	3.2	Passive Soil Gas Survey Demonstration Test
	3.3	Mobilization #2
		3.3.2 Activities Conducted
		3.3.2.1 Nested Piezometer Construction
		3.3.2.2 Well Development
		3.3.2.3 Piezometer Purging 3-8
		3.3.2.4 Groundwater and Surface Water Sampling 3-9
		3.3.2.5 IDW
		3.3.3 Deviations from the Planned Activities
	3.4	Groundwater Monitoring 3-10
		3.4.1 Groundwater Elevations
		3.4.2 Groundwater Sampling and Analysis 3-11
		3.4.2.1 September 1997 Sampling Event 3-11
		3.4.2.2 December 1997 Sampling Event 3-13
		3.4.2.3 Comparison of December 1997 to September
		1997 Sampling Events

Y

TABLE OF CONTENTS (Continued)

4.0	SITE C	CHARA	CTERIZATION SUMMARY 4-1
	4.1	Conce	ptual Site Model
		4.1.1	Sources
		4.1.2	Pathways
		4.1.3	Receptors
	4.2	Regior	hal Setting
		4.2.1	Geology
		4.2.2	Hydrogeology
	4.3	Site-Sp	pecific Conditions
		4.3.1	Geology and Hydrogeology
			4.3.1.1 Kinney Limestone
			4.3.1.2 Schroyer Limestone/Havensville Shale 4-7
			4.3.1.3 Threemile Limestone
		4.3.2	Contaminant Fate and Transport
5.0	SUMM	IARY A	AND CONCLUSIONS
REFE	RENCE	S	R-1

Ĵ

LIST OF TABLES

Table 1-1	Quantitative Criteria from Preliminary Evaluation of Potential ARARs - Chlorinated Solvent Contaminants
Table 3-1	Well Construction Data for Mobilization #1
Table 3-2	Well Development Results for Mobilization #1 and #2
Table 3-3	Groundwater Results for Mobilization #1, March 1997
Table 3-4	Groundwater Elevations Measured in Mobilization #1
Table 3-5	Piezometer Construction Data in Mobilization #2
Table 3-6	Survey Data
Table 3-7	Piezometer Purging Data for Mobilization #2
Table 3-8	Groundwater and Surface Water Data, Mobilization #2, June and September 1997
Table 3-9	Groundwater Data for Piezometers, Mobilization #2, June and September 1997
Table 3-10	Summary of Groundwater Elevation Data at OB/OD Area
Table 3-11	Groundwater Elevation Data Measurement Comparison, 5 September 1997
Table 3-12	Groundwater and Surface Water Data, December 1997

LIST OF FIGURES

Figure 1-1	Site Location Map
------------	-------------------

- Figure 1-2 Site Map
- Figure 2-1 Sampling Locations, Initial Site Investigation, 1993
- Figure 3-1 Monitoring Well Locations, 1997 SI Mobilization #1
- Figure 3-2 Nested Piezometer Locations, 1997 SI Mobilization #2
- Figure 3-3 Surface Water Sampling Locations
- Figure 4-1 Conceptual Site Model
- Figure 4-2 Geologic Map
- Figure 4-3 Stratigraphic Column
- Figure 4-4 Interpreted Joint Locations
- Figure 4-5 Occurrence of Groundwater in Carbonate Rocks
- Figure 4-6 Occurrence of Permeability Zones in Fractured Carbonate Rocks
- Figure 4-7 General Water Table Flow
- Figure 4-8 Geologic Cross Sections Location Map
- Figure 4-9 Geologic Cross Sections
- Figure 4-10 Soils Types
- Figure 4-11 Groundwater Elevation Contours, Kinney Limestone Piezometers, 19 January 1998
- Figure 4-12 Groundwater Elevation Contours, Wymore Shale/Schroyer Limestone and Overburden Monitoring Wells, 19 January 1998
- Figure 4-13 Groundwater Elevation Contours, Schroyer Limestone (Top) Piezometers, 19 January 1998
- Figure 4-14 Groundwater Elevation Contours, Schroyer Limestone (Bottom) Piezometers, 19 January 1998

6 August 1998 -

Page iv

LIST OF FIGURES (Continued)

- Figure 4-15 Groundwater Elevation Contours, Havensville Shale (Top) Piezometers, 19 January 1998
- Figure 4-16 Trichloroethylene (TCE) Groundwater Concentrations, Schroyer Limestone/Havensville Shale, December 1997
- Figure 4-17 Trichloroethylene (TCE) Groundwater Concentrations, Threemile Limestone, December 1997

LIST OF APPENDICES

Appendix A Boring Logs, As-Built Diagrams, Well Specification Forms, Well Development Records, and Purge Logs

.

- Appendix B Unexploded Ordnance (UXO) Report
- Appendix C Passive Soil Gas Survey Analytical Report
- Appendix D Geophysical Logs

LIST OF ACRONYMS

AA	Atomic Absorption
amsl	above mean sea level
ARAR	Applicable or Relevant and Appropriate Requirement
AWQC	Ambient Water Quality Criteria
bgs	below ground surface
CEMRK	Corps of Engineers, Missouri River Division, Kansas City District
CENWK	Corps of Engineers, Northwest Division, Kansas City District
CERCLA	Comprehensive Environmental Response, Compensation and Liability Act
CFR	Code of Federal Regulations
CWA	Clean Water Act
DEH	Directorate of Engineering and Housing
DES	Directorate of Environment and Safety
DNAPL	Dense Non-Aqueous Phase Liquid
EOD	Explosive Ordnance Disposal
EPA	Environmental Protection Agency
FFA	Federal Facility Agreement
FR	Fort Riley
HPLC	High Performance Liquid Chromatography
IAG	Interagency Agreement
ICP/MS	Inductively Coupled Plasma/Mass Spectroscopy
IDW	Investigation Derived Waste
IWSA	Installation Wide Site Assessment
J	Estimated concentration
KAR	Kansas Administrative Regulations
KDHE	Kansas Department of Health and Environment
KSWQS	Kansas Surface Water Quality Standards
MCL	Maximum Contaminant Level
MDL	Method Detection Limit
NA	Not Analyzed
NAD 83	North American Datum of 1983
NAp	Not Applicable
ND	Not Detected
NPL	National Priorities List
OB/OD	Open Burn/Open Detonation
PAOC	Potential Areas of Concern
PCE	Tetrachloroethylene or Perchloroethylene
PID	Photoionization Detector
PP	Priority Pollutant
QCSR	Quality Control Summary Report
RCRA	Resource Conservation and Recovery Act
RDX	Cyclo-1,3,5-trimethylene-2,4,6-trinitramine
SAP	Sampling and Analysis Plan
SB	Soil Boring

,

LIST OF ACRONYMS (Continued)

SD	Sediment
SDWA	Safe Drinking Water Act
SI	Site Investigation
SIRA	Site Investigation Report Addendum
SS	Surface Soil
SVOCs	Semi-Volatile Organic Compounds
SW	Surface Water
TCL	Target Compound List
TCLP	Toxicity Characteristic Leaching Procedure
TNT	Trinitrotoluene
TPH	Total Petroleum Hydrocarbons
USC	United States Code
USGS	United States Geological Survey
UTM	Universal Transverse Mercator
UXO	Unexploded Ordnance
VOCs	Volatile Organic Compounds

EXECUTIVE SUMMARY

EXECUTIVE SUMMARY

The United States Army Corps of Engineers, Northwest Division, Kansas City District (CENWK), under contract DACA41-92-D-0001, retained Louis Berger & Associates, Inc. (Berger) in support of the Fort Riley Directorate of Environment and Safety, Installation Restoration Program, to perform an Site Investigation (SI) at the Open Burn/Open Detonation (OB/OD) Area at Fort Riley, Kansas.

The OB/OD Area is located due north of the Main Post on Range 16 on the southern part of the Impact Area, approximately 2,300 feet north of Vinton School Road. The site lies on the Fort Riley NE, Kansas USGS 7.5 minute quadrangle in the Northeast quarter, Section 33, Township 10 south, Range 6 east. Since 1941, the site was used for ordnance disposal by open detonation and open burning. Burning is no longer conducted at the site.

The High Priority Sites Site Investigation (SI) (CEMRK, 1994) was initiated in September 1993, and included the OB/OD Area as one of the High Priority Sites. A Site Investigation (SI) of the OB/OD Area, which included geophysics, soil gas sampling, and groundwater sampling, was performed in September-October 1993. Groundwater sampling was again conducted in December 1995 as part of the confirmation groundwater sampling at Multiple Sites (CEMRK, 1996a).

Based on the findings of these previous investigations at the OB/OD Area, it was determined that further site investigation (SI) activities were required based on the presence of chlorinated solvent contaminants. The objectives of these SI activities were:

- to evaluate the possible source and extent of contamination;
- to evaluate whether any other contaminants at the site are co-contaminants with the chlorinated solvent; and
- to clarify the local geology and movement of water within the different formations that underlay this site.

The approach for the SI is documented in the Draft Final Sampling and Analysis Plan (SAP) for the Supplemental Site Investigation at the Open Burn/Open Detonation Area, Fort Riley, Kansas (CENWK, 1997a). Access to the OB/OD Area is restricted because it is used for military training. As a result, the following SI field activities had to be conducted in a series of events during inactive periods at the site:

- a preliminary investigation (Mobilization #1) which included installation of four monitoring wells;
- a passive soil gas demonstration test;
- an investigation for further characterization of hydrogeologic conditions and extent of contamination (Mobilization #2) which included installation of five piezometer nests; and,

groundwater monitoring, including monthly water level measurements and quarterly sampling and analysis.

The purpose of this SI Report Addendum (SIRA) is to supplement the Site Investigation Report for High Priority Sites at Fort Riley, Kansas (High Priority Sites SI) (CEMRK, 1994) by presenting a summary of previous investigations, the 1997 SI activities, and a site characterization based on the evaluation and interpretation of the results of those investigations.

To provide a preliminary basis for comparison to the identified levels of contamination at the site, the following potential ARARs were evaluated and used in this report as appropriate to provide comparative chemical-specific levels:

- The State of Kansas Surface Water Quality Standards (KSWQS) (KAR 28-16-28b);
- The Federal Safe Drinking Water Act (SDWA) (42 USC 300) and Amendments of 1996
- (42 USC 201) National Primary Drinking Water Regulations (40 CFR 141); and,
 The Federal Clean Water Act (33 USC 1251-1375) and Federal Surface Water Quality
- Requirements (40 CFR 131).

Quantitative Maximum Contaminant Levels (MCLs) have been established pursuant to the SDWA and the National Primary Drinking Water Regulations for numerous chemicals. MCLs are sometimes used at CERCLA sites as action levels if groundwater or surface water at or near the contaminated site is reasonably expected to migrate and adversely affect a drinking water supply system in the future. This is not the case for the OB/OD Area, however, because no threatened water supply systems exist in the vicinity of the OB/OD Area. Nonetheless, because they are incorporated by reference into the KSWQS for surface waters which are designated as a current or potential future water supply source, and because they represent one of the few available and generally accepted chemical-specific standards, MCLs are used throughout this report to provide a conservative risk-based comparison and frame of reference when presenting and evaluating the identified levels of aqueous contamination associated with the OB/OD Area. This is not intended to imply, however, that MCLs have been established as the applicable numeric regulatory criteria for the OB/OD Area. The ultimate applicability of any regulatory requirements are determined subsequent to the SI stage of the CERCLA process.

The results of the environmental investigations indicate that low levels of chlorinated solvents, predominantly TCE, are present in the groundwater beneath the site. The highest concentration of TCE detected in the groundwater is two orders of magnitude below the concentration which would indicate the presence of any residual product, but does exceed the MCL for TCE (5 μ g/l). Due to the long period of site use and the low levels of contamination identified, it is difficult to identify the exact location where the contaminants may have been released. The identified groundwater contaminants may be the result of several small sporadic releases which occurred at various locations within the area over the period of site activity. However, based on the distribution of the TCE and the direction of groundwater flow, the contaminants were released somewhere within the active and/or historical open burn/open detonation areas bounded by the subject investigations.

In general, the bedrock units (alternating layers of limestone and shale) beneath the OB/OD Area are flat-lying with relatively uniform thicknesses. As a result, elevation becomes a good indicator of stratigraphic position. Based on the bedrock geologic map from the investigation data and published information, the demo pits and the North Burn Pit are situated on the Blue Springs Shale while the South Burn Pit is located on the Wymore Shale. Much of what directly underlies these areas is overburden and weathered bedrock derived from these formations.

After being released to the ground, the small quantities of TCE would have migrated downward through the soil column to the water table via gravity drainage and precipitation infiltration. The concentrations were low enough that the TCE dissolved and moved with the flow of groundwater (as opposed to being dense non-aqueous phase liquid [DNAPL] that would sink).

Although some seepage through the shale formations may occur, it is considered to be of much less importance since the limestone units contain the zones which would much more readily transport groundwater. The affected limestone units beneath the OB/OD Area are the Kinney, Schroyer/Havensville, and the Threemile.

Contaminants released above the Kinney limestone were dispersed with the groundwater flow in this formation coming out of the higher land to the north. This moved some contaminants slightly to the east but also to the west via the spring at the base of the Kinney. The discharge from the spring continues to the west, infiltrating into the overburden underlying the mesic area. The contaminants dispersed in other directions in the Kinney and some also may have seeped downward through the Wymore Shale to the underlying water-bearing zone of the Schroyer limestone and upper portion of the Havensville Shale. The Schroyer/upper portion of the Havensville is also the first water-bearing zone to receive contaminants that may have been released at the South Burn Pit.

The highest concentration of TCE onsite $(570 \ \mu g/l)$ is identified in the Schroyer/upper portion of the Havensville. In this unit, the contaminants also migrate with the primary flow of groundwater. The flow is generally towards the intermittent stream to the west. Consistent with the regional structural geology, this intermittent stream is interpreted to be the trace of a vertical joint which is providing a drainage path for the groundwater in this zone. Smaller layers within the waterbearing zone flow more to the northwest or the southwest depending on where the joint is best developed in contact with that layer. The vertical joint may also provide a potential pathway for some groundwater and contaminants to migrate down to the underlying Threemile limestone. In addition, some downward seepage through the Havensville Shale may also occur. The limited nature of this downward flow is evidenced by the TCE concentrations being one to two orders of magnitude lower in the Threemile Limestone.

Human exposure potential is minimal. Human receptors within a 1-mile radius of the site are limited to personnel of the OB/OD Area during OB/OD activities and Army personnel in areas adjacent to the OB/OD Area. These receptors are considered transient since their access is strictly controlled and they only use the areas on a limited and intermittent basis. Surrounding land use consists of military training grounds to the south, an artillery and mortar impact area to the north. There are leased croplands about three miles to the southeast and southwest, and leased haylands south of Vinton School Road. Wildlife food plots are located within one mile southwest. With

rare exception, access to the OB/OD Area is restricted to EOD personnel, which only enter the area to perform disposal.

The greatest potential for exposure to the groundwater contamination at the OB/OD Area is at the spring adjacent to the North Burn Pit (Figure 1-2). This spring is flowing most of the time and the water contains concentrations of TCE in the 100 to 300 μ g/l range. Exposure of the spring to potential ecological receptors is possible as footprints of various indigenous wildlife (deer, etc.) were observed onsite. It is possible that wildlife present on the OB/OD Area are drinking from this spring. The intermittent streams are dry most of the time, so this spring is usually the only surface water on the OB/OD Area.

A mesic (commonly moist, intermittently wet) area approximately 700 feet by 600 feet in size (10 acres) is located between the spring and the intermittent stream along the western side of the site. This area is not listed as a wetland on the USGS 7.5 minute topographic quadrangles, the Fort Riley installation map prepared by the Defense Mapping Agency, or the National Wetlands Inventory. This area is usually not saturated. Any water that may appear is likely to be from surface runoff. During periods of high water table, however, it is possible that some of the water may be from the groundwater in the underlying overburden (which, like the spring, may have TCE concentrations in the 100 to 300 μ g/l range). When wet, this area could present another exposure potential for ecological receptors.

The intermittent streams located to the east and west of the OB/OD Area are usually dry and, therefore, do not usually pose an exposure potential to human or ecological receptors. These intermittent streams join about 1,000 feet south of the southern site boundary. This single tributary continues south another 2,000 feet where it joins Threemile Creek. From this point, Threemile Creek flows southeast and joins the Kansas River at the west side of Camp Funston. There are no perennial streams within one mile downstream of the site and no known uses of surface water as potable water within 15 miles downstream of the site.

The groundwater withdrawal well nearest to the OB/OD Area is located at Range 18 approximately 4,220 feet to the east-southeast of the site. This well is only used at the Range 18 maintenance facility for non-potable purposes. No other wells fall within the one-mile radius of the OB/OD Area. The next nearest wells are the Ogden supply wells located approximately 3 miles southeast of the site. There is no realistic potential for exposure to the site groundwater contamination via extraction from production wells.

6 August 1998-

1.0 INTRODUCTION

1.0 INTRODUCTION

The United States Army Corps of Engineers, Northwest Division, Kansas City District (CENWK), under contract DACA41-92-D-0001, retained Louis Berger & Associates, Inc. (Berger) in support of the Fort Riley Directorate of Environment and Safety, Installation Restoration Program, to perform a Site Investigation (SI) at the Open Burn/Open Detonation (OB/OD) Area at Fort Riley, Kansas.

On 14 July 1989, the United States Environmental Protection Agency (EPA) proposed inclusion of Fort Riley on the National Priorities List (NPL), and listed the installation on the NPL in August 1990, pursuant to the Comprehensive Environmental Response, Compensation and Liability Act (CERCLA). The U.S. Department of the Army - Fort Riley, the KDHE and the USEPA entered into a Federal Facility Agreement (FFA) (also referred to as the Interagency Agreement [IAG]) --Docket No. VII-90-F-0015, to address environmental releases subject to CERCLA. The IAG, which became effective in June 1991, required Fort Riley to conduct a systematic site assessment to identify all potential areas of concern (PAOC) at Fort Riley. The systematic site assessment was performed in 1992, with the results presented in the Installation Wide Site Assessment (IWSA) (CEMRK, 1993a). The IWSA identified 24 groupings of PAOCs consisting of over 45 individual PAOCs. Subsequent to the IWSA, site investigations were planned for three groupings of sites. An SI for the first group, the Sensitive-Receptor lead sites, was initiated in June 1993. The Sensitive-Receptor Lead sites were later incorporated into the second group, the High Priority sites. The remaining sites identified in the IWSA as requiring further investigation, known as "Other Sites", were included in the "Other Sites" SI program which was initiated in March 1994. A Site Investigation (SI) of the OB/OD Area, which included geophysics, soil gas sampling, and groundwater sampling, was performed in September-October 1993. Groundwater sampling was again conducted in December 1995 as part of the confirmation groundwater sampling at Multiple Sites (CEMRK, 1996a).

1.1 Purpose

The finding that prompted extension of the site investigation under CERCLA at the OB/OD Area is the presence of chlorinated solvents in two of the monitoring wells (OB-93-03 and OB-93-04). The elevated levels of chlorinated solvents, along with the discovery of a somewhat complex site hydrogeology (a near-surface water table seeming to be in two independent saturated bedrock formations, with possible groundwater divides in the area), dictated that further investigations be performed to identify contaminant source location and potential migration paths. In contrast to the chlorinated solvents, the types of contaminants originally suspected to be a potential problem (e.g., traces of explosives) are not currently considered to be a problem based upon discussions held 20 July 1995 with the EPA Region VII and Kansas Department of Health and Environment (KDHE) (Berger, 1995).

Based on this information, it was decided by Fort Riley, KDHE, and EPA to further characterize the nature and extent of contamination at the OB/OD Area. The purpose of this SI Report Addendum is therefore to supplement the *Site Investigation Report for High Priority Sites at Fort Riley, Kansas* (High Priority Sites SI) (CEMRK, 1994) for the OB/OD Area in particular by presenting a summary of previous site investigations, the 1997 SI activities, and a site characterization based on the evaluation and interpretation of the results of those investigations.

1.2 Supporting Documents

Section 1.4 of the Draft Final Site Investigation for High Priority Sites at Fort Riley, Kansas (CEMRK, 1994) lists supporting documents, which included information or procedures that were used during the High Priority Sites SI. These documents, including both planning documents and those related to previous investigations, pertain to this SI Report Addendum. In addition, the following documents support these further investigations:

- Quality Control Summary Report (QCSR) Confirmation Groundwater Sampling at the Multi-Sites, Fort Riley, Kansas, February 1996 (CEMRK, 1996a).
- Data Summary Report (DSR) for Confirmation Groundwater Sampling, OB/OD, Fort Riley, Kansas, June 1996 (CEMRK, 1996b).
- Draft Final Sampling and Analysis Plan for Supplemental Site Investigation at the Open Burn/Open Detonation Area, Fort Riley, Kansas, 10 April 1997 (CENWK, 1997a)
- Quality Control Summary Report (QCSR), Supplemental Site Investigation, Open Burn/Open Detonation Area, Fort Riley, Kansas, November 1997 (CENWK, 1997b).
- Technical Memorandum, Overview of Mobilization #1 Preliminary Findings and Proposed Mobilization #2 Activities Open Burn/Open Detonation Area, Fort Riley, Kansas, 30 May 1997 (CENWK, 1997c).
- Technical Memorandum, Mobilization #2 Activities Open Burn/Open Detonation Area, Fort Riley, Kansas, 22 August 1997 (CENWK, 1997d).
- Supplemental Technical Memorandum, Mobilization #2 Activities Open Burn/Open Detonation Area, Fort Riley, Kansas, 4 November 1997 (CENWK, 1997e).
- Quality Control Summary Report, Supplemental Site Investigation, Open Burn / Open Detonation Area, Fort Riley, Kansas, February 1998 (CENWK, 1998a).
- Draft Data Summary Report, Groundwater Monitoring, Open Burn/Open Detonation Area, Fort Riley, Kansas, February 1998 (CENWK, 1998b).

1.3 Scope and Objectives

The objective of an SI is to gather information to support a site decision regarding the need for further action. To assist in making such decisions, the SI data are compared to comparative regulatory or risk-based standards as a means to evaluate the potential for adverse impact to human health or the environment. More specifically, the objectives of the SI at OB/OD Area were to:

- evaluate the possible source and extent of contamination;
- evaluate whether any other contaminants at the site are co-contaminants with the chlorinated solvent; and
- clarify the local geology and movement of water within the different formations that underlay this site.

The investigation approach for the SI is documented in the *Draft final Sampling and Analysis Plan* (SAP) for the Supplemental Site Investigation at the Open Burn/Open Detonation Area, Fort Riley, Kansas (CENWK, 1997a). Access to the OB/OD Area is highly restricted because it is used for military training. As a result, the following SI field activities were conducted in a series of events during inactive periods at the site, rather than being performed all at one time:

- a preliminary investigation (Mobilization #1) which included installation of four monitoring wells;
- a passive soil gas demonstration test;
- an investigation for further characterization of hydrogeologic conditions and extent of contamination (Mobilization #2) which included installation of five sets of vertically nested piezometers; and,
- groundwater monitoring, including monthly water level measurements and quarterly sampling and analysis.

1.4 OB/OD Area

Presented below is the site description and operations history for the OB/OD Area.

1.4.1 Site Description

The OB/OD Area is located on Range 16 on the southern part of the Impact Area, approximately 2,300 feet north of Vinton School Road, as shown in Figures 1-1 and 1-2. The site lies on the Fort Riley NE, Kansas USGS 7.5 minute quadrangle (USGS, 1992) in the Northeast quarter, Section 33, Township 10 south, Range 6 east. The location of the site based on the survey of piezometer PZ-97-11 is Universal Transverse Mercator (UTM), Zone 14, North American Datum of 1983 (NAD 83) (x=693343, y=4334939) which is approximately latitude 39° 08' 31.88" and longitude 96° 45' 46.16". The active portion of the site consists of an area approximately 1,000 feet by 350 feet. The site is located on gently sloping ground that is bordered on the north by a hill. The relief between the OB/OD Area and the top of the hill is approximately 50 feet. The land north of the OB/OD Area is part of the Impact Area for the surrounding training ranges. A mesic area is located along the western boundary of the site. Open vacant fields surround the remainder of the

site. For purposes of this SI, the OB/OD Area refers to the entire area shown in Figure 1-2 bounded on the east and west by southerly flowing intermittent streams.

As shown in Figure1-2, the OB/OD Area lies between two tributaries to Threemile Creek. Both are intermittent streams. A mesic (commonly moist, intermittently wet) area approximately 700 feet by 600 feet in size (10 acres) is located between the OB/OD Area and the west tributary to Threemile Creek. This area is not listed as a wetland, however, on the USGS 7.5 minute topographic quadrangles, the Fort Riley installation wetlands map prepared by the Defense Mapping Agency, or the National Wetlands Inventory. The tributaries located to the east and west of the site join about 1,000 feet south of the southern site boundary. This single tributary continues south another 2,000 feet where it joins Threemile Creek. From this point, Threemile Creek flows southeast and joins the Kansas River at the west side of Camp Funston. of the site join about 1,000 feet south and west, towards the intermittent stream located to the west. As stated in section 4.5 of the *Draft Final Site Investigation for High Priority Sites at Fort Riley, Kansas* (CEMRK, 1994), there are no known uses of surface water as potable water within 15 miles downstream of the site.

Surrounding land use consists of military training grounds to the south, and an artillery and mortar impact area to the north. There are leased croplands about three miles to the southeast and southwest, and leased haylands south of Vinton School Road. Wildlife food plots are located within one mile to the southwest. With rare exceptions (e.g., to perform the subject site investigations), access to the OB/OD Area is constantly restricted to EOD personnel only. Even these personnel only periodically enter the area, whenever there is a requirement to perform ordnance disposals, etc. Human receptors within a 1-mile radius of the site include working personnel during OB/OD activities, and other army personnel in areas adjacent to the OB/OD Area. The potentially affected medium to which these receptors could be exposed is surface water (spring and intermittent streams) when present. These receptors are considered transient, however, since they only use the areas on a limited basis and do not regularly work or live at or near the site.

The nearest groundwater withdrawal well to the OB/OD Area is located at Range 18 approximately 4,220 feet to the east-southeast of the site. This well is only used at the Range 18 maintenance facility for non-potable purposes. No other wells fall within the 1-mile radius. The next nearest wells are the Ogden water supply wells located approximately 3 miles southeast of the site. The nearest residence lies 2.5 miles to the east of the site, on Vinton School Road. The town of Ogden lies between 3 and 4 miles to the southeast of the site (CEMRK, 1994).

1.4.2 History of Operations

The Explosive Ordnance Detachment (EOD) unit at Fort Riley recovers ordnance materials from Fort Riley and from a multi-state area for the Department of Defense and other state and federal agencies. Effective August 1991, the mission of the 74th EOD at Fort Riley, Kansas has been to provide routine and emergency EOD support to military installations, operations, and exercises, and to civilian and federal authorities within its assigned geographical area of operation. This area of operation includes Kansas, Nebraska, parts of Missouri, and parts of South Dakota.

The OB/OD Area is closely controlled. All access to the site is controlled by Range Control, and each visit to the area requires pre-screening and a full-time escort consisting of a qualified Unexploded Ordnance (UXO) contractor. The OB/OD Area includes several pits on the side of a hill, as indicated in Figure 1-2. In the past, ordnance-related materials were burned in the North and South Burn Pits, however, the burn pits are no longer active. Burning last occurred in the North Burn Pit several years ago, according to the 74th Ordnance Company (Explosive Ordnance Disposal), Fort Riley (EOD FR)(Communication with the EOD FR, 5 March 1997).

The 74th EOD Detachment currently performs ordnance disposal by open detonation, and previously by open burning at Range 16 within the Impact Area of Fort Riley. The area currently used for this purpose is approximately 1,000 feet by 350 feet, and has been in use since 1941. Open burning was conducted approximately once per year for ordnance materials containing relatively small amounts of explosives. These include small arms, pyrotechnic rounds, black powder, and phosphorous-based munitions. Open burning was performed at a specific, dedicated location within the OB/OD Area, referred to as the North Burn Pit (open burn pit). This area contained a small pit within the soil on which a metal grating rested. The pit measures approximately 3 feet by 7 feet wide and is surrounded by a horse-shoe shaped embankment extending to approximately 9 feet above the surrounding ground surface. Materials were burned by dousing them with petroleum hydrocarbons (typically diesel fuel), and then igniting them.

Open detonation is the current means of disposal. Detonation is conducted whenever a sufficient amount of materials has been received, typically on a quarterly basis. The quantity of materials to be disposed of varies, but each detonation typically includes 50 to 500 rounds of high explosive and propellant rounds; however, some detonations have included up to 2,000 rounds. The materials are destroyed by detonation. The primary material used for detonation is C4 (91% cyclo-1,3,5-trimethylene-2,4,6-trinitramine (RDX) and 9% plastic desensitizer [typically wax-like thermoplastic compounds of high molecular weight]) (Davis, 1943). Other materials used for detonation include 2,4,6-trinitrotoluene (TNT) and "flexlinear" (a specific type of RDX; an elongated cutting charge). Open detonation is conducted on the open ground, and this creates crater-like pits in the natural soil of the OB/OD Area. These pits are the result of the detonations and increase in size with use. The EOD also digs pits with a high-loader and/or backhoe. The pits generally reach a maximum size of 10 to 20 feet deep and 25 feet in diameter. Open detonation pits are filled in approximately once per year by backfilling the blast-excavated soil surrounding the pits.

At the time of the SI in 1993, three active detonation pits, one active (north) burn pit, and two metal debris pits (Figure 1-2) were present. During the SI in 1993, a South Burn Pit was identified approximately 300 feet south of the North Burn Pit. No information is available pertaining to the origin or the time of formation of this pit. The pit is circular with a low (approximately 3 to 4 foot high) berm of soil. The inner diameter is approximately 40 feet and the outer diameter is approximately 70 feet.

1.5 Preliminary Evaluation of Regulatory Requirements

In accordance with CERCLA and the NCP, the need to pursue response actions at identified contaminated sites is dictated by the need to be protective of human health and the environment

and/or to be in compliance with applicable or relevant and appropriate requirements (ARARs) to the extent that such compliance is practicable. The action threshold for protectiveness is typically determined by performing site-specific human and ecological receptor evaluations and by developing a quantitative baseline risk assessment for receptors which may be adversely impacted by exposure to the contamination. Such evaluations and assessments are not typically performed, however, at the SI stage. Similarly, a detailed ARAR evaluation is not typically performed at the SI stage. Nonetheless, potential ARARs which contain quantitative thresholds are often used at the SI stage (and earlier) to establish a conservative frame of reference with regard to chemical-specific levels of contamination. Based on the confirmed presence of groundwater contamination and the potential for at least transient discharges of site-related contamination to the nearby intermittent streams, the following potential ARARs were evaluated for the purpose of identifying some comparative chemical-specific levels to be used in this report:

- The State of Kansas Surface Water Quality Standards (KAR 28-16-28b);
- The Federal Safe Drinking Water Act (42 USC 300) and Amendments of 1996 (42 USC 201) National Primary Drinking Water Regulations (40 CFR 141); and,
- The Federal Clean Water Act (33 USC 1251-1375) and Federal Surface Water Quality Requirements (40 CFR 131).

The State of Kansas Department of Health and Environment (KDHE) has promulgated Surface Water Quality Standards (KSWQS) which generally provide that: (1) levels of water quality in surface waters of the state shall be maintained at levels which protect existing and designated uses; (2) permanent degradation of existing water quality shall be avoided except where otherwise approved by KDHE based on a showing of important social and economic considerations; and, (3) artificial sources of pollution will not be allowed which result in harmful effects on populations of threatened or endangered species. Numeric water quality criteria are provided for specified pollutants based upon which designated use category a given surface water is placed in, although KDHE reserves the authority to: (1) promulgate more stringent criteria if site-specific conditions warrant it; and, (2) permit temporary sources of pollution producing only ephemeral surface water quality degradation not harmful to existing or designated uses. The most stringent use category is for surface waters which represent an actual or potential drinking water supply source. The numeric water quality criteria established for this use category are the federal Maximum Contaminant Levels (MCLs) for drinking water, which are further described in the following paragraph. The least restrictive designation is found in the requirement that all classified surface water shall be designated for noncontact recreational use and one of the three categories of aquatic life support. In accordance with K.A.R. 28-16-28e(c)(2)(F) the numeric criteria for acute and chronic aquatic life is applicable to these types of surface waters. The ultimate applicability of the KSWQS to the contamination in surface waters at or near the OB/OD Area will depend on a designated use analysis, although it is noted that these surface waters are not currently used for agricultural water supply, domestic water supply, food procurement, groundwater recharge, or industrial water supply. The designated beneficial uses of Threemile Creek are aquatic life support and contact recreation.

The Safe Drinking Water Act (SDWA) is the federal statute which requires the regulation of public water supply systems, including the creation of enforcement powers and penalty provisions. Under the SDWA, a "public water supply system" is defined as a system for the provision to the public

of piped water for human consumption if such system includes at least fifteen service connections or regularly serves at least 25 individuals. Based on conservative exposure assumptions and human health risk evaluations for specific chemicals, quantitative Maximum Contaminant Levels (MCLs) have been established pursuant to the SDWA and the National Primary Drinking Water Regulations for numerous chemicals. MCLs are sometimes used at CERCLA sites as action levels if groundwater or surface water at or near the contaminated site is reasonably expected to migrate and adversely affect a drinking water supply system in the future. This is not the case for the OB/OD Area, however, because no threatened water supply systems exist in the vicinity of the OB/OD Area. Nonetheless, because they are incorporated by reference into the KSWQS for surface waters which represent a current or potential future water supply source, and because they represent one of the few available and generally accepted chemical-specific standards, MCLs are used throughout this report to provide a conservative risk-based comparison and frame of reference when presenting and evaluating the identified levels of aqueous contamination associated with the OB/OD Area. This is not intended to imply, however, that MCLs have been established as the applicable numeric regulatory criteria for the OB/OD Area.

The Federal Clean Water Act (CWA) amended the Federal Water Pollution Control Act and is intended to restore and maintain the chemical, physical and biological integrity of the nation's "navigable" waters. The CWA regulates discharges of pollutants from any point source, including both direct point discharges (ditches, culverts, pipes, fill, etc.) and indirect point discharges (via waste water treatment facilities) into navigable waters of the United States. The Federal Surface Water Quality Requirements (40 CFR 131) and the numeric Ambient Water Quality Criteria (AWQC) were developed to evaluate constituents in surface waters for the protection of aquatic life and for the protection of human health from the ingestion of contaminated water and/or organisms. Under the CWA, these criteria are potentially applicable to all U.S. waters as defined therein. The AWQC for the protection of aquatic organisms are based on two types of criteria: (1) acute criteria representing the maximum permissible concentration averaged over a 24-hour time period. The AWQC for the protection of human health are based on the daily ingestion of contaminated water and/or the daily ingestion of contaminated organisms from surface waters. This type of exposure does not occur in the general vicinity of the OB/OD Area.

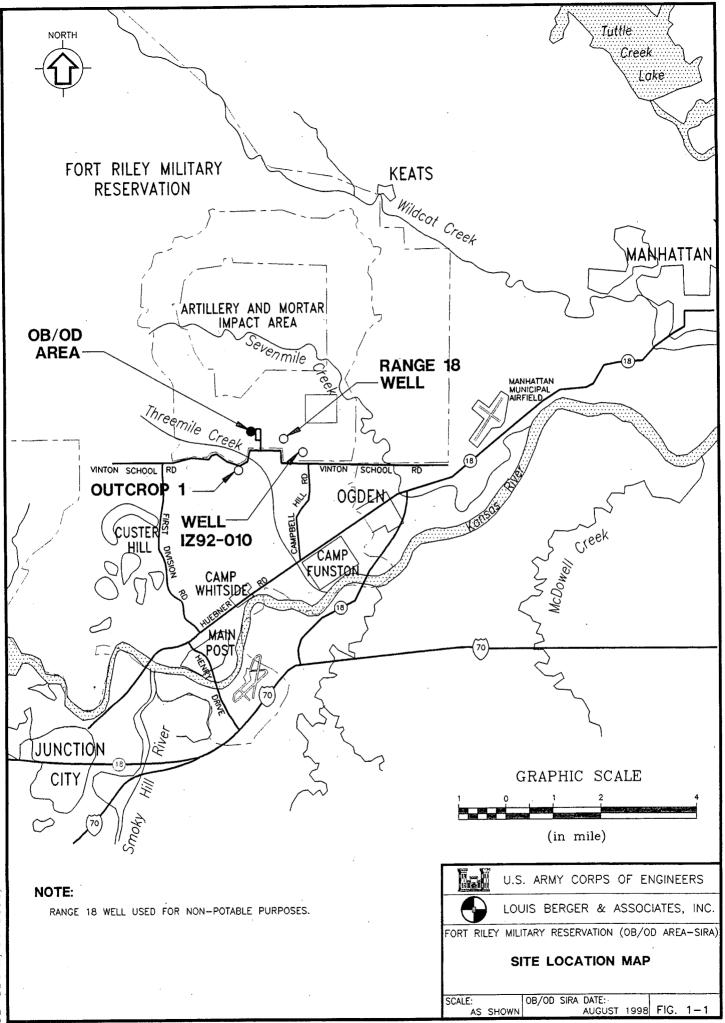
Table 1-1 lists the relevant chemical-specific regulatory levels obtained from these regulations, to the extent that they were available for the contaminants of potential concern identified for the OB/OD Area. It is noted, however, that establishing site-specific numeric action levels and the ultimate applicability of these (or any other) regulatory requirements is to be determined subsequent to the SI stage of the CERCLA process.

TABLES

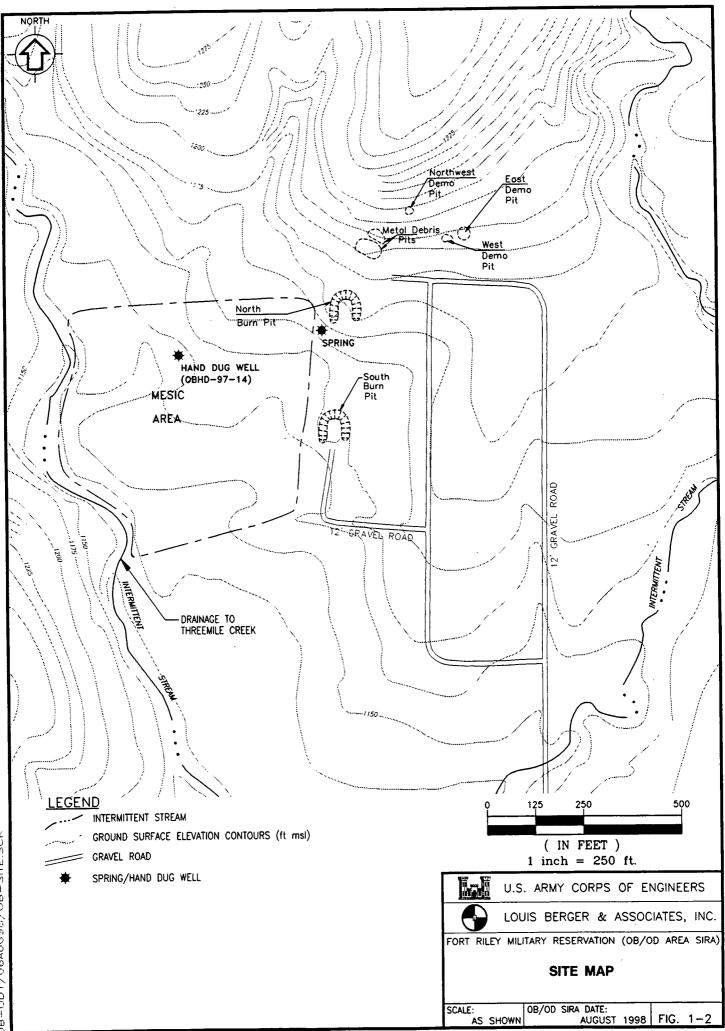
Table 1-1 Quantitative Criteria from Preliminary Evaluation of Potential ARARs Chlorinated Solvent Contaminants

	A	mbient Water C	Quality Criteria (n	Drinking Water Standards** (mg/l)	
Chemical	For Aquatic Life		For Human Health		
	Acute	Chronic	Water & Organisms	Organisms Only	Maximum Contaminant Levels (MCLs)
cis-1-2-dichloroethylene	11.6°	NAv	NAv	NAv	0.070
Trichloroethylene	45 .0°	21.9°	0.0027* ^b	0.470* ^b	0. 005
Tetrachloroethylene	5.28	0.84ª	0.0008* ^b	0.00885* ^b	0.005

NAv Not Available.


a Insufficient data to develop federal criteria. Value presented is from Kansas Department of Health and Environment, Water Pollution Regulations, adopted KAR 28.16.28e(c)(8)(d) Table 1A, January 1995.

b Federal Quality Criteria for Water - 1986. EPA 440/5-86.001, 1 May, 1987. Human health criteria for carcinogens reported for three risk levels. Value presented is the most conservative (10⁻⁶) risk level and is based on conservative daily ingestion scenarios.


* 40 CFR 131.36 - Toxic Criteria for states not complying with Clean Water Act Section 303(c)(2)(B).

** Federal Maximum Contaminant Levels from Drinking Water Regulations, Office of Water, United States Environmental Protection Agency, October 1996. Also adopted as part of the State of Kansas Surface Water Quality Standards, which applies the federal MCLs to surface water bodies with a Use Designation that includes the actual or potential use of the surface waters for domestic drinking water supply purposes. Kansas Department of Health and Environment, Water Pollution Regulations, adopted KAR 28.16.28e(c)(8)(d) Table 1A, January 1995.

FIGURES

OB-ODGVM/ J6AUG98/U4

08-001/06AUG98/08-SITE.SCR

2.0 PREVIOUS INVESTIGATIONS

2.0 PREVIOUS INVESTIGATIONS

This chapter presents a summary of the investigations conducted at the OB/OD Area prior to the SI in 1997. The previous investigations discussed in the following subsections are the Impact Area Investigation (1992), the Initial Site Investigation (1993), and the Confirmation Sampling (1995).

2.1 Impact Area Investigation (1992)

An environmental investigation was conducted for the Impact Area as a whole in 1992 (CEMRK, 1993b). The OB/OD Area is located within the Impact Area. The investigation consisted of the installation and sampling of 10 groundwater monitoring wells around the perimeter of the Impact Area and the collection of stream sediment and aqueous samples along intermittent tributaries draining the Impact Area.

The Impact Area analytical results are deemed to be representative of ambient conditions since the OB/OD Area is located within the Impact Area and any contaminants detected in the OB/OD Area may be the result of Impact Area activities. Groundwater and stream samples were collected but no soil samples were collected from the Impact Area as part of that study (Impact Area 5A).

It should be noted that the results for the 10 monitoring wells within the Impact Area cannot all be directly compared since the wells are screened in different bedrock formations, and the wells are located in different drainage basins. The only potentially hazardous substances detected in groundwater were volatile organic compounds (VOCs), and some metals. The only analytes exceeding MCLs in groundwater were sulfate and iron. The observed groundwater detections are summarized in Table 3.15 of the *Impact Area Site Assessment Report for Fort Riley, Kansas* (CEMRK, 1993b).

2.2 Initial Site Investigation (1993)

The SI program for the OB/OD Area which was conducted in September-October 1993 was designed to collect samples from within pits that were active for burning and detonation of ordnance at the time of sampling. These sampling locations were considered to be those most likely to produce the highest concentrations of explosive residues, if any were present. In addition, soil samples were collected from the surface and subsurface at locations throughout the OB/OD Area to assess whether residual contamination was present from formerly used pits. Lastly, potential migration of contaminants via surface water and groundwater was assessed at this time. Surface water migration was assessed by sampling the intermittent tributary to Threemile Creek located west of the site.

All samples (soils, groundwater, surface water and sediment) collected at the OB/OD Area were analyzed for the following analytes using SW-846 methods (USEPA, 1986):

- Explosives using EPA Method 8330 High Performance Liquid Chromatography (HPLC),
- Priority pollutant (PP) metals using EPA Method 6010/7000 Series Furnace Atomic Absorption (AA) and Inductively Coupled Plasma (ICP), and

Uranium using EPA Method 6020 - Inductively Coupled Plasma/Mass Spectroscopy (ICP/MS).

Other parameters were also analyzed and are discussed, by media, in the following media-specific capsule summaries for the investigation. The complete details of the investigation are reported in the *Draft Final Site Investigation for High Priority Sites at Fort Riley, Kansas* (CEMRK, 1994).

2.2.1 Surface Soil

Eight surface soil (SS) samples were collected from within pits and across the OB/OD Area as indicated on Figure 2-1.

In addition to the general parameters listed above, the one surface soil sample near the North Burn Pit was also analyzed for VOCs using EPA method 8240 and semi-volatile organic compounds (SVOCs) using EPA method 8270, because flammable liquids were acknowledged to be used at the North Burn Pit. Surface soil samples collected at the opening of the North Burn Pit were analyzed for total petroleum hydrocarbons (TPH) using EPA Method 8015, modified.

Also, two surface soil samples (SS1 and SS6) were analyzed for Toxicity Characteristic Leaching Procedure (TCLP) metals using EPA Method 1311 for digestion and EPA Method 6010/7000 Series for measurement. Selection of samples for TCLP analysis was made based on the analytical results for priority pollutant metals from samples having the highest total metals concentration.

2.2.2 Subsurface Soil

Eight soil borings (ranging in depth from 5 to 20 feet) were installed at locations indicated on Figure 2-1. The boring logs are presented in Appendix A. Soil boring SB1 was also used for installation of groundwater monitoring well OB-93-04. Three soil samples were collected from each soil boring, except SB8, where only two samples were collected due to the shallowness of bedrock at this location. A total of 23 subsurface soil samples were collected from these borings and were subsequently analyzed.

In addition, two shallow soil borings were hand-augered near the opening of the North Burn Pit. They were added during field activities because the high amount of UXO debris near the opening of the North Burn Pit prevented use of a drill rig to collect deep soil samples. These samples were designated SB10A and SB10B.

In addition to the general parameters listed above, the two subsurface soil samples collected from boring SB8 were also analyzed for VOCs using EPA method 8240 and SVOCs using EPA method 8270.

Two subsurface soil samples (SB3 from 1.0 to 3.5 ft. bgs and; SB7 from 7.5 to 8.5 ft. bgs) were analyzed for TCLP metals using EPA Method 1311 for digestion and EPA Method 6010/7000 Series for measurement. Selection of samples for TCLP analysis was made based on the analytical results for priority pollutant metals from samples having the highest total metals concentration.

2.2.3 Surface Water and Sediment

Two surface water and three sediment samples were collected along the tributary to Threemile Creek west of the OB/OD Area as this intermittent stream was flowing at the time of sampling. The sample locations are shown on Figure 2-1. Sediment samples were collected upstream from the site, due west of the site, and downstream from the site. The surface water samples were collected near the due west and downstream sediment sample locations. All samples were analyzed for the general parameters presented above.

2.2.4 Groundwater

Four groundwater monitoring wells (OB-93-01 through OB-93-04) were installed and sampled. The well locations are indicated on Figure 2-1. Coring of bedrock was performed during installation of OB-93-04. The lithological logs, construction details, well specification forms, and well development records for all four monitoring wells are presented in Appendix A.

In addition to the general parameters listed above, the groundwater samples were analyzed for VOCs and SVOCs (using EPA Methods 8240 and 8270, respectively). Also, groundwater samples were analyzed for anions, including the following: nitrate (Method 353.2), nitrite (Method 353.2), sulfate (Method 375.4), and phosphate (Method 365.1) (USEPA, 1983).

2.2.5 Findings

As discussed in the Draft Final Site Investigation for High Priority Sites at Fort Riley, Kansas (CEMRK, 1994), there were a few detections of explosive residues, metals, and ions in soils from the demolition pit areas. There were no detections for SVOCs or explosives in groundwater. The positive detections in groundwater include uranium, sulfate, nitrate, and one VOC (trichloroethylene [TCE]). The highest concentration for uranium was reported for OB-93-01 (0.0057 mg/l [0.0043 mg/l in the duplicate sample]). The highest uranium concentration for groundwater in the Impact Area investigation in 1992 was 0.0048 mg/l. The MCL for uranium is 0.02 mg/l. The detected uranium concentrations do not exceed regulatory standards. Nitrate was detected only in well OB-93-02 at 1.0 mg/l. Sulfate was detected in all four wells at 26 to 97 mg/l. The detections of nitrate and sulfate do not exceed their respective MCLs of 10 mg/l and 500 mg/l. The detections of TCE range from 1.3 μ g/l in OB-93-03 to 29 μ g/l in OB-93-04. The concentration in OB-93-04 exceeds the MCL of 5 μ g/l for TCE.

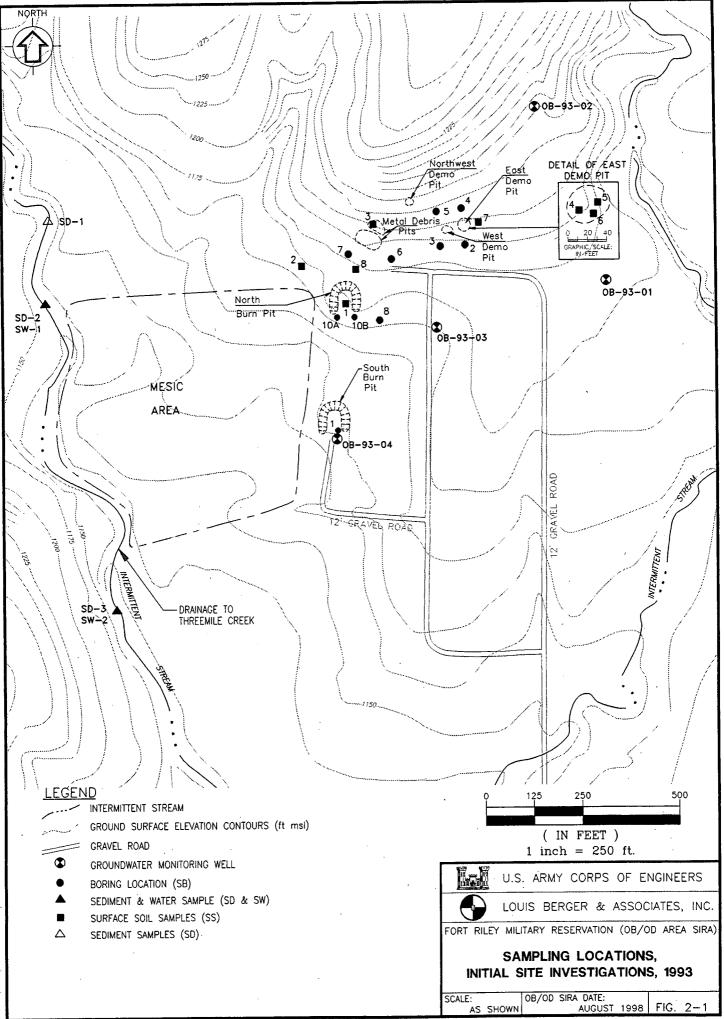
There were no detections of explosives in the surface water or sediment samples. The only detection in the surface water samples was silver in the upstream sample (detected at 0.02 mg/l, which is below the secondary MCL of 0.10 mg/l) and uranium in both samples (detected at 0.0021 to 0.0024 mg/l, well below the MCL of 0.02 mg/l).

The metals detected in all three sediment samples were arsenic, beryllium, cadmium, chromium, copper, nickel, lead, zinc, and uranium. The concentrations in the upstream sediment sample were the same (and sometimes higher) than the concentrations in the downstream sediment samples. With the exception of beryllium, the detected concentrations for the OB/OD Area were below the highest reported concentration for the Impact Area investigation.

In an effort to determine past practices of the EOD and to determine the origin of TCE in the groundwater at the OB/OD Area, personnel at the DES (formerly the DEH) (Fort Riley DEH, 1994) contacted a former EOD employee who participated in OB/OD activities during the 1960s. This person stated that kerosene and diesel fuel were almost exclusively used for burning, except for the occasional use of gasoline as a fuel during demonstrations. This former employee had no knowledge of the use of TCE or the disposal of TCE at the site.

In addition, the commanding officer of the 74th EOD at Fort Riley at the time of the SI in 1993 had no knowledge of the use or disposal of TCE at the site (CEMRK, 1994). Thus, the origin of the TCE in the groundwater beneath the OB/OD Area continues to be unknown, but is considered to likely be the result of a sporadic or one-time (rather repeated) practice. This conclusion is based in large part on the fact that TCE was not detected in samples collected from other media at the site, indicating that there does not appear to be a widespread source of TCE at the site. TCE is not typically associated with munitions and ordnance or their disposal at OB/OD Area. Some TCE may have been present in waste fuels used for burning at the site. The TCE fraction of the burn agent may not have been completely combusted, leaving the TCE to migrate (via soil and surface water) into the groundwater. TCE is a volatile organic with a low octanol carbon coefficient (K_{oc}) of 126 milliliters per gram indicating that it is relatively mobile in the environment.

The surface soils in the OB/OD Area are mainly silts and clays. The overburden is 12 to 20 feet thick in the area and can be characterized as clay with occasional limestone inclusions. There were some damp zones observed in the overburden in October 1993. In the lower lying areas (e.g., well OB-93-04), dampness was noted to begin about 10 feet below ground surface and intermittent water was observed at the contact with the bedrock at approximately 20 feet below the ground surface. The regional bedrock stratigraphy consists of alternating layers of limestone and shale that dip slightly toward the west (Jewett, 1941). The shales have a much lower relative permeability than the limestones.


As shown in Figure 2-1, four wells were installed, surrounding the suspect sources in the OB/OD Area. Sustainable water-bearing zones were encountered during well installation activities in two different formations, and the wells were screened in those formations. Wells OB-93-01 and OB-93-02 were screened at elevations consistent with the Wymore Shale and Schroyer Limestone interface, and wells OB-93-03 and OB-93-04 were screened in the deeper Threemile Limestone.

Coring of bedrock was performed during the installation of OB-93-04. Analyses of this core and comparisons with regional stratigraphy (discussed in Chapter 4) allowed for the identification of specific formations at this location. Well OB-93-04 penetrates overburden, the Schroyer Limestone, the Havensville Shale and the Threemile Limestone. The well is screened, however, in the Threemile Limestone. The other three wells were logged based on cuttings, and correlation of stratigraphy at each location was performed with a lesser degree of confidence.

2.3 Confirmation Sampling (1995)

Pursuant to the 20 July 1995 meeting between Fort Riley, KDHE, and the EPA, Fort Riley completed a one-time round of confirmation groundwater sampling of several areas, including the OB/OD Area. This groundwater sampling and analysis was conducted to confirm results from previous rounds of sampling at these sites and to supplement the groundwater data base. Samples were collected from the four monitoring wells in the OB/OD Area in December 1995 (CEMRK, 1996a and 1996b). Groundwater samples were analyzed for VOCs, SVOCs, explosives, nitrate, nitrite, ortho-phosphate, sulfate, uranium, and PP metals. TCE was again detected in OB-93-03 (at 1.4 μ g/l) and in OB-93-04 (at 17 μ g/l). The concentration in OB-93-04 again exceeded the MCL of 5 μ g/l for TCE. After the sampling event in December of 1995, no other site investigation activities were conducted at the OB/OD Area until the field work associated with the SI Report Addendum began in March of 1997.

FIGURES

OB-OD1/06AUG98/OB-ISI.SCR

3.0 SITE INVESTIGATION (1997)

3.0 SITE INVESTIGATION (1997)

Based on the findings of the previous investigations at the OB/OD Area, it was determined that additional site investigation (SI) activities were required. The objectives of the additional SI activities were to:

- evaluate the possible source and extent of contamination;
- evaluate whether any other contaminants at the site are co-contaminants with the chlorinated solvent; and
- clarify the local geology and movement of water within the different formations that underlay this site.

The approach for this work is documented in the Sampling and Analysis Plan (SAP) for the Supplemental Site Investigation at the Open Burn/Open Detonation Area, Fort Riley, Kansas (CENWK, 1997a). The following subsections present a summary of the activities conducted during the supplemental SI work performed in 1997. Evaluations and interpretations based on the results of this work (combined with the previous investigations) are presented in Chapter 4.

Access to the OB/OD Area is restricted because it, and adjacent areas, are used for military training. As a result, the SI field activities had to be conducted in a series of field events during inactive periods at the site. The following subsections thus discuss the SI activities as four different events:

- a preliminary investigation (referred to as "Mobilization #1");
- a passive soil gas demonstration test;
- an investigation for further characterization of hydrogeologic conditions and extent of contamination (referred to as "Mobilization #2"); and
- groundwater monitoring.

3.1 Mobilization #1

The objectives of Mobilization #1 were to clarify the geology and hydrogeology of the area and to screen for contamination. In particular, the assignment of observed rock units to the regional stratigraphy and the determination of the gradient of the water in each water-bearing limestone was planned. This information was to be used to guide the further evaluation of the area of contamination in Mobilization #2.

Mobilization #1 was conducted from 17 March to 2 April 1997. Prior to commencement of site activities, a UXO survey was conducted. No live UXO were encountered during the drilling

operations at any of the monitoring well locations. A summary of UXO encountered is provided in Appendix B.

3.1.1 Activities Conducted

On 21 January 1997, a site visit to the OB/OD Area was conducted as part of an effort to visually inspect the geologic outcrops near the site in order to better understand the geology beneath the OB/OD Area. Based on information gathered at this time and subsequent discussions from this field trip, it was noted that the existing shallow monitoring wells (OB-93-01 and OB-93-02) intersect the Schroyer Limestone. The deeper existing shallow monitoring wells (OB-93-03 and OB-93-04) are confirmed to be screened in Threemile Limestone, as previously noted in the boring logs.

At the commencement of Mobilization #1, the ground surface elevations at the proposed monitoring well locations were surveyed. In addition, the top of the Havensville Shale was surveyed at two locations where it outcropped near the OB/OD Area; one along a streambed to the west within the EOD Range and the other along a reach of the same streambed near Vinton School road, off-site from the OB/OD Area. The results showed that the Schroyer/Havensville contact occurs at an elevation of 1138.87 feet in the streambed in the southern portion of the EOD Range, and occurs at an elevation of 1132.69 feet along Vinton School Road. This represents a change in elevation of 6.19 feet over a horizontal distance of approximately 2,400 feet in the east-west direction (along the dip of the beds). This information was used for the following purposes:

- to estimate the depths at which the formations would be encountered during drilling;
- to confirm the formations in which the existing monitoring wells were screened and installed during the initial 1993 SI; and,
- to evaluate the magnitude of the regional dip (approximately 0.26 feet per 100 feet).

To accomplish these objectives, four monitoring wells were installed at locations shown on Figure 3-1. Table 3-1 lists the well construction information for the newly installed wells during Mobilization #1, including the ground elevation at each well location, the total depth, interval cored (if applicable), screened interval, and the formation in which the well is screened. During Mobilization #1, a spring and a hand dug well were also discovered at the locations indicated on Figure 3-1. Table 3-1 presents information on the measured elevations of the spring, the hand dug well, and the Schroyer/Havensville contact (as discussed above). The lithological logs, construction details, and well specification records for the monitoring wells are presented in Appendix A.

Two of the wells (OB-97-06 and OB-97-07) were screened across the Schroyer Limestone and the upper portion of the Havensville Shale to compliment the two existing wells (OB-93-01 and OB-93-02) which were screened across the Schroyer Limestone and lower portion of the Wymore Shale. One well (OB-97-05) was screened in the Threemile Limestone to compliment the two existing wells (OB-93-03 and OB-93-04) in that zone. A fourth well (OB-97-08) was installed in the overburden and screened across the water table at a location between the OB/OD Area and the

intermittent stream to the west to evaluate the potential for shallow groundwater discharges to the intermittent stream.

Two of the wells were cored to improve the understanding of the stratigraphy; one (OB-97-05) was cored into the Threemile Limestone, the other (OB-97-06) was cored into the Schroyer Limestone. During installation of the wells, geologic logs and hydrogeologic observations were made and the borings were geophysically logged (using a natural gamma technique). Geophysical logs were also obtained for all four of the existing wells on the site. Groundwater screening samples were collected from each saturated zone encountered during the installation of the new wells, and were analyzed for VOCs, including chlorinated solvents. One well (OB-97-08) was also sampled and analyzed for explosives and nitrate/nitrite since this was the well installed at the overburden/bedrock interface in a location expected to intercept groundwater flow from the area of the North Burn Pit and South Burn Pit (the suspected source areas).

Three of the four newly installed wells were developed at this time. The well development records are presented in Appendix A. Due to the heavy rain experienced during this mobilization, the development of OB-97-05 could not be completed and was delayed until Mobilization #2. No water was added to the boreholes during drilling operations. Therefore, only formation water was removed during well development. The results of the well development of OB-97-06, OB-97-07, and OB-97-08 (volume, temperature, pH, conductivity, and turbidity) are shown in Table 3-2.

Groundwater screening water samples were collected from each of the newly installed monitoring wells at discrete intervals (dependent on the existence of water) during the drilling operations: the overburden/bedrock interface (based on auger drilling refusal), the Schroyer Limestone horizon, and the Threemile Limestone horizon. Additional groundwater screening samples were collected within the Havensville Shale at OB-97-07, from the spring, and from the hand dug well. Table 3-3 lists the groundwater sample depth, formation, date of collection, and the positive detection analytical results.

Based on the analytical results shown in Table 3-3, the highest concentration of TCE (570 μ g/l) was detected at the OB-97-07 well location, which is screened in the lower portion of the Schroyer Limestone and the upper portion of the Havensville Shale. VOC contaminants are also present to some extent at all other well locations installed during this mobilization; with TCE being the predominant contaminant. Concentrations of TCE were also detected in the hand dug well and spring (100 to 300 μ g/l respectively).

Table 3-4 presents the groundwater elevations measured in both the existing wells and the wells installed during Mobilization #1. These elevations were measured over a 10-day period from 19 to 29 March 1997.

The types of Investigation Derived Waste (IDW) water that were generated and containerized during these field investigations included formation water from drilling, purge water from well development, and purge water from groundwater sampling. The IDW water generated during well installation was containerized daily in a tank located inside the OB/OD Area. Purge water collected during the monitoring well groundwater sampling event that followed the well installation was similarly managed.

Soil IDW was not containerized, but rather was returned to the ground at the site. This includes soil cuttings from the hollow stem auger and the air-rotary rigs.

3.1.2 Deviations from the Sampling and Analysis Plan

The following deviations from the Sampling and Analysis Plan were made during the execution of the Mobilization #1 activities:

- A spring and hand dug well were discovered to the west of the OB/OD Area during Mobilization #1. A grab sample was collected from each of these locations and analyzed for VOCs, SVOCs, explosives, and nitrate/nitrite.
- Additional elevation surveys were performed at the hand dug well, spring, and two outcrop areas near the OB/OD Area.
- OB-97-08 was installed as a permanent monitoring well because of the large amount of groundwater encountered at this location during the drilling operation.
- At OB-97-07, auger refusal did not occur until an elevation corresponding with the bottom of the Schroyer Limestone; therefore, the well was completed in the bottom of the Schroyer Limestone and top of the Havensville Shale.
- Groundwater screening samples were collected from OB-97-05 at the Schroyer Limestone and Threemile Limestone because they were the only two depths with sufficient water to sample.
- Three additional post-development samples were collected and analyzed for VOCs (Method 8260) at OB-97-06, OB-97-07, and OB-97-08 to help further characterize the groundwater.
- Geophysical logging of OB-97-05 was delayed until Mobilization #2. Impact well IZ92-010 and an outcrop were also geophysically logged (Appendix D). The location of well IZ92-010 and the outcrop are shown on Figure 1-1.
- All monitoring wells were planned to be installed using a hollow stem auger rig through the overburden material, followed by use of dual tube reverse air rotary drilling to advance the borehole through bedrock. Straight air rotary method was used instead of the dual tube reverse method for both drilling and coring. The dual tube method could have been used for the drilling (but was inadvertently omitted), however, the coring could not have been performed with the dual tube air rotary equipment. Air coring was considered advantageous over water coring to avoid the loss of water to the formation.

3.2 Passive Soil Gas Survey Demonstration Test

As part of the SI, a passive soil gas survey method was tested within the OB/OD Area. The purpose of the test was to evaluate whether this technique could be effective in delineating the pattern of VOCs in the groundwater. The survey method generally consisted of installing soil gas

detectors (GORE-SORBER Screening Modules) in shallow borings and then collecting them at a later date for laboratory analysis. On 16 April 1997, a total of six detectors were installed in 1/2inch borings at depths of 3 feet, in a radial pattern of about 20 feet to the west, north, and east of wells OB-97-07 and OB-97-05. These two wells had the highest levels of VOCs detected in Mobilization #1. The detectors were collected on 8 May 1997 and analyzed. PCE was detected in five samples at 0.03 to 0.10 μ g/sorber, and TCE was detected in one sample at 0.03 μ g/sorber. As these levels were just above the method detection limits (MDLs), their concentrations would be expected to decrease below the MDLs as detectors are moved away from areas of known contamination. Because the samples arrived at the laboratory at 20.6° C (above the generally accepted level for shipment of environmental samples) the results are considered qualitative. The analytical report is provided in Appendix C. It is believed that the reason for only detecting low levels of PCE in the soil gas detectors above known contaminated groundwater lies in the fact that the shale (layer of low permeability) overlying the groundwater impedes the upward migration of soil gas from the groundwater to the detector. Based on the low levels detected and this vertical barrier limitation, a more extensive deployment of passive soil gas detectors at the OB/OD area was not considered suitable and was, therefore, not recommended or pursued.

3.3 Mobilization #2

The original objectives of Mobilization #2 were to use the geologic information (confirmation of geologic profiles), hydrologic information (gradients in each of the saturated formations), and new chemical screening results obtained during Mobilization #1 to install four additional wells to evaluate the observed chlorinated solvent contamination and possible source. Secondarily, wells would be located in the interest of forming a monitoring network around the OB/OD Area.

The hypothesis upon which this supplemental investigation was based is that the chlorinated solvent contamination was originally released onto the surface of the site in the burn pits. Based on information provided by the 74th EOD-FR, the South Burn Pit is inactive and has not been in use for some time. The North Burn Pit is active, but has not been used as a burn pit at least for the past several years since open detonation is the current disposal/destruction method of choice. There are no industrial facilities in the area that might account for the contamination. No VOCs were detected in near-surface soil in or near the North Burn Pit. Samples collected near the South Burn Pit during the installation of OB-93-04 were not analyzed for VOCs. Sediment and surface water samples collected from the stream to the west were also not analyzed for VOCs. Thus, additional wells needed to be placed to further evaluate the possible source and extent of contamination.

The data collected during Mobilization #1 raised several new questions regarding the presence of VOCs at the site and their migration. Specifically, source areas were not yet identifiable and the contaminant migration pathways in groundwater were not well understood. Insufficient information was currently available to clearly establish locations for additional investigation that would be expected to provide data (in a cost-effective manner) on source areas and contaminant delineation. Therefore, the objectives of the Mobilization #2 activities were changed as follows (CENWK, 1997c):

• Gather sufficient information to predict groundwater flow patterns; this requires an understanding of the origins of the groundwater moving through the site, the formations

that are serving to initiate contaminant migration from the source areas, and the movement of water within and between formations downgradient of the site.

• Gather sufficient information to assess and/or predict the migration of contaminants from the site for purposes of establishing an appropriate investigative effort in a subsequent effort (e.g., placement of additional groundwater monitoring wells) and for establishing an effective groundwater monitoring network.

• Assess potential migration pathways between surface water and groundwater through the presence of the springs and nearby intermittent streams.

Because the inter-relationship between groundwater in different formations at a given location was not well understood, vertically nested piezometers were proposed in lieu of monitoring wells. Nested piezometers represent multiple, small diameter (1-inch) piezometers screened at different elevations in the same borehole. The screened interval of each piezometer is short (1 foot) so that measured groundwater information can be correlated with a specific vertical horizon. The use of nested piezometers also allows for the long-term assessment of the presence of groundwater within different formations (e.g., the Kinney Limestone and Wymore Shale); allows for the comparison of groundwater elevations across the site within very discrete zones to better assess groundwater flow directions; allows for an assessment of vertical migration; and provides access to a specific horizon for purposes of collecting groundwater screening samples to better assess the distribution of contaminants across the site.

3.3.2 Activities Conducted

Mobilization #2 was conducted from 1 June to 5 July 1997. Activities performed during Mobilization #2 included the installation and development of five nested piezometers; geophysical logging of the five pilot boreholes and existing monitoring well OB97-05; surveying of all wells, piezometers, and sampling locations for elevation and horizontal coordinates; and, sampling. These activities were all conducted from 1 to 19 June, except for the purging of the piezometers, which was conducted on 4 to 5 July 1997. This section summarizes the field activities conducted during Mobilization #2. Additional details are provided in Technical Memorandum #2 (CENWK, 1997d and 1997e). No live UXO were encountered during the drilling operations at any of the piezometer locations. A summary of UXO encountered is provided in Appendix B.

3.3.2.1 <u>Nested Piezometer Construction</u>

Five nested piezometers were installed at the OB/OD Area during Mobilization #2 between 1 and 19 June 1997. The locations of the piezometers are shown on Figure 3-2. The lithological logs are presented in Appendix A and the piezometer construction data is presented in Table 3-5. The survey data for the eight existing wells, the five piezometers, and other site features are presented in Table 3-6.

The locations for the nested piezometers were selected to provide data while avoiding areas that would interfere with use of the range and/or be susceptible to damage due to activities at the range. A description of these locations, which are shown in Figure 3-2, is presented below:

- OB-97-09PZ Located at the top of the rise north of the OB/OD Area. The purpose of this nest is to evaluate the origins of water that may be flowing through the OB/OD Area. Specifically, this nest would evaluate the presence of water in the Florence Limestone, the Blue Springs Shale, the Kinney Limestone, the Wymore Shale, the Schroyer Limestone, and the Havensville Shale. Since the Florence Limestone was projected to occur at an elevation of 1212 to 1242 feet, the location of this PZ was selected to be well above the top of the Florence and away from the exposed edges of the Florence which may have temporal effects of recharge and discharge. This borehole was advanced to an elevation of approximately 1132 feet msl, in the Havensville Shale.
- OB-97-10PZ Located adjacent to OB-93-01 at the northeast corner of the loop road within the OB/OD Area. This location was selected to assess groundwater on the eastern portion of the site and, in conjunction with other piezometers, to assess the possible presence of a groundwater divide. This nest was to evaluate the Kinney Limestone, the Wymore Shale, the top of the Schroyer Limestone, the bottom of the Schroyer Limestone, and the Havensville Shale. This borehole was advanced to an elevation of approximately 1134 feet msl.
- OB-97-11PZ Located adjacent to the North Burn Pit on the northeastern side of the berm. The stratigraphic position, drilling depths, and formation screened are similar to those of both OB-97-10PZ and OB-97-12PZ. This nest was intended to assess whether the water flowing out of the spring on the southwest of the burn pit, which contains TCE, is being fed by the Kinney Limestone.
- OB-97-12PZ Located approximately 150 feet due north of OB-97-05. This location was selected to assess the northwestern portion of the site, north (and in the apparent upgradient direction) of the detections of TCE in the Schroyer Limestone at OB-97-05. This nest is located at a similar stratigraphic position as both OB-97-10PZ and -11PZ, and the depth drilled and the formations screened are similar. This nest, in conjunction with OB-97-10PZ and OB-97-11PZ, provides for an evaluation of groundwater across the OB/OD Area from west to east.
- OB-97-13PZ Located adjacent to wells OB-93-04 and OB-97-07. This nest is located lower in the stratigraphic column than the other nested piezometer locations. The formations to be screened include the Wymore Shale at an elevation approximately five feet above the top of the Schroyer Limestone, the top of the Schroyer Limestone, the bottom of the Schroyer Limestone, and the top and middle of the Havensville Shale. In conjunction with OB-97-10PZ and OB-97-13PZ, this nest provides data on groundwater flow from north to south across the OB/OD Area. This nest would also provides information on the potential for vertical migration from the Schroyer Limestone to the Havensville Shale. The borehole for this piezometer was drilled to an elevation of approximately 1126 feet msl.

Prior to the commencement of drilling activities for the nested piezometers, the ground surface elevations at the proposed locations were surveyed. As the proposed screen intervals for

Draft Final SI Report Addendum - OB/OD Area -

piezometers OB97-10 through OB97-12 were the same, their locations were adjusted so that the ground surface elevation for each location was within 2 feet. Accurate elevation data were important prior to drilling as the limestone formations at the site are relatively flat lying, and the elevation at which these formations might be expected to be encountered was known from previous drilling and logging activities performed at the site.

Drilling was performed using air rotary drilling techniques. Coring was performed at one piezometer location (OB-97-13PZ) from 17.4 feet below ground surface (bgs) to 26.5 feet bgs. Upon completion of each boring an 8-inch inner diameter polyvinyl chloride (PVC) casing was installed temporarily to prevent collapse of the sidewalls.

Upon completion of the five borings, downhole geophysical logging was performed using a gamma logging tool. Logging of monitoring well OB-97-05 was also performed during this mobilization. The geophysical logs, printed at a scale of 1 inch equals 10 feet, are included in Appendix D. The drilling logs and geophysical logs were used to select the screen intervals for each piezometer.

Each piezometer is constructed of 1-inch diameter schedule 80 PVC and the screen sections for each are approximately 1-foot long, with the exception of the piezometer OB97-09PZ screening the Florence Limestone. The screen interval for this piezometer is approximately 2-feet long. Six nested piezometers were installed at piezometer location OB97-09PZ and five nested piezometers were installed at the other four piezometer locations. Each piezometer was constructed in a similar fashion by first backfilling the boring with bentonite to a depth approximately 1.5 feet below the proposed depth of the lowest piezometer. Time delayed bentonite pel-plug was used to allow the bentonite time to fall through the water before hydrating. The bentonite seal was allowed three hours to hydrate before the sand/filter pack and piezometer was set. All piezometer casings at each location were cut to the same elevation and notched for identification purposes. The deepest piezometer at each location had no notches with each consecutively shallower piezometer having one more notch than the previous piezometer. For example, the deepest piezometer at OB-97-09PZ(5). The well specification forms are provided in Appendix A.

3.3.2.2 <u>Well Development</u>

During drilling operations at piezometer OB97-13PZ, groundwater was forced from monitoring well OB97-07, located approximately 10 feet to the west. It was therefore necessary to redevelop this well. Redevelopment took place on 17 and 18 June 1997.

Monitoring well OB97-05 was also developed on 10 June 1997 during Mobilization #2 as it was not completed during Mobilization #1 due to the heavy rains. Well development records are included in Appendix A and the well development results (volume, temperature, pH, conductivity, and turbidity) of both wells are summarized in Table 3-2.

3.3.2.3 <u>Piezometer Purging</u>

It was planned to remove 3 well volumes from each piezometer and to collect a grab sample. Due to the narrow diameter and depths of the piezometers, conventional pumps could not be used. On

Draft Final SI Report Addendum - OB/OD Area -

17 June 1997, purging of the piezometers commenced at OB97-13PZ using inertial (jiggle) tubes. However, purging using this method also could not be completed due to limitations of the jiggle tubes. The limitations of the jiggle tubes were the depths of the piezometers (particularly at OB97-09PZ) and the shallow head in many of the piezometers (the jiggle tubes will not lift water if there is not sufficient head in the piezometer - a water column of at least 1.5 feet). It was therefore decided to use air lift methods to purge the piezometers. The purge logs are presented in Appendix A.

On 4 July 1997 the piezometers were purged using air lift methods. Before purging, a round of groundwater level measurements and photoionization detector (PID) readings were recorded. An injection tube was used to deliver air to the bottom of each piezometer, forcing water up the piezometer casing. At each piezometer cluster, the deepest piezometer was purged first. Each piezometer was purged to dryness. Purge water from OB97-09PZ and OB97-10PZ was discharged to the ground. Purge water from OB97-11PZ, through OB97-13PZ was containerized. Table 3-7 summarizes the total purge volume collected from each piezometer.

3.3.2.4 Groundwater and Surface Water Sampling

As the piezometers could not be purged with inertial tubes, grab samples were not collected from all the piezometers. Only one sample from OB97-13PZ(2) was collected from the piezometer screened in the Schroyer Limestone and analyzed for VOCs. The spring and hand dug well were also sampled. These results are presented in Tables 3-8 and 3-9.

Surface water sampling was not performed as the flow in the two streams bordering the OB/OD Area had low and intermittent flow. Proposed sample locations were surveyed.

3.3.2.5 <u>IDW</u>

Drill cuttings generated during drilling operations were staged on plastic sheeting at each borehole and headspace screening using a PID was performed on samples from each interval encountered. All drill cuttings with a PID response less than 1 ppm were spread on the ground surface near each borehole. Only drill cuttings from OB97-11PZ exhibited a PID greater than 1 ppm and so these were containerized in seven 55-gallon steel drums and staged on site. Cuttings from all other boreholes were spread on the ground surface following screening. A composite sample of the soil from five of the seven drums was collected on 19 June 1997 and analyzed for VOCs.

With the exception of OB97-09PZ and OB97-10PZ, all groundwater generated during drilling activities was containerized and placed in the IDW tank with purge water from Mobilization #1. As OB97-09PZ is located in an upgradient location and VOCs have not been detected in the eastern portion of the site near OB97-10PZ, groundwater from these locations was not containerized. The contents of the IDW tank were aerated during Mobilization #2 activities and a sample of the tank contents was collected on 19 June 1997 and analyzed for VOCs. The results for the IDW analysis (CENWK, 1997b) showed that there were no detections in the soil and that all detections were below the MCLs in the water. Therefore, on 27 August 1997, the soil IDW was spread on the ground, the drums were removed, and the water IDW was discharged to the ground.

3.3.3 Deviations from the Planned Activities

The deviations from the planned activities were as follows:

- Grab samples were not collected from the piezometers as planned because of the difficulties in purging the piezometers.
- Surface water sampling of the intermittent streams was not conducted because they were dry. However, the proposed surface water sampling locations were located and surveyed. The five stream locations (and the spring) are shown in Figure 3-3. Surface water location OB-97-SW5 is at the same location as the outcrop on the east side of the intermittent stream to the south of the OB/OD Area (confluence of the two intermittent streams that bound the site on the east and west). This outcrop is identified in Table 3-1.
- The number of piezometers installed (26) was changed from the proposed number (28) based on a review of the drilling logs and geophysical logs. The number of screens completed in each nested piezometer is summarized as follows:

No. of Screens per Piezometer	Planned	Completed
OB-97-09PZ	5	6
OB-97-10PZ	6	5
OB-97-11PZ	6	5 `
OB-97-12PZ	6	5
OB-97-13PZ	5	5
Total	28	26

The amount of coring conducted at OB97-13PZ was reduced from the proposed 25 feet to approximately 10 feet based on the materials encountered. The coring did however reveal the Schroyer Limestone/Havensville Shale contact, which partially fulfilled the purpose of coring. As the upper portion of the Schroyer was absent, the entire thickness could not be cored as planned.

3.4 Groundwater Monitoring

Groundwater monitoring, in the form of monthly elevation measurements and quarterly sampling and analysis, was conducted at the OB/OD Area.

3.4.1 Groundwater Elevations

After the installation of the nested piezometers, the plan was to measure groundwater elevations whenever site access can be arranged in addition to measuring the elevations as part of the sampling events. Monthly groundwater elevations were measured on 27 August and 14 October 1997, but site access was not available in November 1997. These data are presented in Table 3-10.

Concurrent with the OB/OD field activities, USGS installed remote access automatic data loggers in each piezometer in OB-97-09PZ and OB-97-13PZ on 3-4 September 1997. USGS then installed remote access automatic data loggers in OB-93-01, OB-93-02, OB-97-06, and OB-97-11PZ(1) on 2 December 1997.

3.4.2 Groundwater Sampling and Analysis

Periodic groundwater samples were to be collected from all wells at the OB/OD Area, including the existing wells installed in September-October 1993 and the new wells installed in 1997. The wells would be sampled after well development and would be dependent on coordination for access when the OB/OD Area is not reserved for training activities. Groundwater samples collected during the groundwater sampling event following the well installation mobilizations were to be analyzed for the same suite of analytes as in the initial 1993 SI (CEMRK, 1993c and CEMRK, 1994) and the December 1995 sampling (CEMRK, 1996a). The analytical method for TCL volatile organics was changed from EPA 8240 to EPA 8260 pursuant to EPA recommendations in *Test Methods for Evaluating Solid Waste* (USEPA, 1986, Update III), that the use of method 8240 be eliminated. The methods differ in the type of chromatography column employed; the analyte list and analyte quantitation limits are the same for both methods. The analytes and methods (USEPA 1986, USEPA 1983) included:

- Explosives
- Target Compound List (TCL) Semi-Volatile Organics (SVOCs)
- Target Compound list (TCL) Volatile Organics (VOCs)
- Priority Pollutant Metals (13)
- Nitrate
- Nitrite
- Phosphate (ortho)
- Sulfate

Method 8330/HPLC Method 8270/GC-MS (EPA Method 3510B is used for sample preparation) Method 8260

Method 7000 series/AA and 6010/ICP Method 353.2 Colorimetric Method 353.2 Colorimetric Method 365.1 Method 375.4

3.4.2.1 September 1997 Sampling Event

The first periodic sampling event for the OB/OD Area since the installation of the wells and piezometers in 1997 was performed between 1 and 5 September 1997. Analytical results are provided in the QCSR (CENWK, 1997b) and summarized in Tables 3-8 and 3-9.

The results for samples collected from OB-97-10PZ(0), OB-97-11PZ(0), and OB-97-12PZ(0) are presented as the highest values of the original analysis and reanalysis. These samples were

reanalyzed as the matrix spike/matrix spike duplicate (MS/MSD) samples in the Quality Control (QC) batch were inadvertently not spiked by the laboratory. All associated QC for the Batch were within control criteria. The samples were preserved at the recommended storage temperature (4 degrees C) following collection and reanalyzed one day beyond hold with all QC within control limits. Although two analyses were performed, any analytes detected in either analysis was reported. Therefore, as the samples affected are screening samples, the data quality objectives to determine the presence or absence of contaminants were met and no data qualifications were made.

The scope of work was modified such that during this initial round of sampling, the wells, piezometers, and surface water locations would only be analyzed for VOCs. In future events, the wells and surface water locations would be analyzed for only VOCs and SVOCs. The piezometers would only be sampled once as a baseline as they were primarily installed to provide groundwater elevation data and not to be periodic sampling points.

The static water levels were first measured on 2 September 1997 at all the groundwater monitoring wells, the five nested piezometers, the hand dug well, and the spring. The groundwater levels are presented in Table 3-10. For the monitoring wells and piezometers, the field parameters; temperature, pH, conductivity, and turbidity were measured for each well volume purged. In addition, for the hand dug well, the same four field parameters were measured before sample collection. The groundwater monitoring wells were sampled with dedicated bladder pumps. In addition, the hand dug well was sampled using a surface water sampler. A field blank was collected from the sampling equipment used to collect the hand dug well sample. For the monitoring wells, three well volumes were purged following methodologies outlined in the *Comprehensive Basic Documents for Site Investigations at Fort Riley, Kansas* (CEMRK, 1995) prior to collection of each sample. The following piezometers were purged dry prior to removal of one well volume and were allowed to recharge prior to sampling without further purging: OB97-10PZ(0), (1), and (3); OB-97-11PZ(0); OB-97-12PZ(0) and (3); and OB-97-13PZ(0), (1), and (3).

No surface water samples were collected as the spring and the five planned surface water sampling locations were all dry. However, on 26 September 1997, a sample was collected from OB-97-SW2, the only surface water location with water in it. The results were non-detect for VOCs. All the groundwater and surface water samples were analyzed for only VOCs.

No samples were collected from 8 of the 26 piezometers as they were dry [OB-97-09PZ(2), and (5); OB-97-10PZ(4); OB-97-11PZ(2), (3), and (4); and OB-97-12PZ(2) and (4)]. Due to previously observed effervescence caused by reaction of the calcium carbonate in the groundwater originating from the limestone with the acid preservative in the sample container, VOC samples collected from OB-97-09PZ(0), (3), and (4); OB-97-10PZ(0), (1), (2), and (3); OB-97-11PZ(0) and (1); OB-97-12PZ(0); OB-97-13PZ(0), (1), (2), (3), and (4) were not preserved with acid. This corrective action was implemented to mitigate the effect of the acid, but necessitated an expedited holding time of seven days.

In this September 1997 event, wells OB-97-07 and OB-97-08 have the highest and second highest concentrations of TCE, at 400 μ g/l and 200 μ g/l, respectively. The concentration of TCE decreased from 570 to 400 μ g/l at OB-97-07 while the concentration of TCE increased from 99 to

200 μ g/l at OB-97-08. The concentrations of TCE in hand dug well increased from 100 to 260 μ g/l while the concentration of TCE in the spring decreased from 300 to 190 μ g/l. These values all exceed the MCL of 5 μ g/l for TCE. Tetrachloroethylene (PCE) was also detected at 14 μ g/l in OB-97-07 and at 8.0 μ g/l in OB-97-08, which also exceeds its MCL of 5 μ g/l.

The groundwater levels were remeasured on 5 September 1997 to compare electric water level meter measurements to chalked steel tape measurements. These results are presented in Table 3-11.

3.4.2.2 December 1997 Sampling Event

The second periodic sampling event for the OB/OD Area since the installation of the wells and piezometers in 1997 was performed between 1 and 5 December 1997. Samples were analyzed for VOCs and SVOCs. Analytical results are provided in the QCSR (CENWK, 1998a) and are discussed in the DSR (CENWK, 1998b). The results are summarized in Table 3-12.

Groundwater elevation data were collected on 1 December 1997 at eight monitoring wells and five nested piezometers. There were eight dry piezometers [OB-97-09PZ(2), and (5); OB-97-10PZ(4); OB-97-11PZ(3), and (4); OB-97-12PZ(2) and (4); and OB-97-13PZ(4)]. In addition, surface water elevations were measured at two surface water locations and the spring. The hand dug well was sampled on 1 December 1997 using a surface water sampler. After monitoring well OBHD-97-14 (also referred to as FPHD-97-14) was constructed at the hand dug well for safety reasons, the groundwater level was measured on 5 December 1997 and this new well was sampled. The groundwater elevation data are presented in Table 3-10. Well construction information for OBHD-97-14 is provided in Appendix A.

VOCs were detected above the Sample Quantitation Limits (SQLs) at 4 of the 9 monitoring wells, the hand dug well, and the spring. There were no detections of SVOCs in any of the groundwater or surface water samples.

TCE exceeded the MCL of 5 μ g/l in four wells (OB-93-04, OB-97-07, OB-97-08, the hand dug well) and the spring. The highest total concentration of VOCs was detected in monitoring well OB-97-07. TCE was detected at 530 μ g/l and tetrachloroethylene (PCE) was detected at 14 μ g/l. These levels exceed the 5 μ g/l MCL for both PCE and TCE. The spring had the second highest concentration of PCE at 3.1 μ g/l. Monitoring well OB-97-08, the spring, and the hand dug well had the second highest concentration of TCE at 110 μ g/l. The concentration of TCE in the field duplicate of OB-97-08 was higher at 120 μ g/l. PCE was also detected in the field duplicate of OB-97-08 at 3.3 μ g/l, although it was not detected in the record sample. The highest concentration of cis-1,2-DCE was in OBHD-97-14 at 82 μ g/l, which exceeds its MCL of 70 μ g/l. Wells OB-93-04 and OBHD-97-14 also had detections of TCE above the MCL of 5 μ g/l at 15 μ g/l and 63 μ g/l, respectively.

The results of the hand dug well and monitoring well OBHD-97-14 were compared. The concentrations of 1,2-DCE (total) doubled from 46.4 μ g/l to 88 μ g/l, while the concentration of 1,1,2,2-tetrachloroethane decreased by one-half from 33 μ g/l to 15 μ g/l, and the concentration of TCE decreased also by one-half from 110 μ g/l to 63 μ g/l. 1,2-DCE is the total of cis-1,2-DCE and trans-1,2-DCE.

-Page 3-13

3.4.2.3 <u>Comparison of December 1997 to September 1997 Sampling Events</u>

While the PCE concentration $(14 \ \mu g/l)$ in well OB-97-07 in December 1997 remained the same as in September 1997 sampling event, the concentration for TCE increased (530 $\mu g/l$) compared to the concentration previously detected in September 1997 (400 $\mu g/l$).

The PCE concentration in well OB-97-08 decreased from 8.0 μ g/l in September 1997 to non-detect in December 1997. The TCE concentration in well OB-97-08 decreased from 200 μ g/l in September 1997 to 110 μ g/l in December 1997.

The TCE concentration remained about the same for OB-93-04 at 15 μ g/l for December 1997 sampling event compared to the September 1997 (17 μ g/l) sampling event.

The TCE concentration $(110 \ \mu g/l)$ in the hand dug well in December 1997 decreased compared to the concentration detected in September 1997 (260 $\ \mu g/l)$). The concentration of TCE detected in the water after the hand dug well was made into a monitoring well decreased to 63 $\ \mu g/l$ in December 1997.

The spring was not sampled during the September 1997 mobilization due to insufficient water. Comparison of the December 1997 results to those obtained for June 1997 show a decrease in concentrations of TCE (from 190 to 110 μ g/l), PCE (from 4.9 to 3.1 μ g/l) and 1,1,2,2-tetrachloroethane (from 67 to 42 μ g/l).

TABLES

Table 3-1 Well Construction Data for Mobilization #1

Well ID	Dates of Drilling (1997)	Ground Surveyed Elevation (ft.amsl)	Total Depth (ft.bgs)	Interval Cored (ft.bgs)	Screened Interval (ft.amsl)	Formation Screened
OB-97-05	3/20-3/30	1178.39	73	32.5-73	1115- 1105	Three Mile Limestone
OB-97-06	3/19-3/23	1173.44	36.5	27.5-42*	1126.5- 1136.5	Schroyer Limestone
OB-97-07	3/21-3/23	1158.59	30	NAp	1140- 1130	Schroyer Limestone/ Havensville Shale
OB-97-08	3/21-3/24	1157.97	18	NAp	1149- 1139	Wymore Shale
Hand Dug Well (top of angle iron)	NAp	1155.28			NAp	
Hand Dug Well (top of water)	NAp	1145.98			NAp	
Spring (top of water)	NAp	1163.47			NAp	<u></u>
Bottom of Rock Ledge on East Side of Creek ⁺	NAp	1138.87			NAp	
Bottom of Rock Ledge South of Vinton School Road Bridge	NAp	1132.69			NAp	

NAp - Not Applicable; ft.amsl - feet above mean sea level; ft.bgs - feet below ground surface * - OB-97-06 was cored to the top of the Havensville Shale (42 feet bgs). The borehole was grouted to the base of the Schroyer Limestone designated at 36.5 feet bgs based on geologic logging information collected during the drilling operation. A monitor well was installed at this depth.

* - OB-97-SW05 (surface water sampling location) was later located at the bottom of this rock ledge.

tbl-3-1

51

li iD	Development	Mobilization	Development	· ·	Measurem	ents at End	•
OB-97-05	Dates (1997)		Volume (gal)	Temp (°F/°C)	рН	Cond (µmhos/ cm)	Turbidity (NTU)
<u></u>	6/10	2	55	73.0/22.8	7.02	1184	22.6
OB-97-06	3/26	1	50	65.7/18.2	7.43	1548	13.1
	+			62/17	9.88	690	10.8
				54.3/12.4	6.70	520	25.4
OB-97-07	6/1/-6/18	2 2				590	11.6
OB-97-07 OB-97-07 OB-97-08	3/26-3/28 6/17-6/18 3/27-3/28	1 2 1	480 65 82	62/17 54.3/12.4 53.5/11.9	···· ···		

Table 3-2 Well Development Results for Mobilization #1 and #2

Table 3-3 Groundwater Results for Mobilization #1, March 1997

Positive Detections Only

Well	OB-9	7-05	· · · ·	OB-97-06		OB-9	97-07	OB-9	97-08	Dug Well	Spring	
Sample Type	Grab	Grab	Grab	Grab	Post- Development	Grab	Post- Development	Grab	Post- Development	Grab	Grab	MCL
Collection Date	3/25/97	3/29/97	3/19/97	3/22/97	3/28/97	3/22/97	3/28/97	3/23/97	3/29/97	3/23/97	3/23/97	and
Sample Depth (feet below ground surface)	42	73	27.5	35.5	35.5	20	30	18	18	8	Ground Surface	KSWQS
Formation	Schroyer	Three Mile	Overburden	Schroyer	Schroyer	Overburden	Schroyer/	Wymore	Wymore	NAp	NAp	
·	Limestone	Limestone	Interface	Limestone	Limestone	Interface	Havensville	Shale	Shale			
Other Parameters (mg/l)												
Nitrate/Nitrite	NA	NA	NA	NA	NA	NA	NA	0.1J	NA	0.1J	0.1J	10
Volatile Organic Compounds in m	icrograms p	er liter (µg/l)										
Benzene	ND(<0.4)	ND(<0.4)	0.5	ND(<0.4)	ND(<0.4)	ND(<0.4)	ND(<0.4)	1.2	ND(<0.4)	ND(<0.4)	ND(<0.4)	5
Bromodichloromethane	ND(<0.5)	ND(<0.5)	ND(<0.5)	ND(<0.5)	1.2	ND(<0.5)	ND(<0.5)	ND(<0.5)	ND(<0.5)	ND(<0.5)	ND(<0.5)	100 (a)
cis-1,2-Dichloroethylene	0.8	ND(<0.5)	ND(<0.5)	ND(<0.5)	ND(<0.5)	3.6	5.4	0.6	ND(<0.5)	5.2	1.4	70
trans-1,2-Dichloroethylene	ND(<0.5)	ND(<0.5)	ND(<0.5)	ND(<0.5)	ND(<0.5)	1.8	2.7	ND(<0.5)	ND(<0.5)	ND(<0.5)	ND(<0.5)	100
Dichloromethane	ND(<0.9)	ND(<0.9)	ND(<0.9)	ND(<0.9)	ND(<0.9)	ND(<0.9)	ND(<0.9)	ND(<0.9)	ND(<0.9)	ND(<0.9)	ND(<0.9)	5
1,1,2,2-Tetrachloroethane	9.7	ND(<0.6)	3.8	ND(<0.6)	ND(<0.6)	14	14	25	39	26	99	NAv
Tetrachloroethylene	1.8	ND(<1.1)	ND(<1.1)	ND(<1.1)	ND(<1.1)	9.9	11	2.5	2.2	2.6	6.3	5
Toluene	1.2	0.7	0.4	ND(<0.4)	1.2	ND(<0.4)	ND(<0.4)	0.5	ND(<0.4)	ND(<0.4)	ND(<0.4)	1000
Trichloroethylene	140	ND(<0.6)	61	0.7	0.9	490	570	86	99	100	300	5
Trichloromethane	1.1	ND(<0.5)	ND(<0.5)	0.8	2.2	ND(<0.5)	ND(<0.5)	ND(<0.5)	ND(<0.5)	ND(<0.5)	ND(<0.5)	100 (a)

Bold values represent positive detections of analytes for which standards are available; Shaded values represent concentrations

that are equal to or exceed the MCL and the KSWQS

KSWQS: Kansas Surface Water Quality Standard. From: Kansas Register, Department of Health and Environment, Volume 13, No. 28, July 14, 1994.

MCL: Federal Maximum Contaminant Level. From Drinking Water Regulations and Health Advisories, Office of Water, US Environmental Protection Agency, October 1996. NAv: Not Available

NA: Not Analyzed

NAp: Not Applicable

ND(): Not Detected (Sample Quantitation Limit).

J: Estimated concentration

(a) For MCL, total for all trihalomethanes combined cannot exceed 80 ug/l.

There were no detections of semi-volatile organic compounds or explosives in OB-97-08, the spring, or dug well collected on 3/23/97.

For a complete list of analytes from March 1997, see CEMRK 1997b.

Table 3-4 Groundwater Elevations Measured in Mobilization #1

Well ID	Ground Elevation (ft.amsl)	Depth to Groundwater (Date Collected 1997) (ft.bgs)	Groundwater Elevation (ft.amsl)	Screened Formation
 OB-93-01	1181	31.75 (3/19)	1149.25	Wymore/Schroyer
OB-93-02	1207	58.15 (3/19)	1148.88	Wymore/Schroyer
OB-93-03	1172	51.66 (3/19)	1120.34	Three Mile Limestone
OB-93-04	1158	35.45 (3/19)	1122.55	Three Mile Limestone
OB-97-05	1178	54.50 (3/29)	1123.50	Three Mile Limestone
OB-97-06	1173	21.57 (3/26)	1152.80	Schroyer Limestone
OB-97-07	1158	11.60 (3/22)	1146.40	Schroyer Limestone/ Havensville Shale
OB-97-08	1158	11.50 (3/22)	1146.50	Wymore Shale

.

Notes: ft.amsl - feet above mean sea level; ft.bgs - feet below ground surface

Well ID	Dates of Drilling	Surveyed Elevation -Grd (ft.amsl)	Surveyed Elevation - TOC (ft.amsl)	Total Depth (ft.bgs)	Interval Cored (ft.bgs)	Screened Interval Elevation (ft. amsl)	Formation Screened
OB-97-09PZ	6/6/97- 6/7/97	1242.81	1245.70	114.5	NAp	1133.81 - 1132.81 1140.72 - 1139.81 1156.81 - 1155.81 1168.81 - 1167.81 1191.81 - 1190.81 1216.79 - 1214.81	Havensville Shale Schroyer Limestone Wymore Shale Kinney Limestone Blue Springs Shale Florence Limestone
OB-97-10PZ	6/8/97	1183.28	1185.52	58.0	NAp	1134.18 - 1133.28 1141.28 - 1140.28 1147.30 - 1146.28 1154.28 - 1153.28 1167.28 - 1166.28	Havensville Shale Schroyer Limestone (lower) Schroyer Limestone (upper) Wymore Shale Kinney Limestone
OB-97-11PZ	6/9/97	1182.21	1184.43	58.0	NAp	1132.21 - 1131.21 1138.21 - 1137.21 1146.21 - 1145.21 1153.21 - 1152.21 1169.21 - 1168.21	Havensville Shale Schroyer Limestone (lower) Schroyer Limestone (upper) Wymore Shale Kinney Limestone
OB-97-12PZ	6/5/97	1183.24	1185.65	58.0	NAp	1133.24 - 1132.24 1139.24 - 1138.24 1147.24 - 1138.24 1154.24 - 1146.24 1154.24 - 1153.24 1169.24 - 1168.24	Havensville Shale Schroyer Limestone (lower) Schroyer Limestone (upper) Wymore Shale Kinney Limestone
OB-97-13PZ	6/3/97- 6/4/97	1157.92	1160.15	38.0	17.4-26.5	1127.92 - 1126.92 1131.92 - 1130.92 1136.92 - 1135.92 1141.42 - 1140.42 1146.92 - 1145.92	Havensville Shale (lower) Havensville Shale (upper) Schroyer Limestone (lower) Schroyer Limestone (upper) Overburden

Notes: NAp - Not Applicable, not cored; ft. amsl - feet above mean sea level; ft.bgs - feet below ground surface; TOC - top of casing; Grd. - ground surface

Table 3-6 Survey Data

Survey Point	Ground Elevation	Top of Casing	NAD 27 Co	ordinates	NAD 83 Co	oordinates
Foline	(ft.amsl)	Elevation (ft.amsl)	Latitude/ Easting	Longitude/ Northing	Latitude/ Easting	Longitude/ Northing
OB93-01	1182.07	1183.72	2351617.00	297014.00	1663860.43	297017.70
OB93-02	1208.44	1210.08	2351430.00	297455.00	1663673.43	297458.70
OB93-03	1172.88	1174.84	2351178.00	296891.00	1663421.43	296894.70
OB93-04	1158.32	1160.09	2350915.00	296603.00	1663158.43	296606.70
OB97-05	1178.23	1180.12	2350827.53	297143.29	1663070.96	297146.99
OB97-06	1173.36	1175.37	2351177.15	296903.05	1663420.58	296906.75
OB97-07	1158.72	1160.37	2350918.19	296614.14	1663161.62	296617.84
OB97-08	1158.25	1160.11	2350704.07	296753.03	1662947.50	296756.73
OB97-09PZ	1242.81	1245.70	2351194.18	297646.11	1663437.61	297649.81
OB97-10PZ	1183.28	1185.52	2351567.81	296982.44	1663711.24	296986.14
OB97-11PZ	1182.21	1184.43	2350973.70	296987.18	1663217.13	296990.88
OB97-12PZ	1183.24	1185.65	2350811.13	297281.66	1663054.56	297285.36
OB97-13PZ	1157.92	1160.15	2350926.34	296598.84	1663169.77	296602.54
Dug Well	1155.28	NAp	2350548.60	296813.88	1662792.03	296817.58
Spring	1162.48	1163.66	2350873.72	296885.77	1663117.15	296889.47
OB97-SW1	1168.74	1169.94	2351710.83 297304.08		1663954.26	297307.78
OB97-SW2	1132.01	1132.92	2351041.69 295273.		1663285.12	295277.37
OB97-SW3	1145.30	1145.97			1662423.51	296668.38
OB97-SW4	1130.10	1131.65	5 2350911.84 295132.8		1663155.27	295136.56
OB97-SW5	1128.99	1130.96	2351195.15	294895.91	1663438.58	294899.59

Notes:

Elevation for dug well is the top of the angle iron adjacent to well.

Elevations for the spring are ground elevation (1162.48 ft amsl) and the top of the iron bar (1163.66 ft amsl) placed at the head of the spring by the surveyor.

Elevations for surface water sample locations are the ground surface along the centerline of each stream and the top of the iron bar placed at each location by the surveyor.

NAp - Not Applicable; ft.amsl - feet above mean sea level; ft.bgs - feet below ground surface

Table 3-7 Piezometer Purging Data for Mobilization #2

Piezometer ID	Initial Condition 4 July 1997	Volume Purged (Gals)
OB97-09PZ(0)	Water Present	1.5
OB97-09PZ(1)	Water Present	Blown dry - water not recoverable
OB97-09PZ(2)	Dry	Dry
OB97-09PZ(3)	Water Present	Blown dry - water not recoverable
OB97-09PZ(4)	Water Present	Blown dry - water not recoverable
OB97-09PZ(5)	Water Present	Blown dry - water not recoverable
OB97-10PZ(0)	Water Present	1
OB97-10PZ(1)	Water Present	3
OB97-10PZ(2)	Water Present	0.5
OB97-10PZ(3)	Water Present	3
OB97-10PZ(4)	Dry	Dry
OB97-11PZ(0)	Water Present	3
OB97-11PZ(1)	Water Present	2.5
OB97-11PZ(2)	Water Present	Blown dry - water not recoverable
OB97-11PZ(3)	Water Present	0.25
OB97-11PZ(4)	Dry	Dry
OB97-12PZ(0)	Water Present	1
OB97-12PZ(1)	Water Present	0.2
OB97-12PZ(2)	Dry	Dry
OB97-12PZ(3)	Water Present	0.6
OB97-12PZ(4)	Dry	Dry
OB97-13PZ(0) OB97-13PZ(1) OB97-13PZ(2) OB97-13PZ(3)	Water Present Water Present Water Present Water Present	1.5 Blown dry - water not recoverable (Was purged when sampled on 6/19/97) 0.8
OB97-13PZ(4)	Water Present	Blown dry - water not recoverable

Well	OB-93-01	OB-93-02	OB-93-03	OB-93-04	OB-97-05	OB-97-06	OB-97-07	OB-97-08	Dug	Well	Spring	OB-97-SW2		
													MCL and	
Sample Event	09/97	09/97	09/97	09/97	09/97	09/97	09/97	09/97	06/97	09/97	06/97	09/97	KSWQS	
Field Parameters														
pH (Standard Units) 7.01 7.05 7.01 6.79 7.04 7.01 6.81 6.99 6.48 7.05 6.72 7.61 Conductivity (umbos/cm) 610 700 900 890 750 620 840 670 480 380 460 540														
Conductivity (umhos/cm)	610	700	900	890	750	. 620	840	670	480	380	460	540	NAv	
Temperature (C)	12.9	14.1	15.0	14.0	15.0	15.0	14.0	16.0	14.0	15.2	13.0	14.4	NAv	
Turbidity (NTU)	2.76	4.54	26.2	5.23	4.0	6.52	22.6	2.38	1.15	6.34	20.5	251	NAv	
Volatile Organic Compounds in mi	crograms pe	r liter (µg/l)												
cis-1,2-Dichloroethylene	ND(<0.5)	ND(<0.5)	ND(<0.5)	ND(<0.5)	ND(<0.5)	ND(<0.5)	ND(<5.0)	6.4	7.1	19	0.8	ND(<0.5)	70	
trans-1,2-Dichloroethylene	ND(<0.5)	ND(<0.5)	ND(<0.5)	ND(<0.5)	ND(<0.5)	ND(<0.5)	ND(<5.0)	ND(<2.5)	1.1	ND(<5.0)	ND(<0.5)	ND(<0.5)	100	
Dichloromethane	ND(<0.9)	ND(<0.9)	ND(<0.9)	1.2B	ND(<0.9)	1.5B	14B	ND(<4.5)	ND(<0.9)	14B	1.1B	1.5B	5	
Tetrachloroethylene	ND(<1.1)	ND(<1.1)	ND(<1.1)	ND(<1.1)	ND(<1.1)	ND(<1.1)	14	8.0 🐜	4.9	ND(<11)	4.9	ND(<1.1)	5	
1,1,2,2-Tetrachloroethane	ND(<0.6)	ND(<0.6)	ND(<0.6)	0.8	ND(<0.6)	ND(<0.6)	21	58	56	78	67	ND(<0.6)	NAv	
Toluene	ND(<0.4)	ND(<0.4)	ND(<0.4)	ND(<0.4)	ND(<0.4)	ND(<0.4)	ND(<4.0)	ND(<2.0)	ND(<0.4)	ND(<4.0)	ND(<0.4)	ND(<0.4)	1000	
Trichloroethylene	ND(<0.6)	ND(<0.6)	1.9	17	ND(<0.6)	1.2	400	200	230	260 🔨	190	ND(<0.6)	5	
m/p-Xylene	ND(<0.6)	ND(<0.6)	ND(<0.6)	ND(<0.6)	ND(<0.6)	ND(<0.6)	ND(<6.0)	5.0	ND(<0.6)	ND(<6.0)	ND(<0.6)	ND(<0.6)	10000	

Table 3-8 Groundwater and Surface Water Data, Mobilization #2, June and September 1997 Positive Detections Only

Bold values represent positive detections of analytes for which standards are available; Shaded values represent concentrations

that are equal to or exceed the MCL and the KSWQS

KSWQS: Kansas Surface Water Quality Standard. From: Kansas Register, Department of Health and Environment, Volume 13,

No. 28, July 14, 1994.

MCL: Federal Maximum Contaminant Level. From Drinking Water Regulations and Health Advisories, Office of Water, US Environmental Protection Agency, October 1996.

B: Compound detected in sample is less than 10X the amount detected in the method blank. Result is estimated.

NAv: Not Available

ND(): Not Detected (Sample Quantitation Limit).

While there were no detections in OB93-01 and OB93-02, the field parameters are provided on this table.

No sample was collected from the spring in 9/97, the surface water locations in 6/97, or the four other surface water locations in 9/97 as they were dry.

For a complete list of analytes for June and September 1997, see CEMRK 1997b.

Sample Location	OB97-09PZ(0)	OB97-09PZ(1)	OB97-09PZ(3)	OB97-09PZ(4)	OB97-10PZ(0)*	OB97-10PZ(1)	OB97-10PZ(2)	OB97-10PZ(3)	OB97-11PZ(0)*	OB97-11PZ(1)	OB97-12PZ(0) *	OB97-12PZ(1)	OB97-12PZ(3)	OB97-13PZ(0)	OB97-13PZ(1)	OB97-13PZ(2)	OB97-13PZ(2)	OB97-13PZ(3)	OB97-13PZ(4)) MCL and
Sample Event	Sep-97	Sep-97	Sep-97	Sep-97	Sep-97	Sep-97	Sep-97	Sep-97	Sep-97	Sep-97	Sep-97	Sep-97	Sep-97	Sep-97	Sep-97	Jun-97	Sep-97	Sep-97	Sep-97	KSWQS
Field Parameters	<u> </u>	<u> </u>	·	1	A				·	·			·							
pH (Standard Units)	7.18	7.18	7.12	7.09	6.64	6.62	7.00	7.39	7.21	7.29	7.27	7.15	7.33	6.72	7.78	6.68	6.52	7.64	7.01	NAv
Conductivity (umhos/cm)	1980	1180	1270	1180	4100	1150	940	970	1040	810	1710	830	620	1200	750	660	660	1800	990	NAV
Temperature (C)	16.2	16.2	15.5	15.8	14.8	15.8	15.2	15.4	17.4	21.8	20.7	15.3	16.4	21.2	20.8	20.0	25.1	>200	>200	NAV
Turbidity (NTU)	>200	101.9	>200	>200	>200	>200	>200	>200	>200	>200	>200	>200	>200	>200	>200	>200	>200	17.8	18.6	NAV
Volatile Organic Compounds in r	nicrograms per	liter (µg/l)																		
Acetone	ND(<100)	ND(<100)	ND(<100)	ND(<100)	ND(<100)	ND(<100)	ND(<100)	ND(<100)	ND(<100)	ND(<100)	100	ND(<100) \	ND(<100)	NAV						
Benzene	ND(<0.4)	ND(<0.4)	2.0	ND(<0.4)	1.2	ND(<0.4)	ND(<0.4)	ND(<0.4)	1.1	ND(<0.4)	1.1	ND(<0.4)	0.8	5						
Bromodichloromethane	ND(<0.5)	ND(<0.5)	1.2	1.1	ND(<0.5)	ND(<0.5)	ND(<0.5)	ND(<0.5)	ND(<0.5)	ND(<0.5)	ND(<0.5)	ND(<0.5)	ND(<0.5)	ND(<0.5)	ND(<0.5)	ND(<0.5)	ND(<0.5)	ND(<0.5)	ND(<0.5)	100(a)
Bromomethane	ND(<1.2)	ND(<1.2)	ND(<1.2)	ND(<1.2)	ND(<1.2)	ND(<1.2)	ND(<1.2)	ND(<1.2)	ND(<1.2)	ND(<1.2)	1.9	ND(<1.2)	2.0	NAV						
2-Butanone	210	ND(<100)	ND(<100)	ND(<100)	ND(<100)	ND(<100)	ND(<100)	ND(<100)	ND(<100)	ND(<100)	110	ND(<100)	NAv							
Carbon Disulfide	65	5.2	ND(<5.0)	ND(<5.0)	ND(<5.0)	ND(<5.0)	ND(<5.0)	ND(<5.0)	ND(<5.0)	ND(<5.0)	5.4	ND(<5.0)	NAV							
Chlorobenzene	ND(<0.4)	ND(<0.4)	ND(<0.4)	ND(<0.4)	ND(<0.4)	ND(<0.4)	ND(<0.4)	ND(<0.4)	0.4	ND(<0.4)	ND(<0.4)	ND(<0.4)	ND(<0.4)	ND(<0.4)	ND(<0.4)	ND(<0.4)	ND(<0.4)	ND(<0.4)	ND(<0.4)	NAV To
cis-1,2-Dichloroethylene	ND(<0.5)	ND(<0.5)	ND(<0.5)	ND(<0.5)	ND(<0.5)	ND(<0.5)	ND(<0.5)	ND(<0.5)	2.2	0.8	ND(<0.5)	ND(<0.5)	ND(<0.5)	0.9	1.0	2.3	2.2	1.0	1.8	70
trans-1,2-Dichloroethylene	ND(<0.5)	ND(<0.5)	ND(<0.5)	ND(<0.5)	ND(<0.5)	ND(<0.5)	ND(<0.5)	ND(<0.5)	ND(<0.5)	ND(<0.5)	ND(<0.5)	ND(<0.5)	ND(<0.5)	ND(<0.5)	ND(<0.5)	1.0	1.2	ND(<0.5)	0.6	100
1,4-Dichlorobenzene	ND(<1.0)	ND(<1.0)	ND(<1.0)	ND(<1.0)	ND(<1.0)	ND(<1.0)	ND(<1.0)	ND(<1.0)	ND(<1.0)	ND(<1.0)	ND(<1.0)	ND(<1.0)	ND(<1.0)	ND(<1.0)	2.7	ND(<1.0)	ND(<1.0)	ND(<1.0)	ND(<1.0)	/5
Dichloromethane	6.5B	1.9B	1.4B	1.0B	10B	14B	2.6B	3.1B	3.4B	1.6B	9.3B	ND(<0.9)	3.6B	1.3B	8.3B	1.3B	1.3B	1.3B	2.2B	<u> </u>
1,1,2,2-Tetrachloroethane	ND(<0.6)	ND(<0.6)	ND(<0.6)	ND(<0.6)	ND(<0.6)	ND(<0.6)	ND(<0.6)	ND(<0.6)	2.4	2.0	2.8	ND(<0.6)	ND(<0.6)	1.1	2.2	7.2	6.2	3.1	ND(<0.7)	NAV
Tetrachioroethylene	ND(<1.1)	ND(<1.1)	ND(<1.1)	ND(<1.1)	ND(<1.1)	ND(<1.1)	ND(<1.1)	ND(<1.1)	ND(<1.1)	ND(<1.1)	ND(<1.1)	ND(<1.1)	ND(<1.1)	ND(<1.1)	ND(<1.1)	3.6	4.1	ND(<1.1)	ND(<1.1)	5
Tribromomethane	ND(<1.5)	ND(<1.5)	ND(<1.5)	ND(<1.5)	ND(<1.5)	ND(<1.5)	ND(<1.5)	ND(<1.5)	ND(<1.5)	ND(<1.5)	1.6	ND(<1.5)	100(a)							
Toluene	2.0	1.6	1.8	ND(<0.4)	2.4	3.1	1.6	3.0	0.8	ND(<0.4)	0.9	ND(<0.4)	2.3	ND(<0.4)	0.8	0.8	ND(<0.4)	1.7	0.8	1000
1,1,1-Trichloroethane	ND(<0.7)	ND(<0.7)	ND(<0.7)	ND(<0.7)	ND(<0.7)	ND(<0.7)	ND(<0.7)	ND(<0.7)	ND(<0.7)	0.9	ND(<0.7)	ND(<0.7)	ND(<0.7)	ND(<0.7)	ND(<0.7)	ND(<0.7)	ND(<0.7)	ND(<0.7)	ND(<0.7)	200
1,1,2-Trichloroethane	ND(<0.6)	ND(<0.6)	ND(<0.6)	ND(<0.6)	ND(<0.6)	ND(<0.6)	ND(<0.6)	ND(<0.6)	0.8	ND(<0.6)	0.8	ND(<0.6)	5							
Trichloroethylene	ND(<0.6)	ND(<0.6)	ND(<0.6)	ND(<0.6)	1.8	0.7	ND(<0.6)	5.3	10	54	2.2	9.1	ND(<0.6)	38	18	170	200	62	13.3	4
Trichloromethane	1.4	ND(<0.5)	1.0	0.7	39	1.7	2.4	ND(<0.5)	1.0	ND(<0.5)	2.5	0.5	ND(<0.5)	ND(<0.5)	1.1	0.7	ND(<0.5)	0.6	0.8	100(a)
m/p-Xylene	ND(<0.6)	ND(<0.6)	ND(<0.6)	0.7	0.6	ND(<0.6)	ND(<0.6)	ND(<0.6)	1.3	ND(<0.6)	ND(<0.6)	ND(<0.6)	0.8	ND(<0.6)	0.8	ND(<0.6)	ND(<0.6)	ND(<0.6)	ND(<0.6)	10000

 Table 3-9 Groundwater Data for Piezometers, Mobilization #2, June and September 1997

 Positive Detections Only

Bold values represent positive detections of analytes for which standards are available; Shaded values represent concentrations

that are equal to or exceed the MCL and the KSWQS

KSWQS: Kansas Surface Water Quality Standard. From: Kansas Register, Department of Health and Environment, Volume 13,

No. 28, July 14, 1994.

MCL: Federal Maximum Contaminant Level. From Drinking Water Regulations and Health Advisories, Office of Water, US Environmental

Protection Agency, October 1996.

B: Compound detected in sample is less than 10X the amount detected in the method blank. Result is estimated.

NAv: Not Available

ND(): Not Detected (Sample Quantitation Limit).

No samples were collected from OB97-09PZ(2), -09PZ(5); -10PZ(4); -11PZ(2), -11PZ(3), and -11PZ(4); -12PZ(2) and -12PZ(4), which were dry.

(a) For MCL, total for all trihalomethanes combined cannot exceed 80 ug/i.

For a complete list of analytes for June and September 1997, see CEMRK, 1997b.

* Results reported as maximum detections of record sample and reanalysis.

I <u></u>			Dettern of	Creation	Measuring							Grou	ndwater Fle	vation (ft.am	nsl)				
	F =	Top of	Bottom of Screen Elev.	Ground Elevation	-		<u> </u>					0.00	Dat		<u></u>				
Well ID	Formation	Screen Elev.	(ft.amsl)	(ft.amsl)	(ft.amsl)	19-Dec-95	1-Jun-97	4-Jun-97	5-Jun-97	6-Jun-97	7-Jun-97	9-Jun-97		- 11-Jun-97	14-Jun-97	16-Jun-97	17-Jun-97	18-Jun-97	20-Jun-97
	Screened	(ft.amsi)			1183.72	1152.28	1155.41	1154.91		1154.84	1154.59		1154.32	1154.39	1154.11	1153.85	1153.65	1153.47	1153.37
OB93-01	Wymore/Schroyer	1155	1140	1182.07	1210.08	1152.20	1155.40	1154.89	1154.86			1154.34	1154.33	1154.39	1154.11	1153.88	1153.70	1153.51	1153.39
OB93-02	Wymore/Schroyer	1151	1136	1208.44		1121.22	1124.03	1123.86	1123.85	1123.84	1123.79	1	1123.67	1123.67	1123.53	1123.46	1123.38	1123.31	1123.24
OB93-03	Threemile Limestone	1111	1096	1172.88	1174.84	1121.22	1124.03	1123.80	1123.03	1123.84	1123.73	1	1124.74	1124.74	1123.55	1124.53	1123.30	1123.31	1124.23
OB93-04	Threemile Limestone	1116	1101	1158.32	1160.09	1122.19	1125.01	1124.89	1124.90	1124.00	1123.89		1123.77	1123.78	1123.62	1123.56	1123.48	1123.40	1123.34
OB97-05	Threemile Limestone	1115	1105	1178.23	1180.12			1	1123.90	1123.94	1154.59		1154.34	1123.78	1154.13	1153.87	1153.67	1123.40	1153.34
OB97-06	Schroyer Limestone	1146.5	1136.5	1173.36	1175.37		1155.39 1146.66	1154.90	1154.66	1134.00	1154.59		1146.76	1146.68	1146.46	1146.32	1146.25	1146.17	1146.03
OB97-07	Schroyer/Havensville	1140	1130	1158.72	1160.37							1140.77	1140.78	1140.08	1140.40	1140.52	1144.45	1144.36	1140.03
OB97-08	Overburden	1149	1139	1158.25	1160.11		1145.94	1145.62	1145.51	1145.44	1145.20	1145.05	1144.90	1144.92	1144.74	1144.55	1144.45		1156.21
OB97-09PZ(0)	Havensville Shale	1133.81	1132.81	1242.81	1245.70													1158.44 1146.52	1146.51
OB97-09PZ(1)	Schroyer Limestone	1140.72	1139.81	1242.81	1245.70													1146.52	1156.21
OB97-09PZ(2)	Wymore Shale	1156.81	1155.81	1242.81	1245.70														15
OB97-09PZ(3)	Kinney Limestone	1168.81	1167.81	1242.81	1245.70													1168.83	1168.73
OB97-09PZ(4)	Blue Springs Shale	1191.81	1190.81	1242.81	1245.70													1191.96	1192.00
OB97-09PZ(5)	Florence Limestone	1216.79	1214.81	1242.81	1245.70													1216.28	1215.73
OB97-10PZ(0)	Havensville Shale	1134.18	1133.28	1183.28	1185.52													1138.54	1140.01
OB97-10PZ(1)	Schroyer Limestone-bottom	1141.28	1140.28	1183.28	1185.52											1151.28	1151.18		
OB97-10PZ(2)	Schroyer Limestone-top	1147.30	1146.28	1183.28	1185.52									1153.47	1153.44				
OB97-10PZ(3)	Wymore Shale	1154.28	1153.28	1183.28	1185.52													1164.71	1164.50
OB97-10PZ(4)	Kinney Limestone	1167.28	1166.28	1183.28	1185.52														1166.24 R
OB97-11PZ(0)	Havensville Shale	1132.21	1131.21	1182.21	1184.43													1154.52	1153.62
	Schroyer Limestone-bottom	1138.21	1137.21	1182.21	1184.43													1146.67	1146.66
OB97-11PZ(2)	Schroyer Limestone-top	1146.21	1145.21	1182.21	1184.43													1146.59	1146.54
OB97-11PZ(3)	Wymore Shale	1153.21	1152.21	1182.21	1184.43													1154.56	1153.59
OB97-11PZ(4)	Kinney Limestone	1169.21	1168.21	1182.21	1184.43													1168.39	1168.39
OB97-12PZ(0)	Havensville Shale	1133.24	1132.24	1183.24	1185.65	1												1147.57	1136.52
	Schroyer Limestone-bottom		1138.24	1183.24	1185.65													1146.43	1146.43
OB97-12PZ(2)	Schroyer Limestone-top	1147.24	1146.24	1183.24	1185.65													1146.56	1146.65
OB97-12PZ(3)	Wymore Shale	1154.24	1153.24	1183.24	1185.65													1160.22	1160.11
OB97-12PZ(4)	Kinney Limestone	1169.24	1168.24	1183.24	1185.65	1												dry	dry
OB97-13PZ(0)	Havensville Shale-middle	1127.92	1126.92	1157.92	1160.15	1												1145.33	1132.33
OB97-13PZ(1)	Havensville Shale-top	1131.92	1130.92	1157.92	1160.15	1												1146.20	1145.69
OB97-13PZ(2)	Havensville Shale-top	1136.92	1135.92	1157.92	1160.15													1146.04	1146.05
	Schroyer Limestone-bottom		1140.42	1157.92	1160.15													1147.19	1141.32
OB97-13PZ(3) OB97-13PZ(4)		1146.92	1145.92	1157.92	1160.15													1149.83	1147.39
OB97-13P2(4) OBHD-97-14	NAp	1143.26	1138.26	1154.21	1156.81	NAp	NAp	NAp	NAp	NAp	NAp	NAp	NAp	NAp	NAp	NAp	NAp	NAp	NAp
Dug Well	NAp	NAp	NAp	1155.28	1155.28	NAp	NM	1144.88			1144.58		1144.50	1144.52	1144.03	1143.83	1143.74	1143.67	1143.50
		NAp	NAp	1162.48	1163.66		L	<u>I</u>	NM		I	L			•	• • • • •	•	•	
Spring	NAp Abovo Sebrovor	NAp NAp	NAp	1168.74	1169.94	1													
OB97-SW1	Above Schroyer	NAp NAp	NAp	1132.01	1132.92														
OB97-SW2	Below Schroyer			1145.30	1145.97				Dry										
OB97-SW3	Above Schroyer	NAp	NAp		1145.97				Diy										
OB97-SW4	Below Schroyer	NAp	NAp	1130.10															
OB97-SW5	Below Schroyer	NAp	NAp	1128.99	1130.90	<u>I</u>													

R- Rejected, based on the bottom of screen NAp - Not Applicable

NM - Not Measured

J - Estimated value, measured within 0.1 foot of bottom of screen.

R - Rejected elevation, measured below bottom of screen.

a - OBHD-97-14 was measured on 5 December 1997.

* - Measured by United States Geologic Survey

+ - The piezometers were purged using air lift method on 4 July 1997 after the water elevations were measured, and water elevations were measured again on 5 July 1997.

(ft.amsl) - feet above mean sealevel

1

[Top of	Bottom of	Ground	Measuring				Groundwa	ater Elevation	1		
Well ID	Formation	Screen Elev.	Screen Elev.	Elevation	Point Elev.					Date	• • • • • • •		
	Screened	(ft.amsl)	(ft.amsl)	(ft.amsl)	(ft.amsl)	4-Jul-97 +	5-Jul-97 +	27-Aug-97	2-Sep-97	5-Sep-97	14-Oct-97	1-Dec-97	19-Jan-98
OB93-01	Wymore/Schroyer	1155	1140	1182.07	1183.72	1151.95	1152.11	1151.01	1150.80	1151.00	1149.96	1150.70	* 1155.33
OB93-02	Wymore/Schroyer	1151	1136	1208.44	1210.08	1151.96	1152.16	1151.03	1150.81	1150.97	1149.96	1150.47	* 1155.33
OB93-03	Threemile Limestone	1111	1096	1172.88	1174.84	1122.48	1122.53	1121.37	1121.31	1121.32	1120.97	1121.95	1123.21
OB93-04	Threemile Limestone	1116	1101	1158.32	1160.09	1123.17	1123.16	1121.39	1121.36	1121.35	1120.97	1122.54	1124.56
OB97-05	Threemile Limestone	1115	1105	1178.23	1180.12	1122.51	1122.57	1121.33	1121.28	1121.27	1120.91	1121.96	1123.30
OB97-06	Schroyer Limestone	1146.5	1136.5	1173.36	1175.37	1151.97	1152.17	1151.13	1150.80	1150.94	1149.96	1150.46	* 1155.25
OB97-07	Schroyer/Havensville	1140	1130	1158.72	1160.37	1145.27	1145.26	1144.90	1144.86	1144.78	1144.59	1145.22	1149.63
OB97-08	Overburden	1149	1139	1158.25	1160.11	1142.98	1142.92	1142.45	1142.50	1142.43	1141.55	1143.91	1149.56
OB97-09PZ(0)	Havensville Shale	1133.81	1132.81	1242.81	1245.70	1155.68	1150.20	1154.73	1154.78	1142.14	1153.18	* 1153.01	* 1153.80
OB97-09PZ(1)	Schroyer Limestone	1140.72	1139.81	1242.81	1245.70	1145.21	Dry	1145.32	1145.24	1145.39	1143.60	* 1144.34	* 1148.19
OB97-09PZ(2)	Wymore Shale	1156.81	1155.81	1242.81	1245.70	1156.05	Dry	Dry	Dry	Dry	Dry	* Dry	* Dry
OB97-09PZ(3)	Kinney Limestone	1168.81	1167.81	1242.81	1245.70	1168.58	Dry	1168.41	1168.48	1168.41	1168.39	* 1168.73	* 1169.47
OB97-09PZ(4)	Blue Springs Shale	1191.81	1190.81	1242.81	1245.70	1191.93	Dry	1191.71	1191.73	1191.69	1191.54	* 1191.80	* 1192.35
OB97-09PZ(5)	Florence Limestone	1216.79	1214.81	1242.81	1245.70	1214.91 J	Dry	Dry	Dry	Dry	Dry	* Dry	* 1215.54
OB97-10PZ(0)	Havensville Shale	1134.18	1133.28	1183.28	1185.52	1146.31	1136.65	1149.01	1148.92	1140.01	1148.17	1148.61	1152.12
OB97-10PZ(1)	Schroyer Limestone-bottom	1141.28	1140.28	1183.28	1185.52	1150.78	1150.33	1149.56	1149.35	1149.44	1148.66	1149.01	1152.85
OB97-10PZ(2)	Schroyer Limestone-top	1147.30	1146.28	1183.28	1185.52	1151.99	1151.95	1151.16	1151.10	1150.96	1149.97	1150.49	1155.19
OB97-10PZ(3)	Wymore Shale	1154.28	1153.28	1183.28	1185.52	1164.69	1157.52	1163.79	1163.74	1158.68	1164.03	1164.70	1165.30
OB97-10PZ(4)	Kinney Limestone	1167.28	1166.28	1183.28	1185.52	Dry	Dry	Dry	Dry	Dry	Dry	Dry	1166.66
OB97-11PZ(0)	Havensville Shale	1132.21	1131.21	1182.21	1184.43	1152.96	1152.41	1148.42	1148.52	1138.17	1147.24	1149.12	1152.41
OB97-11PZ(1)	Schroyer Limestone-bottom	1138.21	1137.21	1182.21	1184.43	1145.29	1145.70	1145.36	1145.20	1145.40	1143.90	1144.55	* 1148.73
OB97-11PZ(2)	Schroyer Limestone-top	1146.21	1145.21	1182.21	1184.43	1145.21 J	1145.29	Dry	Dry	1145.12 R	Dry	1145.59	1149.93
OB97-11PZ(3)	Wymore Shale	1153.21	1152.21	1182.21	1184.43	1152.95	1152.41	Dry	Dry	Dry	Dry	Dry	1152.39
OB97-11PZ(4)	Kinney Limestone	1169.21	1168.21	1182.21	1184.43	1167.76 R	Dry	Dry	Dry	Dry	Dry	Dry	1168.49
OB97-12PZ(0)	Havensville Shale	1133.24	1132.24	1183.24	1185.65	1147.79	1135.29	1143.87	1144.14	1133.71	1142.46	1147.48	1151.12
OB97-12PZ(1)	Schroyer Limestone-bottom	1139.24	1138.24	1183.24	1185.65	1145.12	1145.53	1145.34	1145.07	1145.30	1143.40	1143.88	1147.83
OB97-12PZ(2)	Schroyer Limestone-top	1147.24	1146.24	1183.24	1185.65	1146.21 R	Dry	Dry	Dry	Dry	Dry	Dry	1148.45
OB97-12PZ(3)	Wymore Shale	1154.24	1153.24	1183.24	1185.65	1158.91	1158.85	1157.31	1156.52	1156.41	1155.46	1157.99	1165.75
OB97-12PZ(4)	Kinney Limestone	1169.24	1168.24	1183.24	1185.65	1168.18 R	Dry	Dry	Dry	Dry	Dry	Dry	1169.74
OB97-13PZ(0)	Havensville Shale-middle	1127.92	1126.92	1157.92	1160.15	1132.18	1131.69	1131.50	1131.60	1129.25	1135.07	* 1136.98	* 1142.58
OB97-13PZ(1)	Havensville Shale-top	1131.92	1130.92	1157.92	1160.15	1145.23	1143.91	1144.58	1144.61	1144.07	1143.84	* 1144.49	* 1149.66
OB97-13PZ(2)	Havensville Shale-top	1136.92	1135.92	1157.92	1160.15	1145.30	1145.28	1144.96	1144.88	1144.83	1144.56	* 1145.25	* 1149.70
OB97-13PZ(3)	Schroyer Limestone-bottom	1141.42	1140.42	1157.92	1160.15	1143.79	1144.24	1143.68	1143.69	1141.07	1143.36	* 1144.39	* 1149.20
OB97-13PZ(4)	Overburden	1146.92	1145.92	1157.92	1160.15	1146.35	1146.60	1146.20	1146.11	1145.92 J	1145.84R	* Dry	* 1147.72
OBHD-97-14	NAp	1143.26	1138.26	1154.21	1156.81	NAp	NAp	NAp	NAp	NAp		a 1143.40	1147.41
Dug Well	NAp	NAp	NAp	1155.28	1155.28	1142.40	1141.98	1140.93	1141.02	1141.03	1139.96	1142.98	NAp
Spring	NAp	NAp	NAp	1162.48	1163.66	NM	NM	NM	Dry	Dry	NM	NM	1162.66
OB97-SW1	Above Schroyer	NAp	NAp	1168.74	1169.94	Dry	Dry	Dry	Dry	Dry	Dry	Dry	1168.99
OB97-SW2	Below Schroyer	NAp	NAp	1132.01	1132.92	Dry	Dry	Dry	Dry	Dry	Dry	NM	1132.12
OB97-SW3	Above Schroyer	NAp	NAp	1145.30	1145.97	Dry	Dry	Dry	Dry	Dry	Dry	Dry	1145.75
OB97-SW4	Below Schroyer	NAp	NAp	1130.10	1131.65	Dry	Dry	Dry	Dry	Dry	Dry	Dry	1130.95
OB97-SW5	Below Schroyer	NAp	NAp	1128.99	1130.96	Dry	Dry	Dry	Dry	Dry	Dry	NM	1129.61

R- Rejected, based on the bottom of screen

NAp - Not Applicable

NM - Not Measured

J - Estimated value, measured within 0.1 foot of bottom of screen.

R - Rejected elevation, measured below bottom of screen.

a - OBHD-97-14 was measured on 5 December 1997.

* - Measured by United States Geologic Survey

+ - The piezometers were purged using air lift method on 4 July 1997 after the water elevations were measured, and water elevations were measured again on 5 July 1997.

(ft.amsl) - feet above mean sealevel

.

11

5-Sep-97 Well ID Formation Top of Bottom of Ground Measuring Electronic Tape Steel Tape & Chalk Screen Elev. Screen Elev Elevation Point Elev. DTW **GW Elev** Sounded Held Water DTW GW Elev. Screened (ft amsl) (ft amsl) (ft amsi) (ft.bmp) (ft.bmp) (ft amsl) (ft.bmp) (ft.amsl) Mark * (ft.bmp) (ft.amsl) OB93-01 Wymore / Schrover 1155 1140 1182.07 1183.72 32.72 1151.00 42.14 33.50 0.78 32.72 1151.00 OB93-02 Wymore / Schrover 1151 1136 1208.44 1210.08 59.11 1150.97 73.88 60.00 1151.02 0.94 59.06 OB93-03 Threemile Limestone 1111 1096 1172.88 1174.84 53.52 1121.32 79.30 54.00 0.53 53.47 1121.37 OB93-04 **Threemile Limestone** 1116 1101 1158.32 1160.09 38.74 1121.35 58.27 39.00 0.29 38.71 1121.38 OB97-05 Threemile Limestone 1115 1105 1178.23 1121.27 1180.12 58.85 73.03 59.50 0.65 58.85 1121.27 OB97-06 Schrover Limestone 1146.5 1136.5 1173.36 1175.37 24.43 1150.94 38.53 25.00 0.56 24.44 1150.93 OB97-07 Schroyer / Havensville 1140 1130 1158.72 1160.37 15.59 1144.78 31.99 17.00 1.42 15.58 1144.79 OB97-08 Overburden 1149 1139 1158.25 1160.11 17.68 1142.43 20.40 18.00 0.35 17.65 1142.46 OB97-09PZ(0) Havensville Shale 1133.81 1132.81 1242.81 1245.70 103.56 1142.14 113.13 104.00 0.49 103.51 1142.19 OB97-09PZ(1) Schrover Limestone 1140.72 1139.81 1242.81 1245.70 100.31 1145.39 107.35 101.00 0.73 100.27 1145.43 OB97-09PZ(2) Wymore Shale 1156.81 1155.81 1242.81 1245.70 Drv Drv 89.89 89.89 0.10 89.79 1155.91 OB97-09PZ(3) **Kinney Limestone** 1168.81 1167.81 1242.81 1245.70 77.29 1168.41 78.19 78.00 0.75 77.25 1168.45 OB97-09PZ(4) **Blue Springs Shale** 1191.81 1190.81 1242.81 1245.70 54.01 1191.69 55.05 54.50 0.53 53.97 1191.73 OB97-09PZ(5) **Florence Limestone** 1216.79 1214.81 1242.81 1245.70 Dry Drv 31.26 31.26 0.15 31.11 1214.59 OB97-10PZ(0) Havensville Shale 1134.18 1133.28 1183.28 1185.52 45.51 1140.01 53.48 46.00 0.53 45.47 1140.05 OB97-10PZ(1) Schroyer Limestone-bottom 1141.28 1140.28 1183.28 1185.52 36.08 1149.44 45.61 36.50 0.45 36.05 1149.47 OB97-10PZ(2) Schroyer Limestone-top 1147.30 1146.28 1183.28 1185.52 34.56 1150.96 39.68 35.00 0.48 34.52 1151.00 OB97-10PZ(3) Wymore Shale 1154.28 1153.28 1183.28 1185.52 26.84 1158.68 32.41 27.50 0.72 26.78 1158.74 OB97-10PZ(4) **Kinney Limestone** 1167.28 1166.28 1183.28 1185.52 Drv Drv 19.56 19.56 0.25 19.31 1166.21 OB97-11PZ(0) Havensville Shale 1132.21 1131.21 1182.21 46.26 1184.43 1138.17 53.41 47.00 0.81 46.19 1138.24 OB97-11PZ(1) Schrover Limestone-bottom 1138.21 1137.21 1182.21 1184.43 39.03 1145.40 47.59 39.50 0.51 38.99 1145.44 OB97-11PZ(2) Schrover Limestone-top 1146.21 1145.21 1182.21 1184.43 39.31 1145.12 39.62 39.62 0.37 39.25 1145.18 OB97-11PZ(3) Wymore Shale 1153.21 1152.21 1182.21 1184.43 Dry Dry 32.56 32.56 0.13 32.43 1152.00 OB97-11PZ(4) Kinney Limestone 1169.21 1168.21 1182.21 1184.43 Dry Dry 16.94 16.94 0.11 16.83 1167.60 OB97-12PZ(0) Havensville Shale 1133.24 1132.24 1183.24 1185.65 51.94 1133.71 53.63 52.50 0.61 51.89 1133.76 OB97-12PZ(1) Schrover Limestone-bottom 1139.24 1138.24 1183.24 1185.65 40.35 1145.30 47.58 41.00 0.69 40.31 1145.34 OB97-12PZ(2) Schrover Limestone-top 1147.24 1146.24 1183.24 1185.65 Drv Drv 39.76 39.76 0.13 39.63 1146.02 OB97-12PZ(3) Wymore Shale 1154.24 1153.24 1183.24 1185.65 29.24 1156.41 32.62 30.00 0.79 29.21 1156.44 OB97-12PZ(4) **Kinney Limestone** 1169.24 1168.24 1183.24 1185.65 Dry Drv 17.73 17.73 0.00 Dry Dry OB97-13PZ(0) Havensville Shale-middle 1127.92 1126.92 1157.92 1160.15 30.90 1129.25 33.35 31.00 0.16 30.84 1129.31 OB97-13PZ(1) Havensville Shale-top 1131.92 1130.92 1157.92 1160.15 16.08 1144.07 29.55 17.00 0.98 16.02 1144.13 OB97-13PZ(2) Schrover Limestone-top 1136.92 1135.92 1157.92 1160.15 15.32 1144.83 24.42 16.00 0.68 15.32 1144.83 OB97-13PZ(3) Schrover Limestone-bottom 1141.42 1140.42 1157.92 1160.15 19.08 1141.07 19.92 18.50 -0.56 19.06 1141.09 OB97-13PZ(4) Overburden 1146.92 1145.92 1157.92 1160.15 14.23 1145.92 14.71 13.50 -0.74 14.24 1145.91 Dug Well NAp NAp NAp NM 1155.28 14.25 1141.03 19.20 NM MM NM NM

Table J-11 Groundwater Elevation Data Measurement Comparison, 5 September 1997

Bolded values are revisions to screen elevations based on review of field notes and well construction information.

NAp - Not applicable

NM - Not measured

(ft.amsl) - feet above mean sea level

(ft.bmp) - feet below measuring point

* - Length of water mark on chalked tape

Notes:

 Table 3-12
 Groundwater and Surface Water Data - Open Burn / Open Detonation Area - December 1997

 Positive Detections Only
 Positive Detections Only

Sample Location	OB93-01	OB93-02	OB93-03	OB93-04	OB97-05	OB97-06	OB97-07	OB97-08	OB97-14(b)	Dug Well	OBHD-97-14	Spring	OB97-SW2	OB97-SW5	MCL
											а				or
Sample Event	12/97	12/97	12/97	12/97	12/97	12/97	12/97	12/97	12/97	12/97	12/97	12/97	12/97	12/97	KSWQS
Field Parameters															
pH (Standard Units)	7.10	7.07	7.04	7.09	7.55	7.12	7.11	7.	.04	7.00	8.00	7.26	8.06	8.22	NAV
Conductivity (umhos/cm)	718	660	1080	1220	630	800	870	12	260	7.0	946	1090	229	259	NAv
Temperature (C)	12.8	13.5	13.7	13.3	9.6	13.5	13.5	1:	3.9	9.3	10.9	11.9	9.0	6.2	NAV
Turbidity (NTU)	9.84	3.49	8.66	8.47	4.14	6.11	16.20	6.14		8.92	1.58	23.20	3.69	11.26	NAv
Volatile Organic Compounds in mi	olatile Organic Compounds in micrograms per liter (µg/l)														
cis-1,2-Dichloroethylene	ND(<0.5)	ND(<0.5)	ND(<0.5)	ND(<0.5)	ND(<0.5)	ND(<0.5)	5.4	ND(<2.5)	1.5	43	82	ND(<1.0)	ND(<0.5)	ND(<0.5)	70
trans-1,2-Dichloroethylene	ND(<0.5)	ND(<0.5)	ND(<0.5)	ND(<0.5)	ND(<0.5)	ND(<0.5)	ND(<5.0)	ND(<2.5)	ND(<1.0)	3.4	6.0	ND(<1.0)	ND(<0.5)	ND(<0.5)	100
Dichloromethane	ND(<0.9)	ND(<0.9)	ND(<0.9)	ND(<0.9)	ND(<0.9)	ND(<0.9)	ND(<9.0)	ND(<4.5)	ND(<1.8)	ND(<4.5)	ND(<1.8)	2.8B	1.3B	1.0B	100
Tetrachloroethylene	ND(<1.1)	ND(<1.1)	ND(<1.1)	ND(<1.1)	ND(<1.1)	ND(<1.1)	14	ND(5.5)	3.3	ND(<5.5)	ND(<2.2)	3.1	ND(<1.1)	ND(<1.1)	5
1,1,2,2-Tetrachloroethane	ND(<0.6)	ND(<0.6)	ND(<0.6)	ND(<0.6)	ND(<0.6)	ND(<0.6)	23	37	36	33	15	42	ND(<0.6)	ND(<0.6)	NAv
Trichloroethylene	ND(<0.6)	ND(<0.6)	1.7	- 15	ND(<0.6)	0.7	530	<u> 110</u>	120	110	63	110	ND(<0.6)	ND(<0.6)	5

NOTES:

Bold values represent positive detections of analytes for which standards are available; Shaded values represent concentrations that are equal to or exceed the MCL and the KSWQS

KSWQS: Kansas Surface Water Quality Standard. From: Kansas Register, Departmen: of Health and Environment, Volume 13,

No. 28, July 14, 1994.

MCL: Federal Maximum Contaminant Level. From Drinking Water Regulations and Health Advisories, Office of Water, US Environmental Protection Agency, November 1995.

B: Compound detected in sample is less than 10X the amount detected in the method blank. Result is estimated.

NAv: Not Available

ND(): Not Detected (Sample Quantitation Limit).

a: A monitoring well was constructed at Dug well on December 1-3, 1997. Groundwater samples were collected prior to construction of the well and after development of the monitoring well.

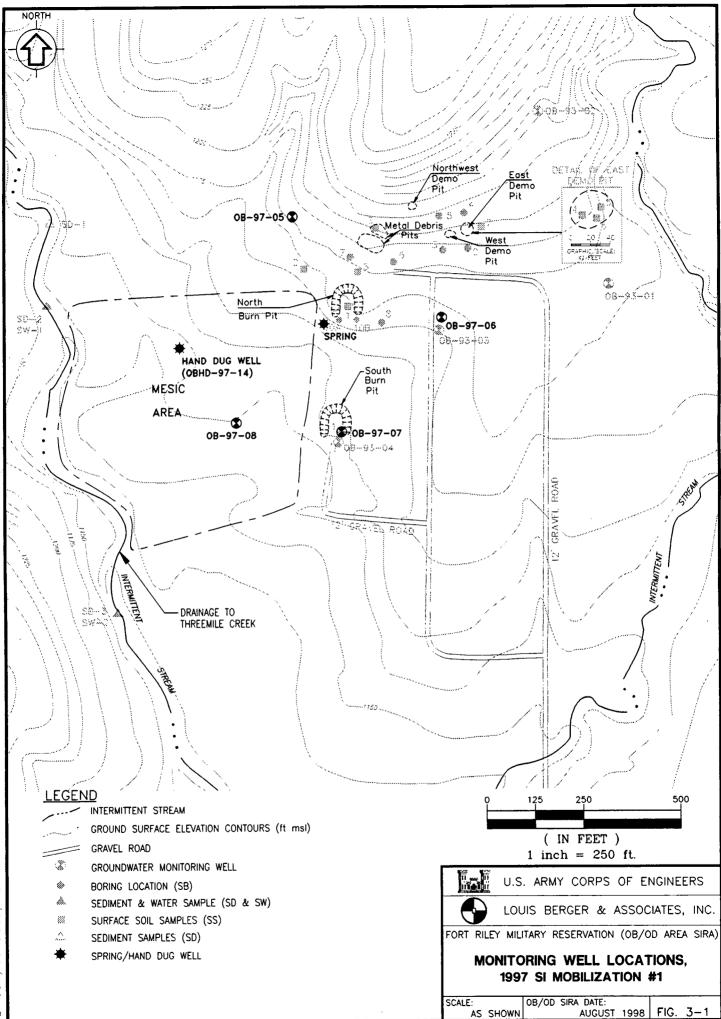
b: Duplicate of OB-97-08

There were no detections of semi-volatile organic compounds in any samples.

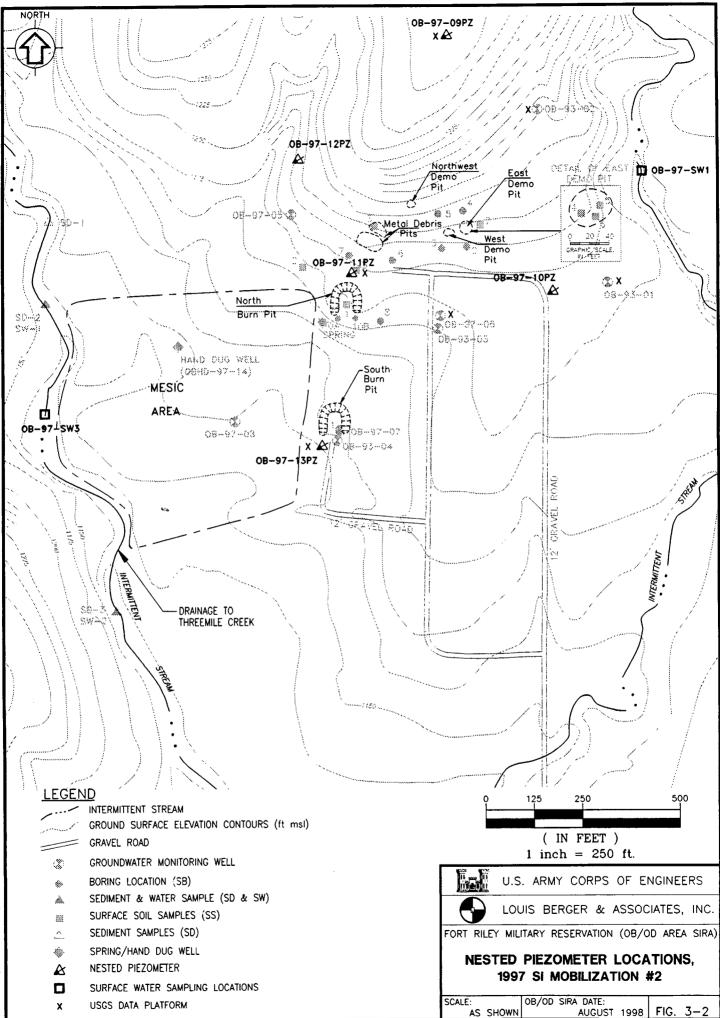
While there were no detections in OB93-01, OB93-02, and OB93-05, the field parameters are provided on this table.

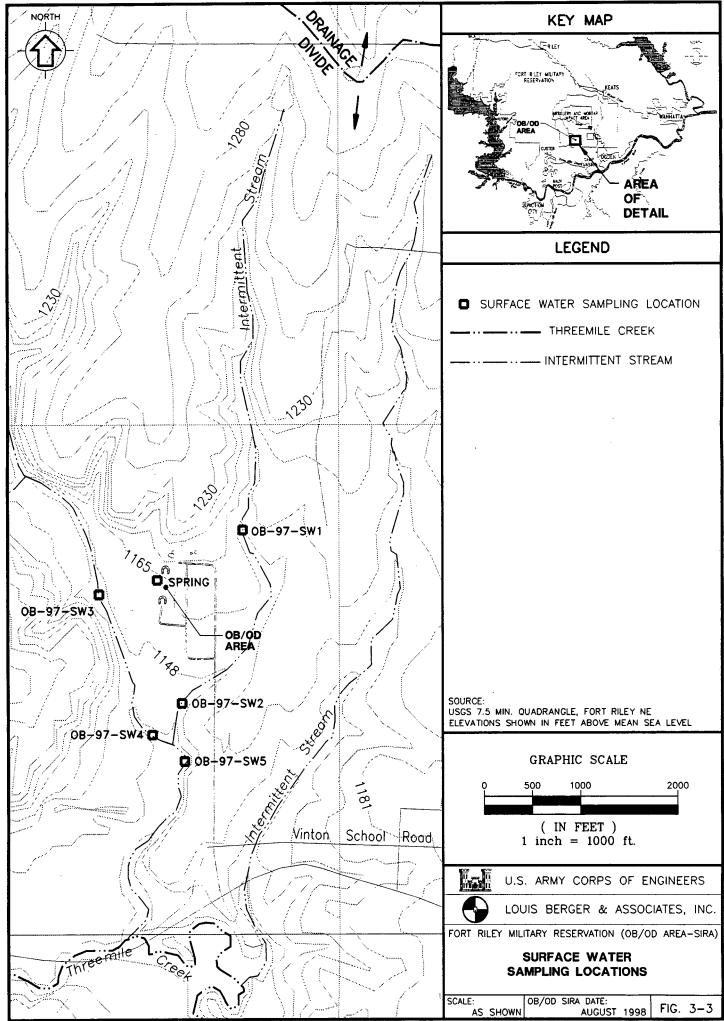
For a complete list of analyte from December 1997, see CENWK 1998.

:


FIGURES

÷


.


١

.

0B-0D1/06AU098/0B-MWM0B.SCF

4.0 SITE CHARACTERIZATION SUMMARY

.

4.0 SITE CHARACTERIZATION SUMMARY

This chapter presents a summary of the characterization of the OB/OD Area based on the results of the investigations conducted, and supplemented by pertinent information from published references. A general overview of the site characterization is presented in the form of a conceptual site model, followed by subsections which provide supportive detail for the model.

4.1 Conceptual Site Model

Figure 4-1 depicts the various elements of the conceptual site model developed for the OB/OD Area.

4.1.1 Sources

Since 1941, the site was used for ordnance disposal by open detonation and open burning. Burning is no longer conducted at the site. Groundwater investigations have detected the presence of some dissolved chlorinated solvents; predominantly TCE, with lesser detections of PCE, 1,2-DCE (total) and 1,1,2,2-tetrachloroethane. Investigations did not, however, identify problems associated with other potential site-related contaminants such as explosives by-products or petroleum hydrocarbons from past open burning practices.

The highest concentration of TCE detected in the groundwater is two orders of magnitude below the concentration which would indicate the presence of any residual product or DNAPL. According to *Estimating Potential for Occurrence of Dense Non-Aqueous Phase Liquids (DNAPL) at Superfund Sites* (USEPA, 1992), the concentrations of DNAPL-related chemicals in groundwater would have to be greater than 1% of the pure phase solubility of the DNAPL to indicate the presence of residual product at the site. The pure phase solubility of TCE is approximately 1,100 mg/l. One percent of this concentration is 11 mg/l or 11,000 μ g/l. The highest concentration of TCE detected at the site is 570 μ g/l in OB-97-07, which is between one and two orders of magnitude below the threshold.

Due to the long period of site use and the low levels of contamination identified, it is difficult to identify an exact location where the contaminants may have been released. The identified groundwater contaminants may even be the result of several sporadic and/or small releases which occurred at various locations within the OB/OD Area over the period of site activity. It is apparent, however, that based on the distribution of the TCE and the direction of groundwater flow, that the contaminants were originally released somewhere within the active and/or historical open burn/open detonation areas, that no residual product or source exists, and that the area investigated has bounded the likely originating point of the contamination. Thus, pinpointing a discrete contamination source appears to not only be difficult to impossible, but also appears to be unnecessary based on the results of this investigation.

4.1.2 Pathways

After being released to the ground, the small quantities of solvents migrated downward through the soil column to the water table via gravity drainage and precipitation infiltration. The concentrations were low enough that the TCE was dissolved and moved with the flow of groundwater (as opposed to being DNAPL that would sink). Contaminants released above the Kinney Limestone were dispersed with the flow in this formation coming out of the higher land to the north. This moved some contaminants slightly to the east but also to the west via the spring at the base of the Kinney. The discharge from the spring continues to the west, infiltrating into the overburden underlying the mesic area. The contaminants dispersed in other directions in the Kinney and some also seeped downward through the Wymore Shale to the underlying waterbearing zone of the Schroyer Limestone and upper portion of the Havensville Shale. The Schroyer/upper portion of the Havensville is also the first water-bearing zone to receive contaminants that may have been released at the South Burn Pit.

The highest concentration of TCE onsite $(570 \ \mu g/l)$ is identified in the Schroyer/upper portion of the Havensville. In this unit, the contaminants also migrate with the primary flow of groundwater; generally towards the intermittent stream to the west. Consistent with regional geology, this intermittent stream is interpreted to be the trace of a vertical joint, which is providing a potential vertical drainage path for the groundwater in this zone. Smaller layers within the water-bearing zone may flow more to the northwest or the southwest, depending on where the joint is best developed in contact with that layer. Depending on how open it is, the vertical joint may provide a potential pathway for some groundwater and contaminants to migrate down to the underlying Threemile Limestone. In addition, some limited downward seepage through the relatively less permeable Havensville Shale may also occur. This is consistent with the TCE concentrations being one to two orders of magnitude lower in the Threemile Limestone.

4.1.3 Receptors

Human exposure potential is minimal and well controlled. Human receptors within a 1-mile radius of the site are limited to personnel of the OB/OD Area during OB/OD activities and Army personnel in areas adjacent to the OB/OD Area. These receptors are considered transient since their access is strictly controlled and they only use the areas on a limited and intermittent basis. Surrounding land use consists of military training grounds to the south, an artillery and mortar impact area to the north, and some wheat and grass farmlands to the southeast. With rare exception, access to the OB/OD Area is restricted to EOD personnel, which only enter the area to perform disposal.

The greatest potential for exposure to the groundwater contamination at the OB/OD Area is at the spring adjacent to the North Burn Pit (Figure 4-1). This spring is flowing most of the time and the water contains concentrations of TCE in the 100 to 300 μ g/l range. Exposure of the spring to potential ecological receptors is possible as footprints of various indigenous wildlife (deer, etc.) were observed onsite. The intermittent streams are dry most of the time, so this spring is usually the only surface water on the OB/OD Area. It is possible that wildlife present on the OB/OD Area are drinking from this spring.

Draft Final SI Report Addendum - OB/OD Area -

A mesic (commonly moist, intermittently wet) area approximately 700 feet by 600 feet in size (10 acres) is located between the spring and the intermittent stream along the western side of the site (Figure 4-1). This area is not listed as a wetland on the USGS 7.5 minute topographic quadrangles, the Fort Riley installation map prepared by the Defense Mapping Agency, or the National Wetlands Inventory. This area is usually not saturated and any water that may appear might be from surface runoff. During periods where the water table is high, however, it is possible that some of the water may come from groundwater seeps originating in the underlying overburden (which, like the spring, may have TCE concentrations in the 100 to 300 μ g/l range). Thus, when wet, this area could also present an exposure potential for ecological receptors.

The intermittent streams located to the east and west of the OB/OD Area are usually dry and, therefore, do not usually pose an exposure threat to potential human or ecological receptors. These intermittent streams join about 1,000 feet south of the southern site boundary. When flowing, this single tributary continues south another 2,000 feet where it joins Threemile Creek. From this point, Threemile Creek flows southeast and joins the Kansas River at the west side of Camp Funston. There are no perennial streams within one mile downstream of the site and no known uses of surface water as potable water exist within 15 miles downstream of the site.

The groundwater withdrawal well nearest to the OB/OD Area is located at Range 18, approximately 4,220 feet to the east-southeast of the site. This well is only used at the Range 18 maintenance facility for non-potable purposes. No other wells fall within a one-mile radius of the OB/OD Area. The next nearest wells are the Ogden supply wells located approximately 3 miles southeast of the site. There is no realistic potential for exposure to the site groundwater contamination via extraction from production wells.

4.2 Regional Setting

The open burn/open detonation (OB/OD) area is located on Range 16 on the southern part of the Impact Area, approximately 2,300 feet north of Vinton School Road. The site lies on the Fort Riley NE, Kansas USGS 7.5 minute quadrangle in the Northeast quarter, Section 33, Township 10 south, Range 6 east, latitude 39° 08' 31.88" and longitude 96° 45' 46.16". The site location is indicated on Figure 1-1.

"Physiographically, the site is located on the slopes of the Flint Hills section of the Osage Plains. The Flint Hills section consists of a series of roughly parallel cuestas. Escarpments formed on the cherty limestones, which are separated by somewhat thicker shales, dominate the topography" (Hattin, 1957). To the north of the site, is the great flat-topped area capped by the Fort Riley Limestone. "Strata below the Fort Riley Limestone weather to steeply terraced slopes, and it is principally these strata that form the slopes of the Flint Hills in this part of Kansas. The shale units are slope-formers and rarely are completely exposed naturally. The hills capped by Fort Riley Limestone and the knobs capped by Florence Limestone, however, are part of the general Flint Hills region" (Jewett, 1941).

4.2.1 Geology

The area of the OB/OD Area is underlain by Permian aged shales and limestones encompassing the Chase and Council Grove Groups within the Wolfcamp Series of the Permian System. Regionally, this sequence of rocks dips gently (0.5 to 1.0 degree) to the west-northwest as a monocline, with local variations in dip resulting from smaller scale syn- and anticlinal structures. Fort Riley lies between the Abiline and Nemaha anticlines and due to this position, the bedrock units underlying the OB/OD Area are generally flat lying with a uniform thickness. Due to the uniformity of the bed thicknesses and the generally horizontal nature of the local structure, elevation is a good indicator of stratigraphic position. The information gathered from the site investigations and from published references were used to generate a bedrock geologic map (Figure 4-2) and a stratigraphic column (Figure 4-3) for the OB/OD Area and adjacent area.

These rocks form a sequence of alternating limestone and shale units. The sequence exhibits repetition of lithologies and faunas that is attributed to cyclic sedimentation. Some units have gradational characteristics (e.g. shaley limestone, calcareous shale). Also, some limestones are cherty, and some shale units contain gypsum and/or anhydrite stringers. The shales vary in color, having hues of gray, green, and red. Surface materials over the area consist of loess, soil, and highly weathered shale that typically make up the upper 20 feet of substrate in the Fort Riley area.

Structural features, such as joints, are important factors in the movement of groundwater and contaminants in bedrock. Chelikowsky (1972) described the regional geologic structure as follows:

The regional joint pattern in the Manhattan area consists principally of two major sets trending nearly at right angles to each other. The northerly trending set generally parallels the regional strike, the westerly trending set, the regional dip. At any given site other joints with different trends may occur, but such joints do not persist regionally. For the area as a whole, neither set dominates. Most of the joints dip vertically, but in thick shale sections some may be inclined. Except for master joints which cut across all of the layers in an outcrop, both the spacing and orientation of minor joints may vary from layer to layer.

There are significant regional as well as more local deflections from straight-line trends. The northerly trending strike set of joints swing in a broad arc from a N35°W direction in the south to a N5°W direction in the north. The westerly trending dip set maintains a general 90-degree transverse relationship to the broad arc and changes in direction accordingly.

Chelikowsky (1972) also discussed the inter-relationship between the regional joint system and drainage as follows:

The relationship between drainage and the regional joint system is revealed by the pronounced angular pattern of upland drainage, particularly where joint development is good. Another peculiarity in local drainage as noted from a study of topographic maps is

the asymmetrical shape of watersheds of some upland streams. The asymmetry is probably a reflection of the westerly regional dip of the rock layers.

The estimated location and orientation of vertical joint fractures relevant to the OB/OD Area are indicated on Figure 4-4. The northerly trending strike set is oriented at N20°W and located on portions of the intermittent stream beds (interpreted to be lineaments of vertical joint fractures). This orientation is within the regional range of N35°W and N5°W as presented by Chelikowsky (1972), and is consistent with the joint orientation (N22°W) depicted closest to the Fort Riley site (Chelikowsky 1972, Figure 3). The westerly trending dip set is oriented 90 degrees to the strike set and is aligned with abrupt changes in stream bed direction.

4.2.2 Hydrogeology

Typically, carbonate rocks (limestone and dolomite) have primary permeability values less than 10⁻⁷ meters per second. Many carbonate strata, however, have appreciable secondary permeability as the result of joints, fractures or openings along bedding planes (Freeze and Cherry, 1979). Observations in quarries and other excavations in flat-lying carbonate rocks indicate that solution openings along vertical joints generally are wide spaced. Openings along bedding planes are more important from the point of view of water yield from wells (Walker, 1956; Johnson, 1962 *in* Freeze and Cherry, 1979). In nearly horizontal carbonate rocks with regular vertical fractures and horizontal bedding planes, there is usually a much higher probability of wells encountering horizontal openings than vertical fractures. In fractured carbonate rocks, successful and unsuccessful wells can exist in close proximity, depending on the frequency of encounter of fractures by the well bore. Seasonally, the water levels in shallow wells can vary greatly because the bulk fracture porosity is a few percent or less (Freeze and Cherry, 1979). Figure 4-5 is from Freeze and Cherry (1979), and attempts to depict this relationships between fractures and bedding to help explain the response of groundwater to these features and to wells intersecting none or some of these flow conduits.

In some carbonate rocks, lineations of concentrated vertical fractures provide zones of high permeability. Zones in which fractures are concentrated are the zones of most rapid groundwater flow. Dissolution may cause the permeability of such zones to increase (Freeze and Cherry, 1979). Intensive studies of lineaments in carbonate rock have shown that the probability of obtaining successful wells is greatly enhanced if drilling sites are located along lineaments or at their intersections (Lattman and Parizek, 1964; Parizek and Drew, 1966 *in* Freeze and Cherry, 1979). In some areas, however, excessive thicknesses of overburden prevent recognition of bedrock lineaments. Figure 4-6 is from Freeze & Cherry 1979, and illustrates a situation where fracture intersections and lineaments are reflected in the morphology of the land surface.

Figure 4-7 presents an estimation of the general flow of the water table. The estimated water table elevation contours were created by connecting streambeds of the same elevation on the USGS topographic map. The site is located within the drainage basin of Threemile Creek. Based on this estimated flow, the recharge area for the site is located to the north. The upper boundary of the basin relevant to the site is interpreted to be along the ridge located approximately a mile north of the site. Much of this area to the north is underlain by the Fort Riley Limestone and Florence

Limestone. Precipitation infiltration into these upgradient limestone units provides recharge to the water table. The water which enters the Fort Riley Limestone will migrate horizontally through permeable zones (i.e., bedding planes).

It is thus interpreted that groundwater primarily flows horizontally along bedding planes and solutioned zones in the limestone units. The interbedded shales have relatively low permeability and tend to prevent or at least severely limit flow between the limestone units; however, when an open vertical joint or fracture is encountered, some water will potentially migrate downward and provide recharge to the underlying formation. The amount of water flowing downward versus continuing horizontally will depend on the relative openness of the joints and fractures, and/or the relative permeability of the bedrock units. This potential supply of recharge from above will also sometimes cause an artesian condition locally in an underlying formation.

4.3 Site-Specific Conditions

The site-specific conditions are summarized below based on the results of the investigations conducted at the OB/OD Area and information in published references. Discussed are the geology and hydrogeology, the fate and transport of the contaminants, and the potential exposure pathways.

4.3.1 Geology and Hydrogeology

The information gathered from the site investigations (including lithological and geophysical logs) were used to generate geologic cross sections of the OB/OD Area. The cross section locations are shown on Figure 4-8 and the cross sections are presented on Figure 4-9.

The soils found at the OB/OD Area generally have a high available water capacity and, in general, readily transmit water. Surface run-off is moderate and infiltration of precipitation would move downward through the soil layer. The soils at the site are depicted on Figure 4-10. As shown, the soils in the area of the OB/OD Area are characterized as silt loams and silty clay loams.

In general, the bedrock units beneath the OB/OD Area are flat-lying with relatively uniform thicknesses and, as a result, elevation becomes a good indicator of stratigraphic position. Based on the bedrock geologic map, the demo pits and the North Burn Pit are situated on the Blue Springs Shale and the South Burn Pit is located on the Wymore Shale. Much of what directly underlies these areas is overburden and weathered bedrock derived from these formations.

Although some seepage through the shale formations may occur, it is interpreted to be relatively limited based on the low permeability of these types of formations. The limestone units are therefore assumed to contain the zones which most readily transport groundwater. The affected limestone units beneath the OB/OD Area are the Kinney, Schroyer/Havensville, and the Threemile. These units are discussed in greater detail below.

4.3.1.1 Kinney Limestone

The flow of groundwater in the Kinney (under a horizontal gradient of approximately 0.004 ft/ft) is depicted on Figure 4-11. Aside from direct precipitation infiltration, this would be the first groundwater to contact and transport contaminants deposited in the demo pits and the North Burn Pit. The flowing spring adjacent to the North Burn Pit is a surface exposure of groundwater from the Kinney. This is most likely due to a high permeability feature (near, or slightly below, the contact with the underlying Wymore Shale) intersecting the ground surface. This spring provides recharge to the downgradient "mesic area" (an overburden-filled area where the underlying Schroyer Limestone has apparently been eroded). During seasonal high water conditions (e.g., January 1998), groundwater from the Kinney discharges to and flows in the intermittent stream along the eastern side of the site.

In addition to the primary horizontal movement, some groundwater in the Kinney may also move downward via vertical pathways (i.e., vertical joints, fractures). The potential for this migration is documented by the downward gradient (approximately 0.5 ft/ft) between the Kinney and the Schroyer/Upper Havensville (the next underlying limestone unit); although it is noted that downward gradients do not necessarily translate into significant downward flows, depending on the existence of vertical flow pathways such as joints and fractures. The occurrence of some downward seepage of groundwater on this downward potential may be documented by the presence of some dissolved contaminants in the underlying formations.

4.3.1.2 Schroyer Limestone/Havensville Shale

The South Burn Pit is underlain by the Schroyer Limestone and upper portion of the Havensville Shale (limestone and shale), downgradient from the demo pits and the North Burn Pit. The flow of groundwater in the Schroyer/upper Havensville is depicted on Figures 4-12 through 4-15. This would be the first limestone unit to receive and transport contaminants deposited in the South Burn Pit. On average, the general flow direction within this unit (under a horizontal gradient of approximately 0.01 ft/ft) is consistent with the estimated flow direction for the water table in this portion of the Threemile Creek drainage basin (Figure 4-7). In looking at the individual layers within the unit, as indicated on Figures 4-12 through 4-15, there is a component of horizontal flow towards the intermittent stream bed on the western side of the site, as well as to the northnorthwest. As discussed above, in some carbonate rocks, lineations of concentrated vertical fractures provide zones of high permeability and these lineaments can be reflected in the morphology of the land surface. Also as stated above, the relationship between drainage and the regional joint system is revealed by the pronounced angular pattern of upland drainage, particularly where joint development is good.

It is interpreted that a portion of the intermittent stream bed is a lineament of a vertical joint, portions of which may be developed well enough to locally provide drainage and influence the flow direction of groundwater in that unit. The orientation and location of these interpreted vertical joint fractures are indicated on Figure 4-4. The strike of the lineament is approximately N20°W which is, as discussed above, consistent with published values for the northerly trending strike set in this area. Likewise, a vertical joint fracture of the westerly trending dip set (90 degrees to the strike set) (Figure 4-4) could explain the north-northwest component, even though a lineament is

not obvious. As stated above, excessive thicknesses of overburden can prevent recognition of bedrock lineaments. This flow component appears weaker than the west-southwest flow, indicating that such a vertical joint fracture may not be as well developed here.

The nested piezometers (OB97-09PZ, OB97-11PZ, and OB97-12PZ) document an artesian condition at the base of the water bearing unit in the upper portion of the Havensville. This condition indicates that this zone has the highest permeability in the unit and the best hydraulic connection with the overlying groundwater. When the water table is high enough (e.g., January 1998), groundwater from this unit is exposed in the intermittent stream along the western side of the site.

In addition to the primary horizontal movement, some groundwater in this unit may also move downward via vertical pathways (i.e., vertical joints, fractures). The potential for this migration is documented by the downward gradient (approximately 0.9 ft/ft) between this unit and the Threemile Limestone (the next underlying limestone unit). The occurrence of at least some localized downward seepage of groundwater on this potential may be documented by the presence of some lower levels of contaminants in the Threemile Limestone.

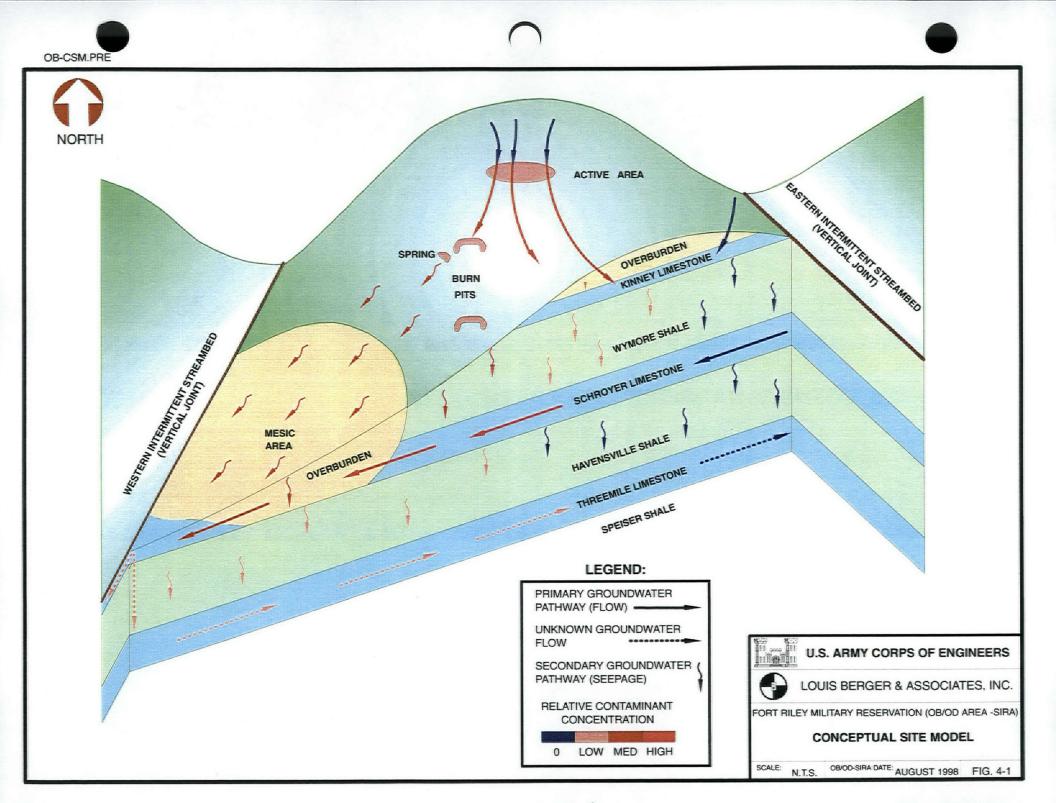
4.3.1.3 <u>Threemile Limestone</u>

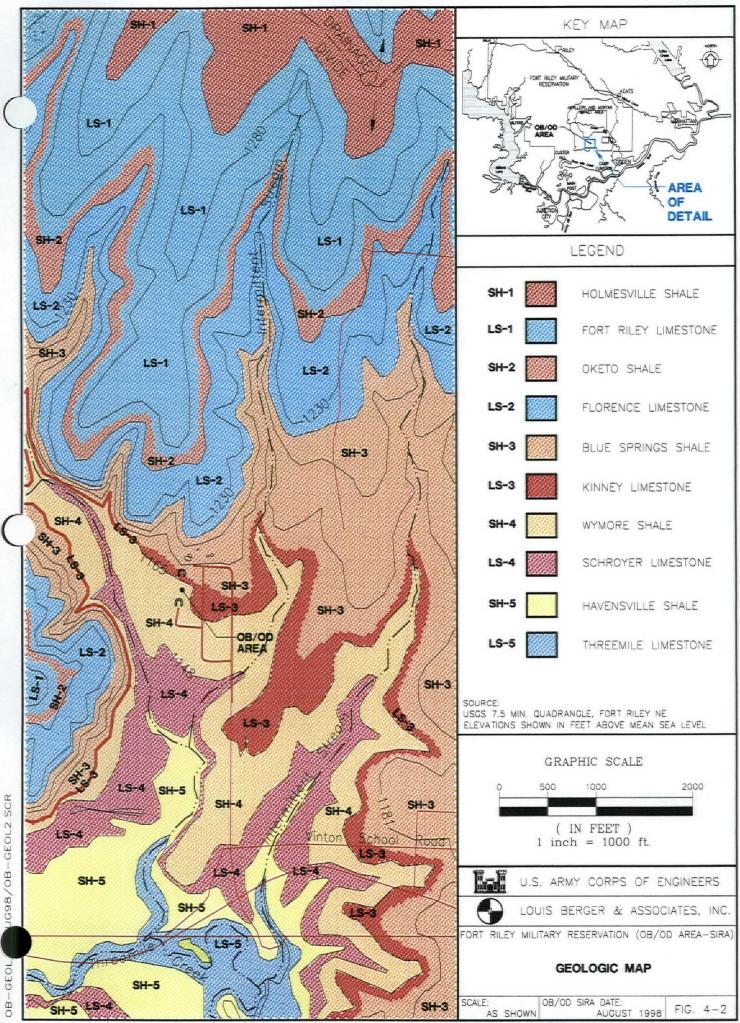
The flow of groundwater in the Threemile Limestone cannot be fully interpreted from the existing information. Three monitoring wells are screened in the Threemile Limestone (OB-93-03, OB-93-04, and OB-97-05), however, so a simple three-point solution can be prepared. Using the groundwater elevations recorded from these wells, a horizontal flow to the northeast is indicated, which is the opposite direction of the flow in the overlying formations.

While this interpretation may prove to be correct (likely attributable to preferential drainage via structural features), such a solution may also present a potentially incorrect or misleading interpretation, especially if vertical gradients are present. This is because the three point solution is based on wells which are not all consistently screened in the vertical plane. To avoid distortion when interpreting horizontal gradients in the presence of vertical gradients, it is important to use groundwater elevations from wells screened in the same vertical plane. Two of the Threemile Limestone wells have 15-foot screens (OB-93-03 and OB-93-04), and one has a 10-foot screen (OB-97-05). Although there is some overlap, all three wells screen different elevation ranges. If a vertical gradient could thus result. For this reason, interpretation of the groundwater flow direction in the Threemile Limestone must be deferred until additional and more definitive information becomes available.

4.3.2 Contaminant Fate and Transport

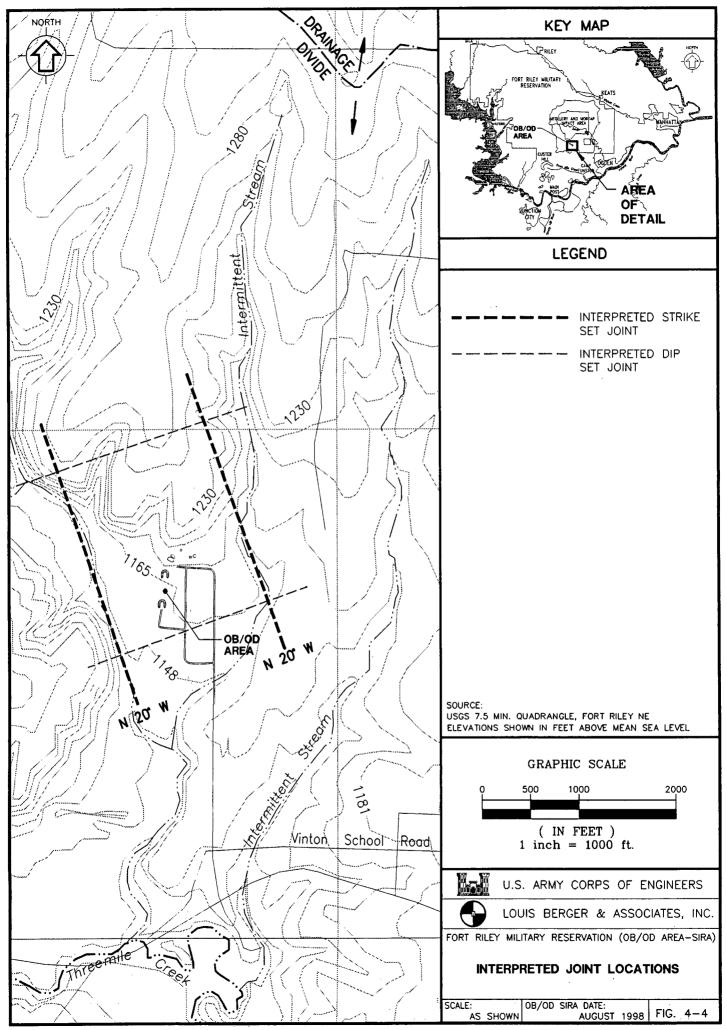
The predominant contaminant detected in the groundwater at the OB/OD Area is trichloroethylene (TCE), a common chlorinated solvent and volatile organic compound. Based on the distribution of TCE (from monitoring well sample analytical results) and the flow direction of the groundwater (discussed above), this common solvent was most likely released in the area of the burn pits and/or

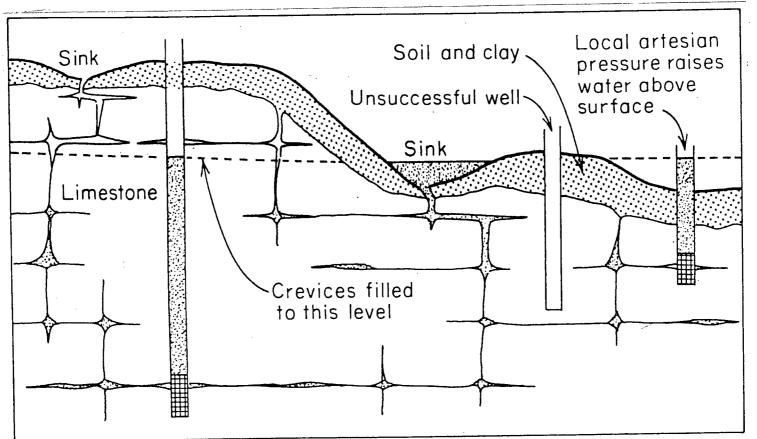

demo pits. The time and location of the release (or releases) is unknown. Several small releases may have occurred, over time, at various locations within these areas. Whatever the scenario, the magnitude of the release (or releases) was evidently minor and/or well in the past because there is no indication of any residual product currently existing at the site. According to *Estimating Potential for Occurrence of Dense Non-Aqueous Phase Liquids (DNAPL) at Superfund Sites*(USEPA, 1992), the concentrations of DNAPL-related chemicals in groundwater would have to be greater than 1% of the pure phase solubility of the DNAPL to indicate the presence of residual product at the site. The pure phase solubility of TCE is approximately 1,100 mg/l. One percent of this concentration is 11 mg/l or 11,000 μ g/l. The highest concentration of TCE detected at the site is 570 μ g/l in OB-97-07 (December 1997), which is between one and two orders of magnitude below the threshold.


After being released to the ground, the TCE was transported downward through the soil by infiltration of precipitation. It then entered the first occurrence of groundwater within the Kinney formation and was transported with the primary flow in that unit. Contaminants migrated to the east with this flow, as well as to the west, via the flowing spring. The water flowing from the spring shows the highest concentration of contamination in this unit. This spring provides recharge to the downgradient mesic area (an overburden-filled area where the underlying Schroyer Limestone has apparently been eroded). Some of the dissolved contaminants may have also seeped downward to some extent (as discussed above), ultimately reaching the Schroyer/Upper Havensville.

In the Schroyer/Upper Havensville, the contaminants also migrate with the primary flow of groundwater (as discussed above). Figure 4-16 depicts the distribution of TCE in this unit. Again, the highest concentrations are detected in the most permeable zone (OB-97-07[570 μ g/l] and OB-97-13PZ(2)[200 μ g/l]). The cores for OB-93-04, OB-97-05 and OB-97-06 indicate a solutioned zone at approximately elevation 1135 ft msl. This zone is intersected by the screens of monitoring well OB-97-07 and piezometer OB-97-13PZ(2). Another permeable area in this unit is the overburden underlying the mesic area, where the bedrock of the unit has apparently been eroded. The wells located there (hand dug well/OBHD-97-14 and OB-97-08) show concentrations of TCE around 100 μ g/l. This is approximately the same concentration detected at the spring, which provides recharge to this overburden area. Some of the dissolved contaminants may have also seeped downward to some extent (as discussed above), ultimately reaching the underlying Threemile Limestone.

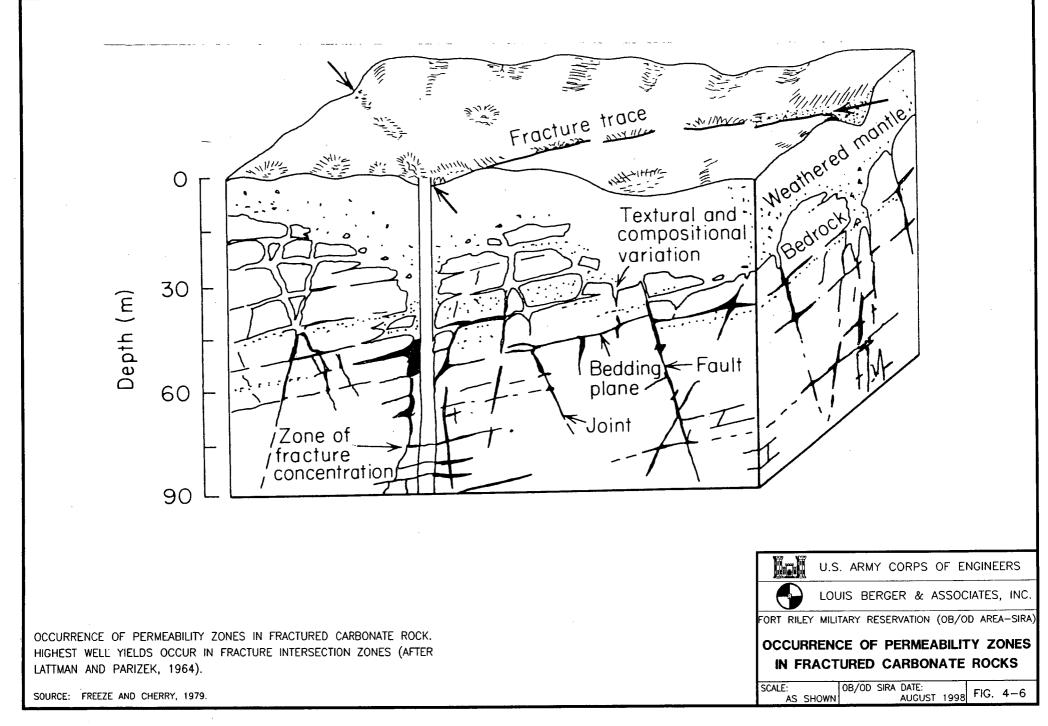
In the Threemile Limestone, the contaminants would also migrate with the primary horizontal flow of groundwater (which is presently undetermined, as discussed above). Figure 4-17 depicts the distribution of TCE in the Threemile Limestone based on the limited data available. Some dissolved contaminants appear to have seeped downward, likely via vertical joints or fractures connecting with the overlying shale of the Havensville. Contaminant levels in this unit are much lower than in the overlying units. This reduction in concentration has likely occurred during movement from the Schroyer/Upper Havensville to the Threemile Limestone. The highest concentration in the Threemile Limestone, 17 μ g/l in OB-93-04, is an order of magnitude less than the highest levels in the overlying unit.

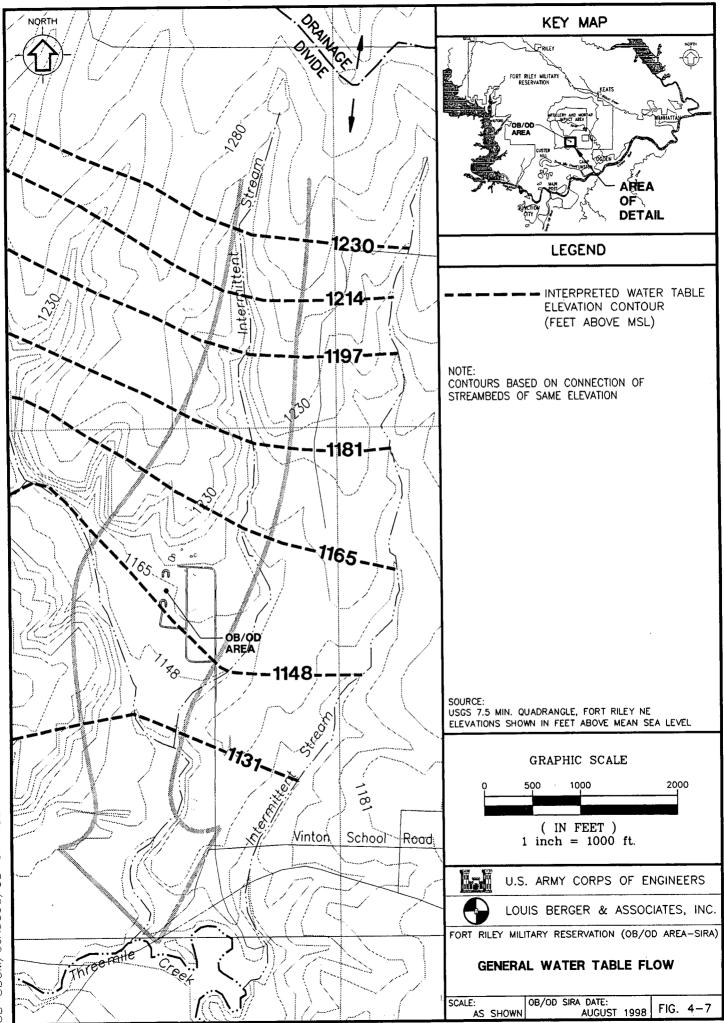

FIGURES



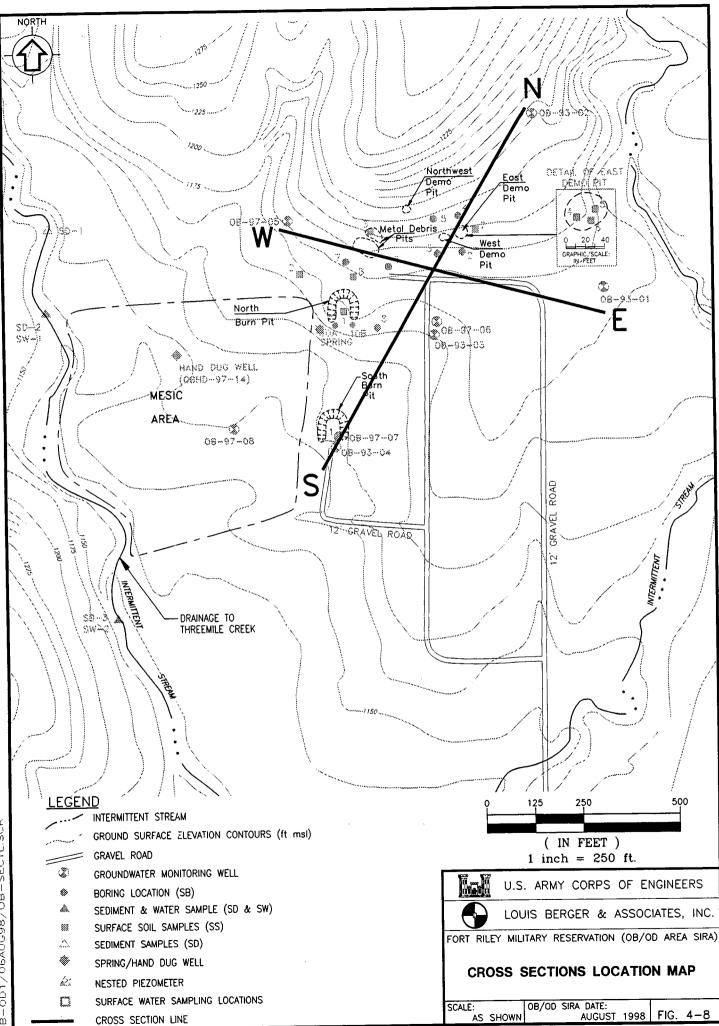
OB-GEOL

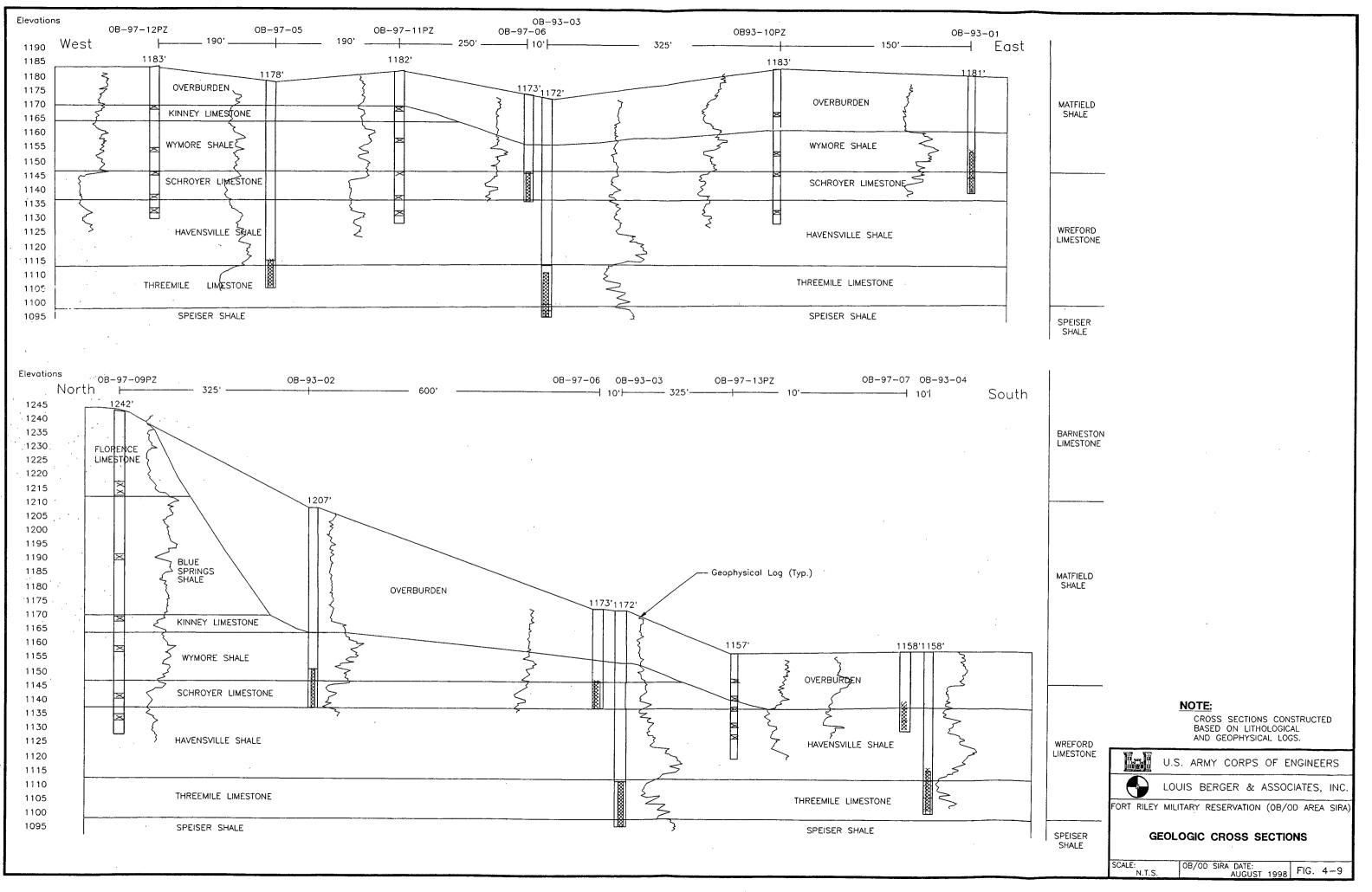
		Herington Ls. Mbr.			Í			
C C	JATZ /	Paddock Shale Member	Nolans Limestone					
		Krider Limestone Mbr.						
	Filter	1	Odell Shale			S		
	FETHU	Cresswell Ls. Mbr.				브	\leq	
{			Winfield Limestone			PERMIAN SERIES	PERMIAN SYSTEM	
		Grant Shale Member	WINTIEIO LIINESLUIRE			S	—	
	CIATALA	Stovall Limestone Mbr.					S	
						\leq	\sim	
	TATAT	Gage Shale Member				\leq		
			Doyle Shale			\geq	Z	
		Towanda Limestone Mbr.	Duyle Shale			2	A	
				9				
	FIFLES	Holmesville Sh. Mbr.		Group			\geq	
	CTTTTTTT							
	ATT THE	Fort Riley Ls. Mbr.		se		M		
		-		Chase		5	-	
		Oketo Shale Member	Barneston Limestone	0	}	LOWER	ł	
	TATALATA		Darneston Linestone					
9								
5		Florence Ls. Mbr.					1	
1				4				
		Blue Springs Sh. Mbr.						
					-			-
	大言語	Kinney Limestone Mbr.	Matfield Shale					
	CART -	Wymore Shale Member						
	Z=-YHL	· · · · · · · · · · · · · · · · · · ·		-				
		Schroyer Ls. Mbr.	Wreford Limestone					
		Havensville Shale Mbr.						
	ALALA	Threemile Ls. Mbr.		+				
	HTT		Speiser Shale					
			Funston Limestone	1	ш			
	The second		Blue Rapids Shale	1	9			
				-	IA	1		
	CHILLET T		Crouse Limestone	-	N I			
	PRI-TIM		Easly Creek Shale		GEARYAN STAGE			
		Middleburg Ls. Mbr.			Υ		1	
)=-27-2	Hooser Shale Member	Bader Limestone				Į	
		Eiss Limestone Member						
	States and the states of the s	·····	Stearns Shale		0	[
		Morrill Limestone Mbr.		a				
		Florena Shale Member	Beattie Limestone	n 0.		ł		
	J=====//	Cottonwood Ls. Mbr.		Group				
	ERAT 1	JULLON WUUU LJ. WUI.						
	Est		Eskridge Shale	0		1		
	1=-272-		TouringPo pupin	G				
	<u> </u>	Neva Limestone Mbr.		<u> </u>		ļ		
		Salem Point Shale Mbr.	1	Council Grove				
		Burr Limestone Mbr.	Grenola Limestone	10	11			
		Legion Shale Member	1					
		Sallyards Ls. Mbr.	1				1	
			Roca Shale					
	EHFE	Howe Limestone Member		7		1		
	1	Bennett Shale Member	Red Eagle Limestone					
	Participation of the second se	Glenrock Ls. Mbr.		_				
			Johnson Shale					
	A THE	Long Creek Ls. Mbr.						
	B-JA		Foraker Limestone					
		Hughes Creek Sh. Mbr.						1
		Americus Ls. Mbr.						
· ·	UTT			1000 BLOUN	н I .		.	1
,					U.S.	ARMY	CORF	PS OF ENGINEERS
			· · · · ·					
		LOUIS BERGER & ASSOCIATES, INC.						
	·							
			FOR	RT RILEY	MILITA	RY RE	SERVAT	ION (OB/OD AREA-SIF
					STRA	TIGR		COLUMN
SOURCE: 7ELLER.	DORIS E., 1968. "THE STR	ATIGRAPHIC SUCCESSION IN K	ANSAS"			0 /00		·
			SCA	ALE:	HOWN	ia/00 1	SIRA DAT	E: GUST 1998 FIG. 4-3
STATE G	EOLOGICAL SURVEY OF KANS	AS, DULLLING 103, I DAIL 1.		A				

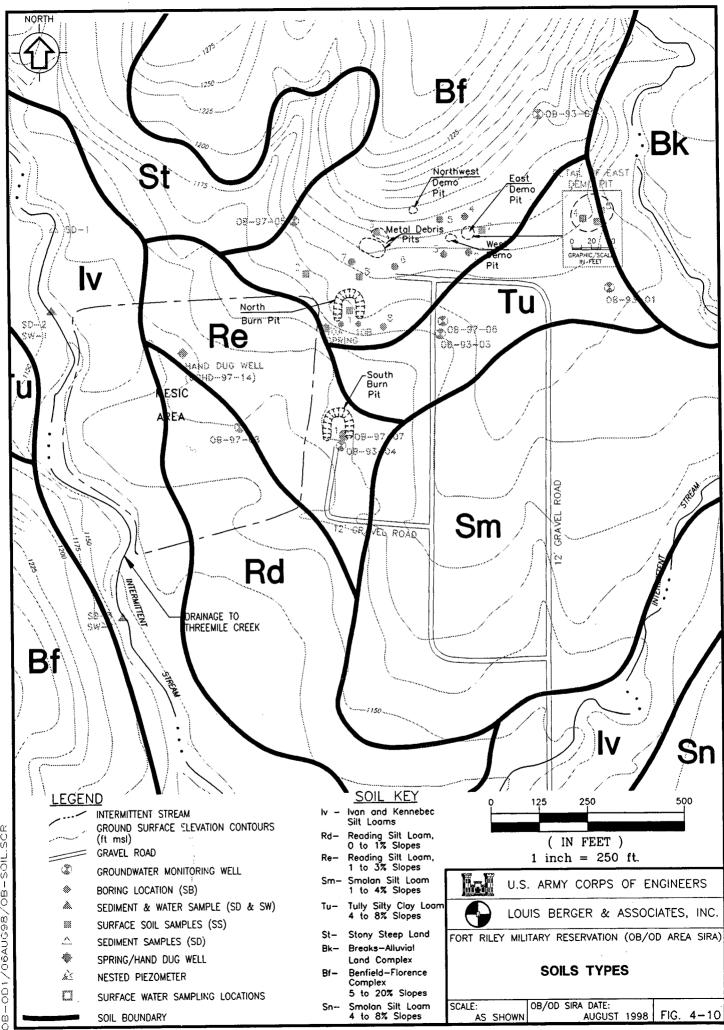

OB-ODCM/06AUG98/OB-INVJ.SCR

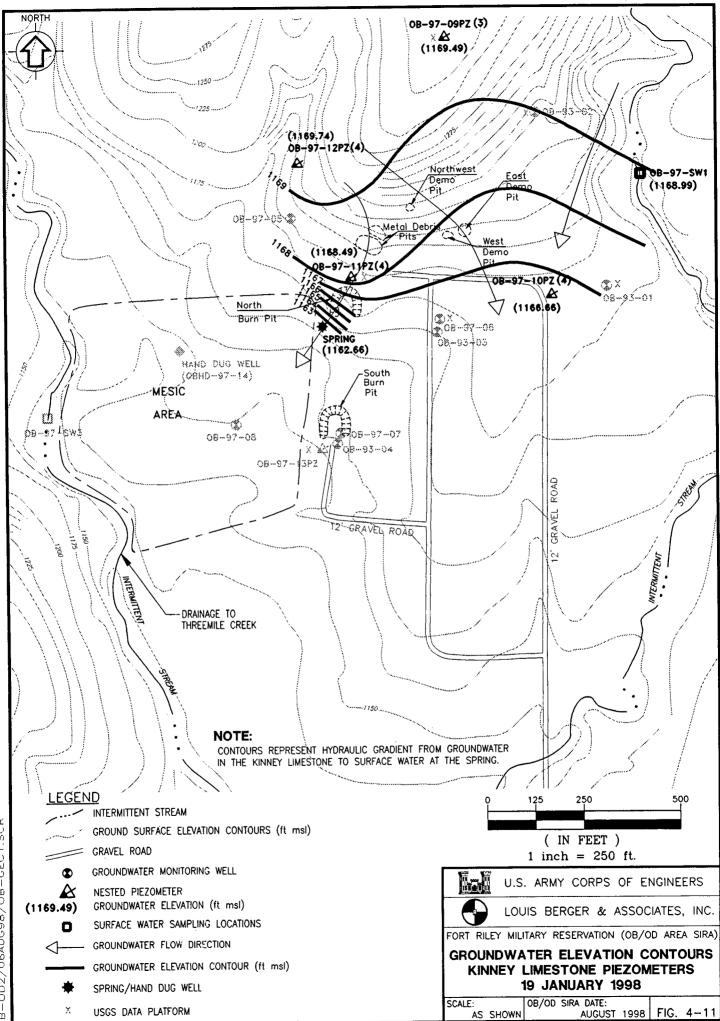

SCHEMATIC ILLUSTRATION OF THE OCCURRENCE OF GROUNDWATER IN CARBONATE ROCK IN WHICH SECONDARY PERMEABILITY OCCURS ALONG ENLARGED FRACTURES AND BEDDING PLANE OPENINGS (AFTER WALKER, 1956; DAVIS AND DEWIEST, 1966). U.S. ARMY CORPS OF ENGINEERS LOUIS BERGER & ASSOCIATES, INC. FORT RILEY MILITARY RESERVATION (OB/OD AREA-SIRA) OCCURRENCE OF GROUNDWATER IN CARBONATE ROCKS SCALE: AS SHOWN OB/OD SIRA DATE: AUGUST 1998 FIG. 4-5

SOURCE: FREEZE AND CHERRY, 1979.

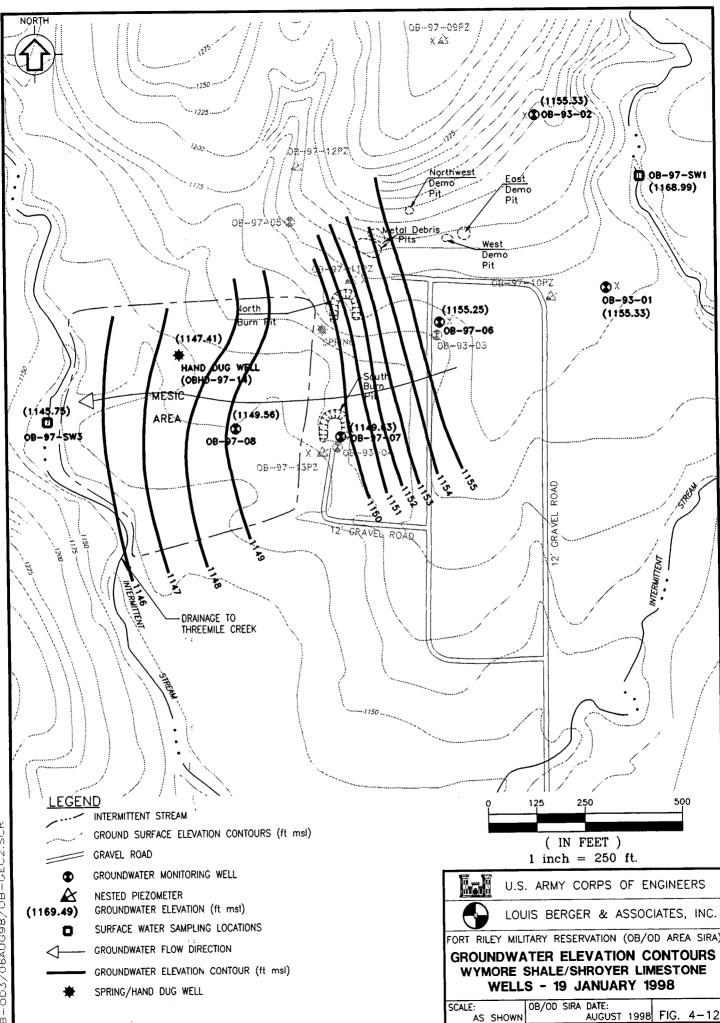

OB-FRM2/06AUG98

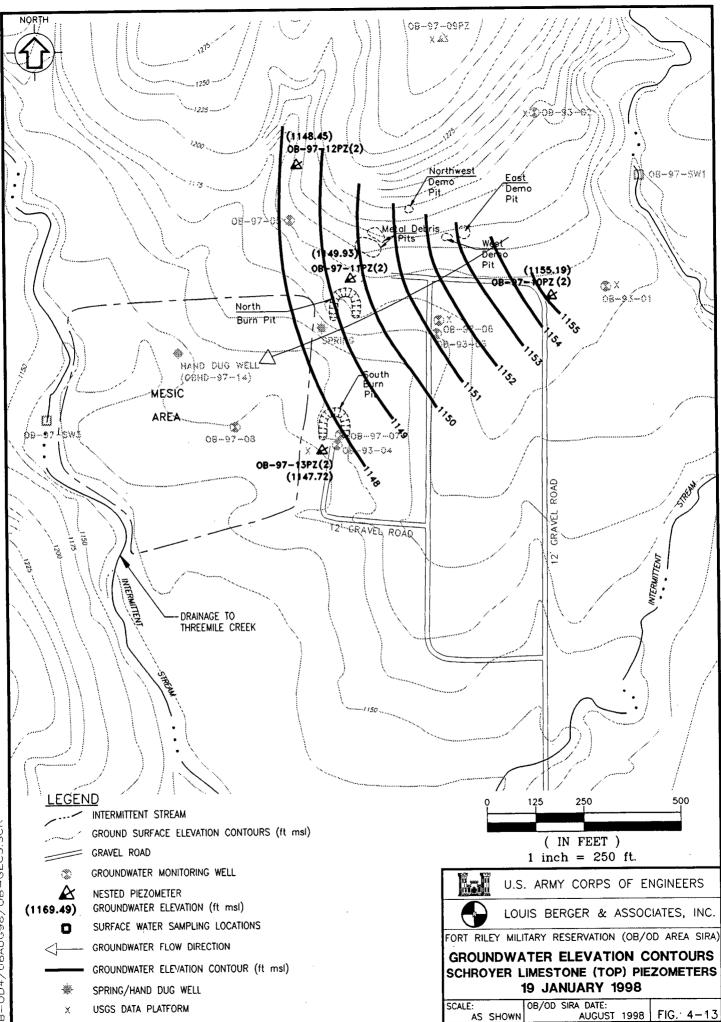

D-FRMZ/UGAUG98



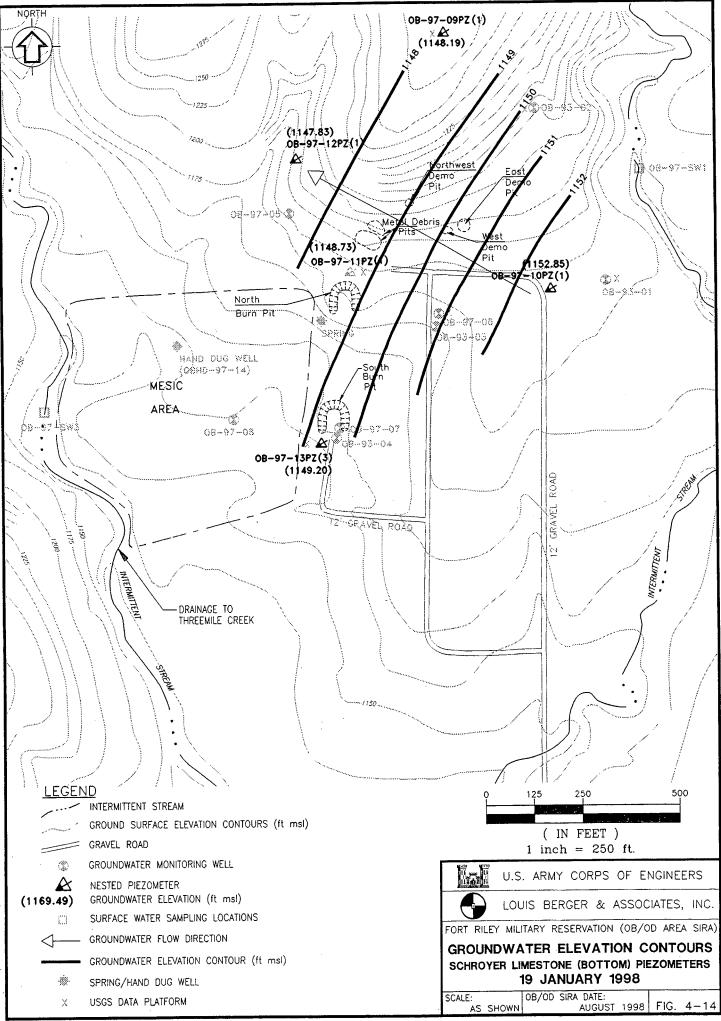

OB-ODCM/06AUG98/OB-GWTF.SCR

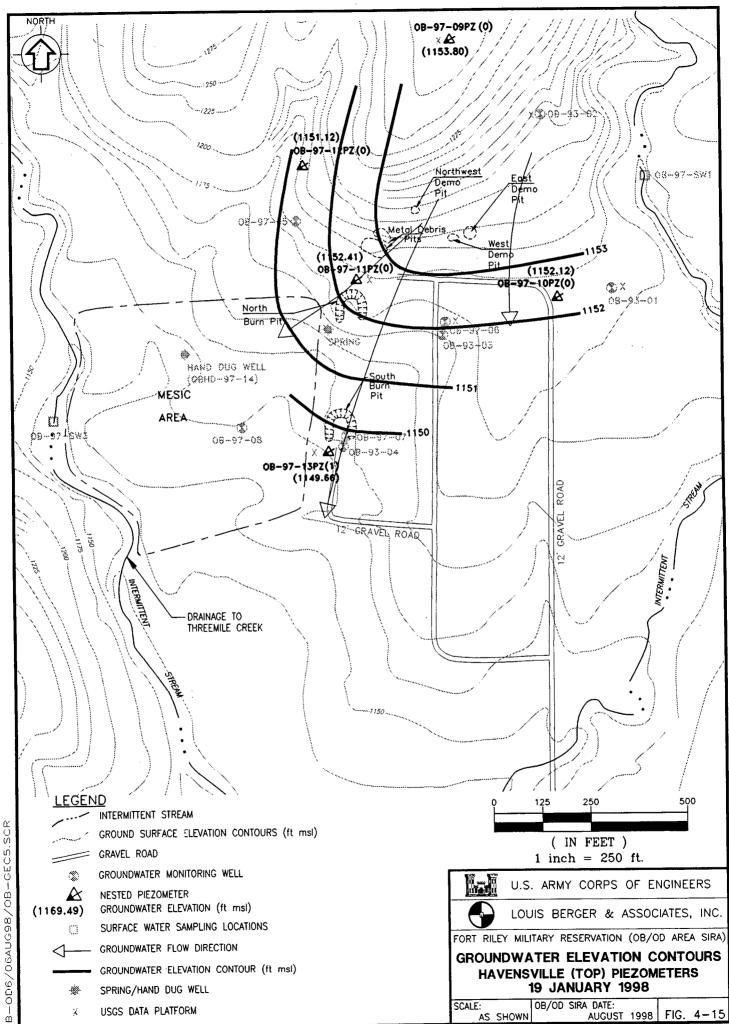
GB-OD1/06AUG98/OB-SECTL.SCR

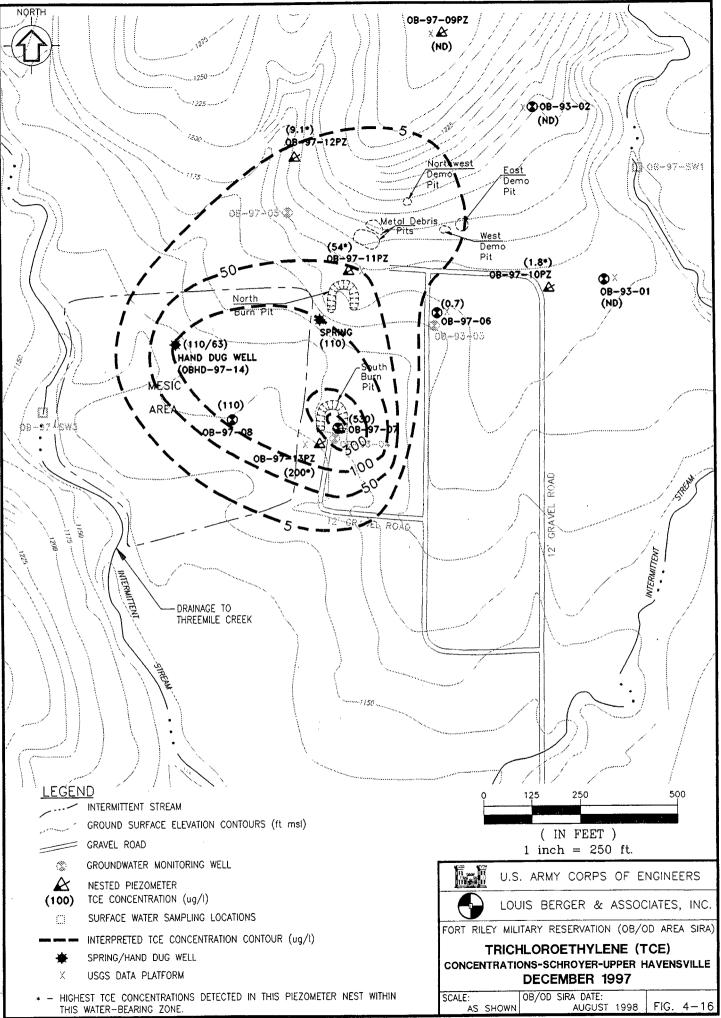


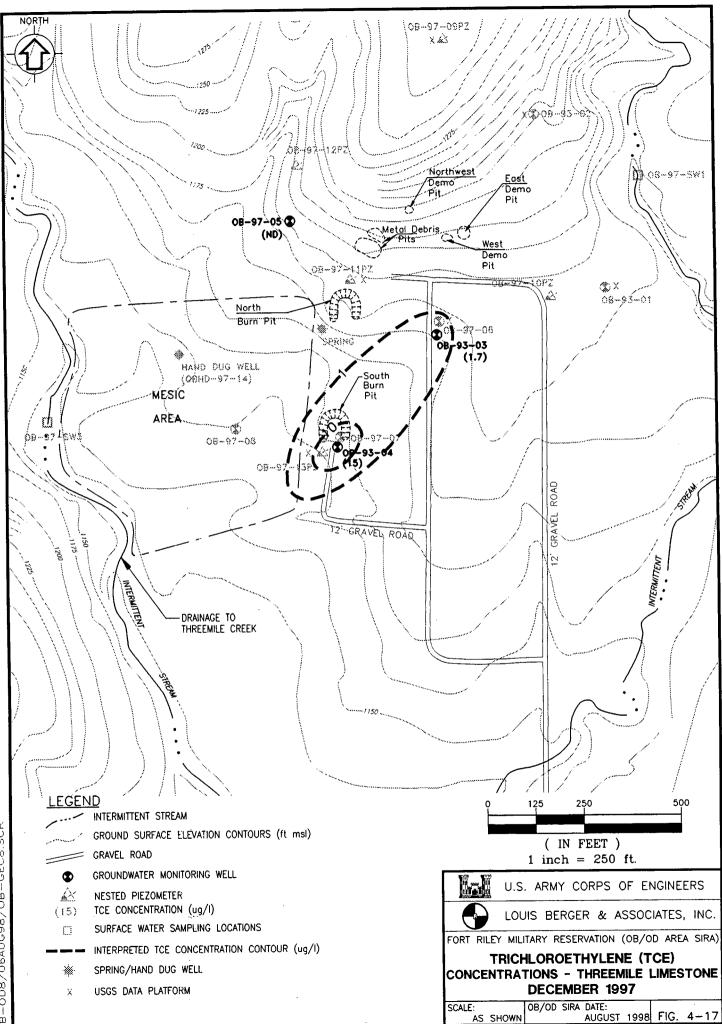


SCR. -GEC1 -OD2/06AUG98/0B


ю О


-OD3/06AUG98/OB-GEC2.SCR ю О


SCR OD4/06AUG98/OB-GEC3. о В-



SOR. 0B-0D5/06AUG98/0B-GEC4.

OB-OD6/06AUG98/OB-CEC5.

-OD8/06AUG98/OB-GEC8.SCR

m O

5.0 SUMMARY AND CONCLUSIONS

5.0 SUMMARY AND CONCLUSIONS

Since 1941, the OB/OD Area was used for ordnance disposal by open detonation and open burning. Burning is no longer conducted at the site. The results of the environmental investigations indicate that low levels of chlorinated solvents, predominantly TCE, are present in the groundwater beneath the site. The highest concentration of TCE detected in the groundwater is one to two orders of magnitude below the concentration which would indicate the presence of any residual product. Review of available information and testimony regarding past practices at the site did not identify a discrete source or practice related to the potential release of solvents at the site. Due to the long period of site use and the low levels of dissolved contamination identified, it is difficult to identify the exact location where the contaminants may have been released. In fact, there may actually have been several small, sporadic releases in the past at different locations within the OB/OD Area. However, based on the distribution of the TCE and the direction of groundwater flow, the contaminants were released somewhere within the active and/or historical open burn/open detonation areas bounded by the subject investigations.

After being released to the ground, the small quantities of TCE would have migrated downward through the soil column to the water table via gravity drainage and precipitation infiltration. The concentrations were low enough that the TCE was dissolved and moved with the flow of groundwater (as opposed to being DNAPL, that would sink and persist as residual product and give rise to much higher detections of contamination in the monitoring wells).

In general, the bedrock units beneath the OB/OD Area are flat-lying with relatively uniform thicknesses. As a result, elevation becomes a good indicator of stratigraphic position. Based on the bedrock geologic map, the demo pits and the North Burn Pit are situated on the Blue Springs Shale, while the South Burn Pit is located on the Wymore Shale. Much of what directly underlies these areas is overburden and weathered bedrock derived from these formations.

Although some limited seepage through the shale formations might ultimately occur, it is considered to be of much less importance since the limestone units contain the zones which would much more readily transport groundwater. The affected limestone units beneath the OB/OD Area are the Kinney, Schroyer/Havensville, and the Threemile.

Contaminants released above the Kinney Limestone were dispersed with the primary groundwater flow in this formation coming out of the higher land to the north. This moved some contaminants slightly to the east, but also to the west via the spring at the base of the Kinney. The discharge from the spring continues to the west, infiltrating into the overburden underlying the mesic area. The contaminants dispersed in other directions in the Kinney and some also may have seeped downward through the Wymore Shale to the underlying water-bearing zone of the Schroyer Limestone and upper portion of the Havensville Shale. The Schroyer/upper portion of the Havensville is also the first water-bearing zone to receive contaminants that may have been released at the South Burn Pit.

The highest concentration of TCE onsite (570 μ g/l) is identified in the Schroyer/upper portion of the Havensville. For comparison purposes, the federal drinking water MCL for TCE is 5 μ g/l.

In this unit, the contaminants also migrate with the flow of groundwater. The flow in this unit is generally towards the intermittent stream to the west. Consistent with the regional geology, this intermittent stream is interpreted to be the trace of a vertical joint which is providing a drainage path for the groundwater in this zone. Smaller layers within the water-bearing zone flow more to the northwest or the southwest depending on where the joint is best developed in contact with that layer. The vertical joint also provides a potential pathway for some groundwater and contaminants to migrate down to the underlying Threemile Limestone. In addition, some downward seepage through the Havensville Shale may also occur. The interpretation that vertical seepage through the shale units does not readily occur is evidenced by the TCE concentrations being one to two orders of magnitude lower in the Threemile Limestone.

Human exposure potential is minimal. Human receptors within a 1-mile radius of the site are limited to military personnel or contractors working at the OB/OD Area during OB/OD activities and/or in areas immediately adjacent to the OB/OD Area. These receptors are considered transient since their access is strictly controlled and they only use the areas on a limited and intermittent basis. Surrounding land use consists of military training grounds to the south, an artillery and mortar impact area to the north, and some wheat and grass farmlands to the southeast. With rare exception, access to the OB/OD Area is restricted to EOD personnel, which only enter the area to perform disposal.

The greatest potential for exposure to the groundwater contamination at the OB/OD Area is at the spring adjacent to the North Burn Pit (Figure 4-1). This spring is flowing most of the time and the water contains concentrations of TCE in the 100 to 300 μ g/l range. Exposure of the spring to potential ecological receptors is possible as footprints of various indigenous wildlife (deer, etc.) were observed onsite. The intermittent streams are dry most of the time, so this spring is usually the only surface water on the OB/OD Area. It is possible that wildlife present on the OB/OD Area are drinking from this spring.

A mesic (commonly moist, intermittently wet) area approximately 700 feet by 600 feet in size (10 acres) is located between the spring and the intermittent stream along the western side of the site. This area is not listed as a wetland on the USGS 7.5 minute topographic quadrangles, the Fort Riley installation map prepared by the Defense Mapping Agency, or the National Wetlands Inventory. This area is usually not saturated. Any water that may appear is likely to be from surface runoff. During periods of high water table, however, it is possible that some of the water may be from the groundwater in the underlying overburden (which, like the spring, may have TCE concentrations in the 100 to 300 μ g/l range). When wet, this area could present an additional exposure potential for ecological receptors.

The intermittent streams located to the east and west of the OB/OD Area are usually dry and, therefore, do not usually pose an exposure potential to human or ecological receptors. These intermittent streams join about 1,000 feet south of the southern site boundary. This single tributary continues south another 2,000 feet where it joins Threemile Creek. From this point, Threemile Creek flows southeast and joins the Kansas River at the west side of Camp Funston. There are no perennial streams within one mile downstream of the site, and there are no known uses of surface water as potable water within 15 miles downstream of the site.

The groundwater withdrawal well nearest to the OB/OD Area is located at Range 18 approximately 4,220 feet to the east-southeast of the site. This well is only used at the Range 18 maintenance facility for non-potable purposes. No other wells fall within the one-mile radius of the OB/OD Area. The next nearest wells are the Ogden supply wells located approximately 3 miles southeast of the site. There is no realistic potential for exposure to the site groundwater contamination via extraction from production wells.

REFERENCES

.

REFERENCES

- Berger, 1995. Memorandum RE Last Week's Meeting with MRK and Ft. Riley, prepared by Louis Berger & Associates, Inc., July 27, 1995.
- CEMRK, 1993a. Installation Wide Site Assessment for Fort Riley, Kansas, Prepared by Louis Berger & Associates, Inc., for U.S. Army Corps of Engineers, Missouri River Division, Kansas City District, 7 December 1992 as revised 16 February 1993.
- CEMRK, 1993b. Impact Area Site Assessment Report for Fort Riley, Kansas, Prepared by Louis Berger & Associates, Inc., for U.S. Army Corps of Engineers, Missouri River Division, Kansas City District, 11 March 1993.
- CEMRK, 1993c. Quality Control Summary Report for Site Investigations of High Priority Sites at Fort Riley, Kansas, Prepared by Louis Berger & Associates, Inc., for U.S. Army Corps of Engineers, Missouri River Division, Kansas City District, 17 December 1993.
- CEMRK, 1994. Draft Final Site Investigation for High Priority Sites at Fort Riley, Kansas, Prepared by Louis Berger & Associates, Inc., for U.S. Army Corps of Engineers, Missouri River Division, Kansas City District, 20 June 1994.
- CEMRK, 1995. U.S. Army Corps of Engineers, Missouri River Division, Kansas City District. Comprehensive Basic Documents for Site Investigations at Fort Riley, Kansas includes the Quality Assurance Project Plan (QAPP) (9 January 1995), the Monitoring Well Installation Plan (8 August 1994), Soil Gas Services Plan (8 August 1994), Investigation Derived Waste Management Plan (1 September 1993), and the Site Safety and Health Plan (8 August 1994). Prepared by Louis Berger & Associates, Inc., for Army Corps of Engineers, Missouri River Division, Kansas City District, 9 January 1995.
- CEMRK, 1996a. Quality Control Summary Report Confirmation Groundwater Sampling at the Multi-Sites, Fort Riley, Kansas, Prepared by Louis Berger & Associates, Inc., for U.S. Army Corps of Engineers, Missouri River Division, Kansas City District, February 1996.
- CEMRK, 1996b. Data Summary Report (DSR) for Confirmation Groundwater Sampling, OB/OD, Fort Riley, Kansas, Prepared by Louis Berger & Associates, Inc., for U.S. Army Corps of Engineers, Missouri River Division, Kansas City District, June 1996.
- CENWK, 1997a. Draft Final Sampling and Analysis Plan for Supplemental Site Investigation at the Open Burn/Open Detonation Area, Fort Riley, Kansas, Prepared by Louis Berger & Associates, Inc., for U.S. Army Corps of Engineers, Northwest Division, Kansas City District, 10 April 1997.
- CENWK, 1997b. Quality Control Summary Report, Supplemental Site Investigation, Open Burn / Open Detonation Area, Fort Riley, Kansas. U.S. Army Corps of Engineers, Northwest Division, Kansas City District, November 1997.

6 August 1998 -

– Page R-1

REFERENCES (Continued)

- CENWK, 1997c. Technical Memorandum, Overview of Mobilization #1 Preliminary Findings and Proposed Mobilization #2 Activities Open Burn/Open Detonation Area, Fort Riley, Kansas, 30 May 1997.
- CENWK, 1997d. Technical Memorandum, Mobilization #2 Activities Open Burn/Open Detonation Area, Fort Riley, Kansas, 22 August 1997.
- CENWK, 1997e. Supplemental Technical Memorandum, Mobilization #2 Activities, Open Burn/Open Detonation Area, Fort Riley, Kansas, 4 November 1997.
- CENWK, 1998a. Quality Control Summary Report, Supplemental Site Investigation, Open Burn / Open Detonation Area, Fort Riley, Kansas. U.S. Army Corps of Engineers, Northwest Division, Kansas City District, February 1998.
- CENWK, 1998b. Draft Data Summary Report, Groundwater Monitoring, Open Burn/Open Detonation Area, Fort Riley, Kansas. U.S. Army Corps of Engineers, Northwest Division, Kansas City District, February 1998.
- Chelikowsky, J. R., 1972. Structural Geology of the Manhattan, Kansas, Area. Kansas Geological Survey, Bulletin 204, Pt. 4.

Communication with the EOD FR, George Parris of LBA via telephone, March 5, 1997.

- Davis, Tunney, L., 1943. The Chemistry of Powder & Explosives, Angriff Press.
- Fort Riley DEH, 1994. Communication with Kansas City Corps of Engineers and former Fort Riley EOD Employee, 25 January 1994.
- Freeze, R. Allen, and John A. Cherry, 1979. Groundwater. Prentice-Hall, Inc., Englewood Cliffs, NJ.
- Hattin, Donald E., 1957. Depositional Environment of the Wreford Megacyclothem (Lower Permian) of Kansas. state Geological Survey of Kansas, Bulletin 124.
- Jewett, John M., 1941. The Geology of Riley and Geary Counties, Kansas. State Geological Survey of Kansas, Bulletin 39.
- USEPA, 1983. Methods for Chemical Analysis of Water and Waste. (EPA 600/4-79-020).
- USEPA, 1986. Test Methods for Evaluating Solid Waste. Office of Solid Waste and Emergency Response (SW-846, Third Edition and Updates).
- USEPA, 1992. Estimating Potential for Occurrence of DNAPL at Superfund Sites. United States Environmental Protection Agency Publication: 9355.4-07FS, January 1992.

.

REFERENCES (Continued)

USGS, 1992. Fort Riley NE, KS, 7.5 Minute Series Topographic Quadrangle. United States Department of the Interior, Geological Survey, 1992.

.

APPENDICES

`

.

-

APPENDIX A

Boring Logs, As-Built Diagrams, Well Specification Forms, Well Development Records, and Purge Logs

`

APPENDIX A

Initial SI - September-October 1993 (Wells OB93-01 through OB93-04 and SB1 through SB8)

Drilling Logs As-Built Diagrams Well Specification Forms Well Development Records

Mobilization #1 - March/April 1997 (Wells OB97-05 through OB93-08)

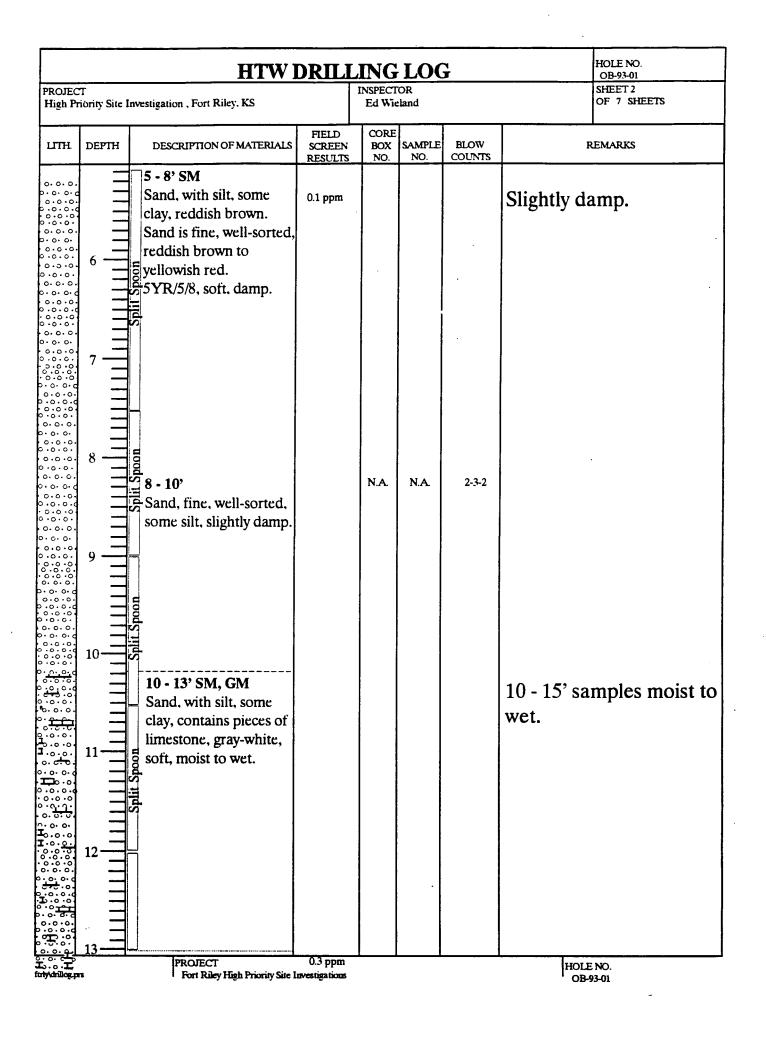
Drilling Logs As-Built Diagrams Well Specification Forms Well Development Records

Mobilization #2 - June/July 1997 (Piezometers OB97-09 through OB93-13)

Drilling Logs Well Specification Forms Purge Logs -OB93-01 through OB93-04, OB97-05 through OB97-13 and FPHD-14

FPHD-97-14 (Former Dug Well)

As-Built Diagrams


Initial SI -September-October 1993 (Wells OB93-01 through OB93-04 and SB1 through SB8)

1. COMPANY NAME			DRILL		<u>G L</u>	<u>၂</u> 6	r			OB-93-0	йО. 1	
Louis Berger & Associates, Inc					NG SUBCONTRACTOR SHEET 1 Western – Witchita, KS OF 7 SHEETS							
3. PROJECT			Lavne		4. LOCATION							
High Priority Site Investigation .	Fort Riley, KS				EOD R	ange.		area, Fort R				
5. NAME OF DRILLER Randy Smith and Ed Roe				6.	MANUE Acker S			DESIGNATIO	NOFDRILL	-		
7. SIZES AND TYPES OF	8.25" by 12" a	ugers (D.D.	. 8	8. HOLE LOCATION							
DRILLING AND SAMPLING EQUIPMENT	18" spoons Schram Rota	Drill	[66 OH	9.	East Downgradient Well 9. SURFACE ELEVATION							
	Dual tube drill using air and v											
		10	DATE S 25 Sept				11. DATE C 27 Sept	OMPLE ember 1				
2. OVERBURDEN THICKNESS 18'		-						TER ENCOU			-vau	
3. DEPTH DRILLED INTO ROCK 33'					DEPTH			ND ELAPSEI		ER DRII	LING	
4. TOTAL DEPTH OF HOLE			<u></u> .	17	COMME		$\frac{21}{21}$	9' at 15 minu EL MEASURI	tes EMENTS (SI	ECIFY)		
50.8' 8. GEOTECHNICAL SAMPLES	DISTURBED		UNDIS							_		
N.A.	DISTORBED		CINDIS					MBER OF CO				
0. SAMPLES FOR CHEMICAL	VOC	N	IETALS	ОТН	ER (SPE	CIFY)	OTHE	R (SPECIFY)	OTHER (S	PECIFY)	21. TOTAL CORE RECOVERY	
N.A.											RECOVERY	
2. DISPOSITION OF HOLE	BACKFILLED	MONIT	ORING WELL	отн	ER (SPE	CIFY)		NATURE OF I			1	
			X				ED	WIELANS	Å			
LITH. DEPTH DESCRIF	TION OF MATER		FIELD SCREEN RESULTS	CORE BOX NO.	SAMPL NO.		ILOW DUNTS			ARKS		
2	ty, low y, brown. 4, firm, damp 4, form, damp for recovery. ng. Cuttings ty, low).	0.1 ppm	N.A.	N.A.	5	-5-4		HOLE N			

and the second second

ftrty\drillog.prs

.

		HTW	DRILI	<u>_ING</u>	<u>LO</u>	G	HOLE NO. OB-93-01					
PROJEC High P	-	investigation, Fort Riley, KS		INSPECT Ed Wiel			SHEET 3 OF 7 SHEETS					
LITH	DEPTH	DESCRIPTION OF MATERIALS	FIELD SCREEN RESULTS	CORE BOX NO.	SAMPLE NO.	BLOW COUNTS	REMARKS					
		13 - 15' SM, GM Sand, fine to medium grade, yellow 10 YR/7/6 with chunks of limestone gray-white, moist to wet.		N.A.	N.A.	- 16-15-17	10 - 15' samples moist to wet.					
		11 15 - 18' SC, GC					15 - 20' samples moist					
	16	Sand, fine to medium grain, yellow/white, with pebbles of limestone and other little fragments. Some clay as matrix, wet.					to wet. Note: On 26 September 1993 at 08:35 water level 16.0 ³ bgs draw down to 18					
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	17	Split Spoon					bgs with bailing 6.5 gallons. At 09:20, water level was 16'. Clay reacts with hydro- chloric acid. Wet.					
		18 - 20' Limestone, weathered, olive $5Y/4/4$.	0.4 ррт	N.A.	N.A.		Reacts with hydrochloric acid. 20.5' End of auger					
		Splitt				- 50/4 refusal	drilling. 6" surface casing set to 20.5'. 78 gallons of water used in grout for setting surface casing					
	21	Grey limestone with interbedded maroon weathered shale. Limestone is well indurated. IPROJECT	-				casing. 25 September 27 September: Begin dual tube drilling.					

. . .

farty\drillog.prs

..

Fort Riley High Priority Site Investigations

HOLE NO. OB-93-01

-

			HTWI	DRIL	LI	NG		7		HOLE NO. OB-93-01
PROJEC High Pr	T iority	Site I	nvestigation, Fort Riley, KS		IN	SPECT d Wiela	OR			SHEET 4 OF 7 SHEETS
цтн	DE	РТН	DESCRIPTION OF MATERIALS	FIELD SCREEN		CORE BOX	SAMPLE	BLOW	F	REMARKS
		_	Grey limestone with	RESULTS		NO.	NO.	COUNTS	Logged fr	om air rotary
		_	interbedded maroon	-					cuttings.	· · · · · · · · · · · · · · · · · ·
		_	weathered shale.						cuttings.	
		_	Limestone is well					-		
	22		indurated.	• •		•• •				
		_		0.1 ррт		N.A.	N.A.		Approxim	ately 19 gals.
										sed while dual
									ł	
									tube drilli	ng.
	23									
		11								
	24									
		Π								
	25									
	_ J		25 - 28'							
			Brownish gray shale.							
		Π	Interbedded clay lenses. Moderately consolidated.							
			Not indurated.		1					
	26									
		Ξ								
	07									
	27									
	28									
		ヨ	28 - 32'							
		Ξ	Tan grey shale.							
		Ξ								
	29		IPROJECT					· · · · ·		

farty\drillog.prs

Fort Riley High Priority Site Investigations - Marshall Army Air Field

HOLE NO. OB-93-01 ٠

	HTW DRILLING LOG												
PROJEC				INSPECT	OR		OB-93-01 SHEET 5						
High Pr	iority Site I	Investigation, Fort Riley, KS		Ed Wielz	ınd		OF 7 SHEETS						
ЦТН	DEPTH	DESCRIPTION OF MATERIALS	FIELD SCREEN RESULTS	CORE BOX NO.	SAMPLE NO.	BLOW COUNTS	REMARKS						
	30												
		32.0 - 33.0' Dark brownish gray shale											
	33	with interbedded clay lenses. 33.0 - 38.0' Gray limestone. Well indurated.					Very hard to drill.						
	34												
	36	•	0.1 ppm				First water.						
	37	PROJECT Fort Riley High Priority Site In	nvestigations	Marshall A	rmy Air Fr		HOLE NO. OB-93-01						

1

•

-		HTWI	DRILI	LI	NG	LOC	r J		HOLE NO. OB-93-01
PROJEC High Pr	T iority Site I	nvestigation , Fort Riley, KS		INS	SPECTO Wiela	OR			SHEET 6 OF 7 SHEETS
итн	DEPTH	DESCRIPTION OF MATERIALS	FIELD SCREEN RESULTS		CORE BOX NO.	SAMPLE NO.	BLOW COUNTS	F	REMARKS
				Ţ					
								End of wa	
	_	38.0 - 45.0' Black well indurated	0.1 ppm					Hard to di	rill.
		shale.							
	39								
	40							-	
	41								
	42								
	43								
	4								
	45	PROJECT						HOLE	

futy/drillog.prs

Fort Riley High Priority Site Investigations

OB-93-01

		HTW	DRIL	LINC	G LOO	<u>.</u>	HOLE NO. OB-93-01
PROJEC High Pr		investigation , Fort Riley, KS		INSPEC Ed Wie	TOR		SHEET 7 OF 7 SHEETS
ЦТН	DEPTH	DESCRIPTION OF MATERIALS	FIELD SCREEN RESULTS	COR BOX NO.		BLOW COUNTS	REMARKS
	46 47 48 49 50	45.0 - 50.8' Dark gray shale. Poorly indurated. Interbedded clay lenses.	0.1 ppm				Easy to drill. Total Depth = 50.8'. 108 gallons of water used in well construction. Approximately 50 gallons of water used while drilling. Source of non- chlorinated water was BLDG. 2000, Well No. 7, at Camp Forsyth, on McCormick Rd.
	51 52 53	Bottom of hole.					

furty/drillog.prs

PROJECT Fort Riley High Priority Site Investigations HOLE NO. OB-93-01

· · · · · · · · · · · · · · · · · · ·			
	LOUIS BERGER &	Client: U.S. Army Corps of Eng Project: <u>Ft Riley High Priorit</u> Prepared by: <u>Ed Wieland</u>	_
	ASSOCIATES, INC.		Date: 18-FEB-94
		Checked by: Peter Li	
MON	ITORING V	VELL AS-BUIL	T DIAGRAM
Driller: Layne	: Western		Well No.:OB-93-01
Drilling Method	8.25"x8" augers, 18" spoon	to refusal,	Date Installed: 28-SEP-93
	air rotary dual tube to TE	· · · · · · · · · · · · · · · · · · ·	·
Location: <u>OB</u>	/OD Are		
Elevations:			SURFACE CASING:
Ground Surface			Size:6"
Top of PVC	1182.67'	η η η η	Material: <u>Steel</u>
Ground Elevation	ı: <u>0</u>		Depth: _20.5'
	Outer O		Drill Hole Diameter:
	20.5'		<u> </u>
	<u>20.5</u>		5.25" (20.5' - 50.8')
			<u>Riser:</u> Diameter: 2"
	Surface S	eal Material	Material: PVC
	5% Bento	nite Grout X	Sch.: 40
		N N	Type of Joints: Flush Thread
		Annular Seal	Length: <u>27.8'</u> Stick- Up: 2.33'
မသ	Cement Gro	ut w/5% Bentonite	Stick- Up: 2.33'
Surface	17.6'		
Su	1		Screen: Diameter: 2 "
nd	Тур	e of Seal	Material: <u>PVC</u>
Ground	21.25' <u>1/4" Ben</u>	tonite Pellets	Slot Size: 0.02
Gr	<u></u>		Length: $\frac{15'}{10 - 11 - 12}$
			Screened Interval: 40.5' - 25.5'
Depth from		Ĕ FN	Sump:
다 다	Type of 1	Filter Material	Length: <u>4" Cap</u>
ep			Type of Cap: Threaded PVC
	Clean	Washed Sand	
	40.8'	Filter Material	Centralizer: Used <u>X</u>
			Not Used
		of Seal Base	Depths: 25.8' & 40.8'
			Depth to Water
-**	50.8' Type of I <u>Clean Was</u>		From Top of Riser
L			at Completion: <u>21.95</u> '
		·	Note: Not to Scale
Form: ftrly\mwdisgrm.pr) 		

Ì

WELL SPECIFICATION FORM

CLIENT: Louis Berger & Associates, Inc.
JOB NUMBER: High Priority SI
WELL OWNER: Fort Riley & HQ 1st Division
ADDRESS:
CITY, STATE, ZIP CODE: Fort Riley, Kansas
PHONE: (913) 239-3343
WELL NUMBER OR OTHER IDENTIFICATION: OB-93-01
WELL INSTALLATION DATE: 28 September 1993
GEOLOGIST SUPERVISING INSTALLATION: Mike Miles (SAIC)
GROUND SURFACE ELEVATION (FT): 1181.05'
TOP OF CASING ELEVATION (FT): 1182.67
WELL STICK-UP (FT): 2.33'
TOTAL BORING DEPTH (FT): 50.8'
BORING DIAMETER (IN): 0' TO $20.5' = 8"$, $20.5'$ TO $50.8' = 5.25"$
TOTAL DEPTH OF OUTER CASING (FT): 20.5'
OUTER CASING MATERIAL: Steel
OUTER CASING DIAMETER (IN): 6"
TOTAL DEPTH OF INNER CASING (FT. EXCLUDING SCREEN): Total Length = 27.8'; From Surface = 25.5'
INNER CASING MATERIAL: PVC
INNER CASING DIAMETER (IN): 2" SCREENED INTERVAL (FT): 40.5' - 25.5'
TOTAL LENGTH OF WELL SCREEN (FT): 15'
WELL SCREEN MATERIAL: PVC
WELL SCREEN DIAMETER (FT): 0.167
SCREEN SLOT SIZE (IN): 0.020"

.

WELL SPECIFICATION FORM (Cont'd)

WELL NUMBER: OB-93-01
BACKFILL MATERIAL AROUND SCREEN: Clean Washed Silica Sand (10-20)
DEPTH RANGE OF BACKFILL (FT): 50.8 TO 21.25'
SEAL MATERIAL ABOVE SCREEN: 1/4" Bentonite Pellets
DEPTH RANGE OF SEAL (FT): 21.25' TO 17.6'
BACKFILL MATERIAL AROUND CASING: Cement Grout with 5% Bentonite Grout
DEPTH RANGE OF BACKFILL (FT): 17.6' TO 0'
DESCRIPTION OF TOP SEAL: Cement grout topped by a 3' diameter pad and 8" of 3/4" gravel.
DESCRIPTION OF WELL COVER: 6" steel cover, embedded 2' into grout and concrete with secure locking cap.
OTHER ADDIT. NAL INFORMATION: Backfilled hole with sand from 50.8' to 40.8' before setting well.
· · · · · · · · · · · · · · · · · · ·

.

...

i.

DECEMBER 1993

WELL DEVELOPMENT RECORD

ENT:	Fort Riley - High Priorit	y Sites	JOB	NO: H	ligh Priority SI				
LD PE	ERSONNEL: Mike Miles	(SAIC), Ray Weakly	and Randy Smith (I	ayne Wes	tern) SH	IEET:	1	OF:	1
	WELL NUMBER: OB-	93-01							
	DATE OF INSTALLATION	V: 27 September 19	93						
	DATE OF DEVELOPMEN	T: 1 October 1993			· · · · · ·				
	STATIC WATER LEVEL:	BEFORE DEVELOP	MENT (FT): 2	3.4'	24 HO	URS AFTER	(FT):		
	QUANTITY OF WATER L	OSS DURING DRILL	ING, IF USED (GA	L): 50	gal.				
I	QUANTITY OF STANDIN	G WATER IN WELL	AND ANNULUS I	EFORE I	DEVELOPMEN	IT (GAL): 8	gal.		
			START		DURING			E	ND
P	PHYSICAL APPEARANCE		cloudy	cle	ar	clear		cl	ear
S	PECIFIC CONDUCTANCE	(µmhos/cm)	420	44	2	442		4	42
Т	EMPERATURE (°C)		15.5	14.	.1	14.1		14	4.1
pl	H (s.u.)		6.83	7.1	0	6.55		6.	.64
T	URBIDITY (NTU)			6.2	2	2.11		1.	.25
D	DEPTH FROM TOP OF WEI	LL CASING TO BOT	TOM OF WELL (F	Γ): 5 2	3.1'				
so	CREEN LENGTH (FT):	15'							
D	EPTH TO TOP OF SEDIMI	ENT: BEFORE DEV	ELOPMENT (FT):	42.1'	AFTER	DEVELOPM	ENT (FT):	49.
T	YPE AND SIZE OF WELL	DEVELOPMENT EQ	UIPMENT: 1 7/8	" Surge bl	ock, 1 1/2" x 3	' bailer, and	2" G1	undfos	s Pu
DI	ESCRIPTION OF SURGE T	ECHNIQUE, IF USE	D: Surge, bail, a	nd pump.		· · · · · · · · ·			······
н	EIGHT OF WELL CASING	ABOVE GROUND S	URFACE (FT):	1.8	<u> </u>				
	UANTITY OF WATER REN					· · ·			

الواجات التورية المراجب الجنبا وتخط هجاريه

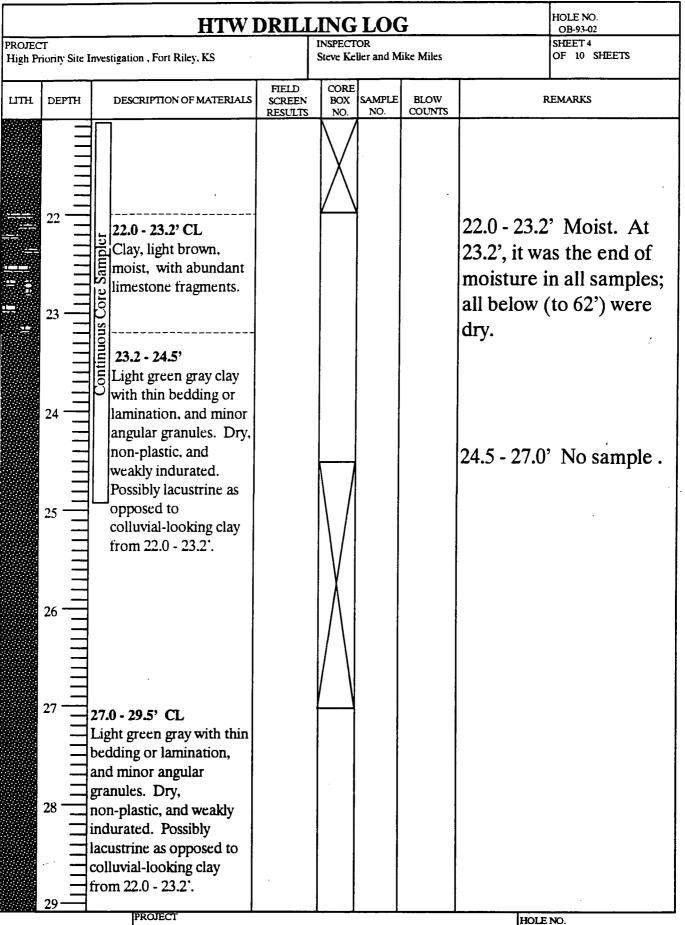
LOUIS BERGER AND ASSOCIATES, INC. WELL DEVELOPMENT FORM

DECEMBER 1993

.....

[····			HJ	W	DRIL	LIN	GL	00	, r					IOLE N B-93-02	
1. COMPA		_						2. DRIL	LING SL	BCONT	RAC	FOR				s	HEETI	
<u> </u>	Berger d	λ A	ssoc	iates, l	nc.			Lavno	e Wester			KS			_	C	OF 10	SHEETS
	riority Si			stigatio	on , Fo	ort Riley, KS				4. LOCATION EOD Range, OB/OD area, Fort Riley, KS 6. MANUFACTURER'S DESIGNATION OF DRIL								
5. NAME John G	OF DRIL ornick a			Roe					6.	MANU	FACTI	URER'S I	DESIG	NATIO	NOFI	DRILL		
7. SIZES A	ND TYF	ES (OF			Mobile B57 Schram Rot	4.25 x 8	auger		HOLE								
EQUIP	NG AND MENT	SA	MPI	LING		Dual tube d						nonitorin EVATIOI						
										approxi	_	y 1207.49	•		<u> </u>			<u></u>
							· <u>·</u>					rED er 1993				ATE CO 9 Septer		
12. OVERI 37.3'	2. OVERBURDEN THICKNESS							15	. DEPTI 62.0'	IGRC	UNDWA	TER I	ENCOU	NTER	RED			
13. DEPTH 34.7	IDRILLI	ED I	INT	O ROC	K				16			VATER A		LAPSEI 15 min		E AFTE	R DRIL	LING
14. TOTAL	DEPTH	OF	но	LE		<u></u>			17			D. 49 TER LEV				NTS (SPE	CIFY)	
72.0' 18. GEOTH	ECHNIC/	L S	AM	PLES		DISTURBED)	UND	ISTURB	ED	19. T	OTAL NL	MBE	ROFCO	ORE E	OXES		
N.A.																		
20. SAMPL ANALY		CHI	EMI	ICAL		VOC	<u> </u> !	METALS		DER (SP)	ECIFY	OTHE	R (SP	ECIFY)	от	IER (SPI	ECIFY)	21. TOTAL CORE RECOVERY
N.A.																		
22. DISPOS	SITION C	FH	വ	E	BA	CKFILLED	MONT	TORING WELL		ER (SP	ECIFY	() 23. SIGI	NATU	REOF	INSPF			
								X		,		12	<u>p</u>	<u>.</u>	KU	V_	-m.	me
LITH	DEPTI	1		DESC	RIPTI	ION OF MATE	RIALS	FIELD SCREEN RESULTS	CORE BOX NO.	SAMP NO.		BLOW				REMA	RKS	
	-	Ē		0.0 -	4.5	; 1	· · · · ·	0 ppm			\rightarrow	0001113	0	14	5".	Мо	ict	
	-			Tigh	t, m	oist clay,			2 2					1 4.		1410	131.	
		킈				brown, pla	astic,											
	-	긔				nestone												
	1 —			fragr	nent	s, moist.												
	-	┦	E															
	-		an															
	_		2															· •
	-	⊒⊧	3															
	2 —	╡	Sno							ļ								
-	-	╡	ontinuou															
	-	Ę	ğ							ļ								
-	-		7															
	- -	Ξ														•		
	3																	
	-	╢																
	-	┨																
	=	╡							ļ				ł					
	4 —	1																
	-																	
	-																	
	_]	<u>ا</u> د															
			С С					0 ppm										
	5 _	4	<u></u>	I	PROJ	ECT		oppu		1					Tr	HOLE N	0.	
fritvdriller na	_					Riley High Prior	rity Site I	investigations							[[OB-93-		-

forty-drillog.prs


C12

.

	HOLE NO. OB-93-02							
PROJEC High Pr	T iority Site I	HTW I		INSPECT	OR	Mike Miles		SHEET 2 OF 10 SHEETS
ЦТН	DEPTH	DESCRIPTION OF MATERIALS	FIELD SCREEN RESULTS	CORE BOX NO.	SAMPLE NO.	BLOW COUNTS		REMARKS
		4.5 - 9.0' Tight, moist clay, medium brown, plastic, minor limestone fragments. 9.0 - 9.5' Clay with abundant limestone fragments, limestone cream-white, well indurated, moist. 9.5 - 14.5' Clay grades to light tan-brown with minor limestone fragments. Moist.	0 ppm (9.5- 14.5')				0-14.5':	Moist.

PROJECT Fort Riley High Priority Site Investigations HOLE NO. OB-93-02

		HTWI	DRILI	ING	LOC		HOLE NO. OB-93-02
PROJEC High P:		nvestigation, Fort Riley, KS		INSPECT			SHEET 3 OF 10 SHEETS
LITH	DEPTH	DESCRIPTION OF MATERIALS	FIELD SCREEN	CORE BOX	SAMPLE	BLOW	REMARKS
			RESULTS	NO.	NO.	COUNTS	
	14 14 15 16 17 18 19 19 19 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 10	 Interval 16.8 - 16.9° partially saturated. Lower contact grad onal. Interval 16.8 - 16.9° partially saturated. Lower contact grad onal. Interval 16.8 - 16.9° partially saturated. Lower contact grad onal. Interval 16.9 - 19.5° SC Clayey sand, dry very well sorted, minor clay content, some plasticity 	0 ppm 0 ppm 19.5 - 24.5'		NO.	COUNTS	14.5 - 16.8' Moist. Approximately 2' lost in run. No sample from 19.5 - 22.0'.
furly/drillog.p	6	PROJECT Fort Riley High Priority Site I	investigations				HOLE NO. OB-93-02

ftrty\drillog.prs

Fort Riley High Priority Site Investigations - Marshall Army Air Field

OB-93-02

	HTW	DRILL	ING	LOC	J	HOLE NO. OB-93-02
ROJECT High Priority Site I	nvestigation, Fort Riley, KS		INSPECT Steve Ke	OR ller and M	ike Miles	SHEET 5 OF 10 SHEETS
LITH. DEPTH	DESCRIPTION OF MATERIALS	FIELD SCREEN RESULTS	CORE BOX NO.	SAMPLE NO.	BLOW COUNTS	REMARKS
	 29.5 - 31.7' CL Clay. Color is light to medium olive brown, minor angular limestone fragments, dry and blocky with no laminae, moderately indurated, and becomes silty at base. 31.7 - 37.3' CL Clay. Light green-gray, minor to no silt, minor orange-brown oxidation mottles. Laminated and slightly fissile, but less fissile and more blocky towards base. 	0 ppm				
		•	1 1	1	· ·	

futy/drillog.prs

k

PROJECT Fort Riley High Priority Site Investigations - Marshall Army Air Field

•

NARRECTOR STEET 6 ITH DESCRIPTION OF MATERIAS STATE BOX SAMPLE BLOW SEET 6 ITH DESCRIPTION OF MATERIAS FREELEN ROK SAMPLE BLOW SEET 6 OF 19 SHEETS ITH DESCRIPTION OF MATERIAS FREELEN ROK SAMPLE BLOW REMARKS ITH DESCRIPTION OF MATERIAS FREELEN ROK SAMPLE BLOW REMARKS ITH DESCRIPTION OF MATERIAS FREELEN ROK SAMPLE BLOW REMARKS ITH DESCRIPTION OF MATERIAS FREELON ROK SAMPLE BLOW REMARKS ITH DESCRIPTION OF MATERIAS FREELON ROK SAMPLE BLOW REMARKS ITH DESCRIPTION OF MATERIAS FREELON ROK SAMPLE BLOW REMARKS ITH DESCRIPTION OF MATERIAS FREELON ROK SAMPLE BLOW REMARKS ITH DESCRIPTION OF MATERIAS SAMPLE BLOW REMARKS ITH DESCRIPTION OF MATERIAS SAMPLE BLOW COLSPANE ITH DESCRIPTION OF MATERIAS SAMPLE DESCRIPTION OF MATERIAS 37.3-39.3' ADAPT OF TOTAL OF TO			HTWI	DRIL	LING	LO	r J	HOLE NO. OB-93-02
LTTK DEFTH DESCRIPTION OF MATERIALS SCREEN BOX SAME BLOW REMARKS 37.3 - 39.3' Shale, bedrock, dry, ight grayish green, well ndulated with netrobuddel bases of weathered shales with xidation stains. 39- 40- 40.0 - 45.0' Dark gray shale, poorly indulated. Dry. 41- 42- 43- 44- 44- 44-					INSPECT	OR		SHEET 6
37.3 - 39.3" Shale, bedrock, dry. Light grayshile, period with netrodedd lenses of weathered shales with pxidation stains. 39 40.40.0 - 45.0" Dark gray shale, poorly indulated. Dry. 0 ppm 26 September 27 September Dual tube drilling began. Logged from air rotary cuttings. 41 42 44	цтн	DEPTH	DESCRIPTION OF MATERIALS	SCREEN	BOX	SAMPLE		REMARKS
45 HOLE NO.		38 39 40 41 42 43 43 43 43 43 43 43 43 43 43	Shale, bedrock, dry. Light grayish green, well indulated with interbedded lenses of weathered shales with oxidation stains. 40.0 - 45.0' Dark gray shale, poorly indulated. Dry.		NO.	NO.	COUNTS	27 September Dual tube drilling began. Logged from air rotary cuttings.

.

2

furty/dnillog.prs

PROJECT Fort Riley High Priority Site Investigations

OB-93-02

				HTW	DRIL	LING	LO			HOLE NO. OB-93-02
PROJEC	T					INSPEC	FOR			SHEET 7
High Pr	iority S	Site I	nvestigation, Fort Riley	, KS			eiler and N	like Miles		OF 10 SHEETS
LITH.	DEP	гн	DESCRIPTION OF	MATERIALS	FIELD SCREEN RESULTS	CORE BOX NO.	SAMPLE NO.	BLOW COUNTS		REMARKS
			40 - 53.0 '						Easy to c	Irill
			Light gray shale.	Soft. drv.					Lasy to t	*1 111.
				· •						
	46 -									
	10									
		\neg								
	47 -									
						Í				
		Π								
	48 -		Light gray shale.	Dry.						
			00,	,						
		\neg								
	49 -									
		-								
		コ								
	50-									
	50		•							
		_								
		_								
	51 -			-						
		Π	Light gray shale.	Dry.						
		ヨ								
	52-									
		\exists					1			
		-					1]	· · ·
	50				•					
	53 -						<u> </u>		 	DLE NO.
trty\drillog.p	rii		PROJECT Fort Riley His	gh Priority Site I	Investigations					B-93-02

.

		HTWI	DRILI	LIN	IG	LOC	J		HOLE NO. OB-93-02
PROJEC High Pr		Investigation, Fort Riley, KS		INSP	ECTO	DR	like Miles	-92	SHEET 8 OF 10 SHEETS
LITH	DEPTH	DESCRIPTION OF MATERIALS	FIELD SCREEN RESULTS	B	ORE OX NO.	SAMPLE NO.	BLOW COUNTS	F	REMARKS
	54 55 56 57 58 59	53.0 - 60.0' Gray shale. Well indurat- ed. Interbedded lenses of stiff-very stiff clay. Dry. Gray shale. as above. Gray shale, as above.	0 ppm		NO.	NO.	COUNTS	Hard to d	rill.
		60.0 - 61.0' Gray weathered shale. Dry. Soft. Poorly indurated.						Very easy 1	to drill.
	61	PROJECT						HOLE]

;

farty/drilliog.prs

ł

PROJECT Fort Riley High Priority Site Investigations HOLE NO OB-93-02

			HTWI	DRILI	LING	LOC	3	HOLE NO. OB-93-02
PROJEC High Pr		Site I	nvestigation, Fort Riley, KS		INSPECT	OR	like Miles	SHEET 9 OF 10 SHEETS
	-	_		FIELD	CORE		I	I
LITH	DEF	тн	DESCRIPTION OF MATERIALS	SCREEN RESULTS	BOX NO.	SAMPLE NO.	BLOW COUNTS	REMARKS
				0 ppm				Very hard to drill.
				•				
							-	•
	62		62.0 - 65.0'					Water.
			Light gray limestone.					Water.
	63 ·	Ξ						
					i			·
	64 ·							
		Ξ						
		Η						
	65 -	Ξ		•				
			51.0 - 72.0' Grayish black shale. Hard.	0 ppm				End of water bearing
			Dry.					unit.
		Ξ						
	66 -	Ξ						
		Ξ						
		Η						
	67 -							
		_						
	~~~	Ξ						
	68 -	Ξ						
	- * *							
	69-	_	PROFECT					HOLENO

futy\drillog.prs

PROJECT Fort Riley High Priority Site Investigations HOLE NO. OB-93-02

		·			
	 - 18 C				
· · ·				•	-

•

.

PROJECT High Priority Site 1	HTW ] Investigation , Fort Riley, KS DESCRIPTION OF MATERIALS	FIELD SCREEN RESULTS	INSPECT Steve K	OR eller and N	fike Miles	OB-93-02 SHEET 10 OF 10 SHEETS
High Priority Site	T	SCREEN	CORE BOX		fike Miles	
LITH. DEPTH	DESCRIPTION OF MATERIALS	SCREEN	BOX		Г <u> </u>	I
		Madebio	1 1.0.	NO.	BLOW COUNTS	REMARKS
	<b>72.0'</b> Dark gray shale with inter- bedded blackish-gray clay	0 ppm				End of boring. Total depth = 72'. Used approximately 55 gallons of water while drilling. 120 gallons of water in grout for surface casing.
72 73 73 74 74 75 76 76	Bottom of hole.					Note: Water source for drilling fluid: Bldg. 3200 Well No. 7, Camp Forsyth on McCormick Rd.

farty/drillog.prs

PROJECT Fort Riley High Priority Site Investigations HOLE NO. OB-93-02

.

-

LOUIS BERGER & ASSOCIATES, INC.	Client:       U. S. Army Corps of Engineers       Project No.:       High Priority SI         Project:       Ft. Riley High Priority SI       Page:       Page 1 of 1         Prepared by:       Ed Wieland       Date:       3-OCT-93         Checked by:       Peter Li       Date:       18-FEB-94
Driller: Layne Western Drilling Method: 8.25"x8" auger with CME of air rotary dual tube to TD Location: OB/OD Area	vell No.:       OB-93-02         continuous sampler to refusal,       Date Installed: 29-SEP-93
Elevations: Ground Surface <u>1207.49'</u> Top of PVC <u>1209.11'</u>	SURFACE CASING: Size: <u>6</u> Material: <u>Steel</u> Depth: <u>37.3'</u>
5% Benton Type of A Cement Grou 53.2' Type of A Cement Grou 1/4" Ben Type of A	Lasing       Drill Hole Diameter: 8" (0' - 37.3') 5.25" (37.3' - 72')         eal Material nite Grout       Riser: Diameter: Material: Sch.:       2" 40 Type of Joints: Flush Thread Total Length: 58.2'         Annular Seal nut w/5% Bentonite       58.2' Stick-Up: 1.53'         e of Seal tonite Pellets       Screen: Diameter: Site: User 15' Screened Interval: 71.7' - 56.7'         Filter Material       PVC Sump: Length: Type of Cap:         Filter Material       Sump: Length: Type of Cap:         Washed Sand       Centralizer:
72.0'     Type       NA     Type of       72.0'     Type of       Clean Was     Clean Was	of Seal Depths: <u>37' &amp; 72'</u> Backfill Depth to Water From Top of Riser

CLIENT: Louis Berger & Associates, Inc.
JOB NUMBER: High Priority SI
WELL OWNER: Fort Riley & HQ 1st Division
ADDRESS:
CITY, STATE, ZIP CODE: Fort Riley, Kansas
PHONE: (913) 239-3343
WELL NUMBER OR OTHER IDENTIFICATION: OB-93-02
WELL INSTALLATION DATE: 29 September 1993
GEOLOGIST SUPERVISING INSTALLATION: Mike Miles (SAIC)
GROUND SURFACE ELEVATION (FT): 1207.49'
TOP OF CASING ELEVATION (FT): 1209.11
WELL STICK-UP (FT): 1.53
TOTAL BORING DEPTH (FT): 72' BORING DIAMETER (IN): 0' TO 37.3' = 8", 37.3 TO 72.0' = 5.25"
TOTAL DEPTH OF OUTER CASING (FT): 37.3'
OUTER CASING MATERIAL: Steel
OUTER CASING DIAMETER (IN):6"
TOTAL DEPTH OF INNER CASING (FT. EXCLUDING SCREEN): Total Length = 58.2'; From Surface = 56.7'
INNER CASING MATERIAL:PVC
INNER CASING DIAMETER (IN): 2"
TOTAL LENGTH OF WELL SCREEN (FT): 15' SCREENED INTERVAL (FT): 71.7' - 56.7'
WELL SCREEN MATERIAL:
WELL SCREEN DIAMETER (FT): 0.167
SCREEN SLOT SIZE (IN):

11 TT 1 0 D D

____

-

### WELL SPECIFICATION FORM (Cont'd)

WELL NUMBER:	OB-93-02	·
BACKFILL MATERIAL	AROUND SCREEN:	Clean Washed Silica Sand
DEPTH RANGE OF BA	CKFILL (FT):	72' TO 53.2'
SEAL MATERIAL ABO	VE SCREEN: 1	/4" Bentonite Pellets
DEPTH RANGE OF SEA	AL (FT): 53.2	TO 43.9'
BACKFILL MATERIAL	AROUND CASING:	5% Bentonite Grout
DEPTH RANGE OF BA	CKFILL (FT):	3.9' TO O'
DESCRIPTION OF TOP	SEAL: 5% Bentoni	te grout capped by 8" of 3/4" gravel and 6" of concrete.
DESCRIPTION OF WEL	L COVER: 6" S	teel Casing with locking cap, embedded 2' into the concrete.
OTHER ADDITIONAL I	INFORMATION:	
<u></u>	<u></u>	

..

. n. 1

DECEMBER 1993

WELL DEVELOPMENT RECORD

IEN	T: Fort Riley - High Priority Site	s	JOB NO:	High Priori	ry SI	
ELD	PERSONNEL: Ed Wieland (SAIG	C), Brian Meier (Layne V	Vestern)		SHEET:	1 OF: 1
	WELL NUMBER: OB-93-02	<u></u>				
	DATE OF INSTALLATION:	29 September 1993	<u></u>			
	DATE OF DEVELOPMENT:	2 October 1993			· ···· · · · · · · · · ·	
	STATIC WATER LEVEL: BEFO	DRE DEVELOPMENT (	FT): 50.11'	2	4 HOURS AFTER	(FT): -
	QUANTITY OF WATER LOSS I	DURING DRILLING, IF	USED (GAL):	55 gal.		
	QUANTITY OF STANDING WA	TER IN WELL AND A	NNULUS BEFC	RE DEVELOP	MENT (GAL): 8.5	gal.
		<u>ST/</u>	ART	DUF	RING -	END
	PHYSICAL APPEARANCE	cloudy	(milky)	clear	clear	clear
	SPECIFIC CONDUCTANCE (µmł	nos/cm) 44	48	448	445	445
	TEMPERATURE (°C)		.2	15.9	15.9	15.9
	pH (s.u.)	7.0	02	6.63	6.72	6.73
	TURBIDITY (NTU)	·	-	34.9	9.08	5.31
	DEPTH FROM TOP OF WELL CA	ASING TO BOTTOM OF	F WELL (FT):	73.5'		
	SCREEN LENGTH (FT): 15'					
	DEPTH TO TOP OF SEDIMENT:	BEFORE DEVELOPM	ENT (FT): 73	AFTE	R DEVELOPMEN	T (FT): 73.
	TYPE AND SIZE OF WELL DEVI	ELOPMENT EQUIPMEN		rge block, 1 1/2	?" x 3 ' bailer, and 2	" Grundfos Pu
	DESCRIPTION OF SURGE TECH	NIQUE, IF USED: S	urge, bail, and p	oump.		
			· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·		
	HEIGHT OF WELL CASING ABO	VE GROUND SURFAC	E (FT):	<u>.                                    </u>		

LOUIS BERGER AND ASSOCIATES, INC. WELL DEVELOPMENT FORM

DECEMBER 1993

...

.

<ol> <li>COMPANY NAME Louis Berger &amp; Associates,</li> <li>PROJECT High Priority Site Investigating</li> <li>NAME OF DRILLER John Gornick and Ed Roe</li> <li>SIZES AND TYPES OF DRILLING AND SAMPLING EQUIPMENT</li> <li>OVERBURDEN THICKNESS 28.5'</li> <li>DEPTH DRILLED INTO ROCH 48.5'</li> <li>TOTAL DEPTH OF HOLE 77.0'</li> <li>GEOTECHNICAL SAMPLES N.A.</li> </ol>	on . Fort Riley, KS 4.25 x 8" H CME contin Schram dua	ollow St uous con I tube ro	Layne tem Auger re sampler bla drill T66C UNDIS METALS	Wester         4.           6.         8.           0H         9.           10.         15.           16.         17.           TURBE         0THI	MANUFA Mobile ( HOLE LO Central d SURFACE 1172.88' DATE ST 26 Sept 26 Sept COTHER V DEPTH 1 COMMEP OTHER V	hita, 1 N nge, C CCTUR drill E CCATIA GOM GOM FORMA NCED WATE 9. TOT	KS DB/OD : EER'S DE 3-57 ON radient v VATION ED r 1993 NDWAT ATER AN . 49 R LEVE	Area. Fort R ISIGNATION well ER ENCOUN ID ELAPSED .2' at 15 mi MEASURE MBER OF CC (SPECIFY)	OF DRILL 11. DATE ( 28 Sef TERED TIME AFT nutes MENTS (SP ORE BOXES	COMPLET otember 1 ^t ER DRILL ECIFY)	ED 993 ING
<ol> <li>PROJECT High Priority Site Investigation</li> <li>NAME OF DRILLER John Gornick and Ed Roe</li> <li>SIZES AND TYPES OF DRILLING AND SAMPLING EQUIPMENT</li> <li>OVERBURDEN THICKNESS 28.5'</li> <li>DEPTH DRILLED INTO ROCH 48.5'</li> <li>TOTAL DEPTH OF HOLE 77.0'</li> <li>GEOTECHNICAL SAMPLES N.A.</li> </ol>	on . Fort Riley, KS 4.25 x 8" H CME contin Schram dua	ollow St uous con I tube ro	undis undis undis undis undis undis undis undis undis undis undis undis undis undis undis undis undis undis undis undis undis undis undis undis undis undis undis undis undis undis undis undis undis undis undis undis undis undis undis undis undis undis undis undis undis undis undis undis undis undis undis undis undis undis undis undis undis undis undis undis undis undis undis undis undis undis undis undis undis undis undis undis undis undis undis undis undis undis undis undis undis undis undis undis undis undis undis undis undis undis undis undis undis undis undis undis undis undis undis undis undis undis undis undis undis undis undis undis undis undis undis undis undis undis undis undis undis undis undis undis undis undis undis undis undis undis undis undis undis undis undis undis undis undis undis undis undis undis undis undis undis undis undis undis undis undis undis undis undis undis undis undis undis undis undis undis undis undis undis undis undis undis undis undis undis undis undis undis undis undis undis undis undis undis undis undis undis undis undis undis undis undis undis undis undis undis undis undis undis undis undis undis undis undis undis undis undis undis undis undis undis undis undis undis undis undis undis undis undis undis undis undis undis undis undis undis undis undis undis undis undis undis undis undis undis undis undis undis undis undis undis undis undis undis undis undis undis undis undis undis undis undis undis undis undis undis undis undis undis undis undis undis undis undis undis undis undis undis undis undis undis undis undis undis undis undis undis undis undis undis undis undis undis undis undis undis undis undis undis undis undis undis undis undis undis undis undis undis undis undis undis undis undis undis undis undis undis undis undis undis undis undis undis undis undis undis undis undis undis undis undis undis undis undis undis undis undis undis undis undis undis undis undis undis undis undis undis undis undis undis undis undis undis undis undis undis undis undis undis undis undis	4. 6. 9H 9. 10. 15. 16. 17. TURBE	LOCATIC EOD Rai MANUFA Mobile ( HOLE LO Central d SURFACE 1172.88' DATE ST 26 Sept 26 Sept C67.0' DEPTH 1 COMMEP OTHER V	N nge, C CTUR drill E CATIA GOV FARTH ember FROUT FO WA NCED WATE	DB/OD : ER'S DE 3-57 ON radient v VATION ED r 1993 NDWAT ATER AN . 49 R LEVE	ER ENCOUN ID ELAPSED .2' at 15 mi . MEASURE	OF DRILL 11. DATE ( 28 Sef TERED TIME AFT nutes MENTS (SP ORE BOXES	COMPLET Diember 1 ^t ER DRILL ECIFY)	993 ING
<ol> <li>NAME OF DRILLER John Gornick and Ed Roe</li> <li>SIZES AND TYPES OF DRILLING AND SAMPLING EQUIPMENT</li> <li>OVERBURDEN THICKNESS 28.5'</li> <li>DEPTH DRILLED INTO ROCH 48.5'</li> <li>TOTAL DEPTH OF HOLE 77.0'</li> <li>GEOTECHNICAL SAMPLES N.A.</li> </ol>	4.25 x 8° H CME contin Schram dua	ollow St uous con I tube ro	UNDIS	6. 8. 0H 9. 10. 15. 16. 17. TURBE	MANUFA Mobile ( HOLE LO Central d SURFACE 1172.88' DATE ST 26 Sept 26 Sept COTHER V DEPTH 1 COMMEP OTHER V	CTUR drill E CATIG owng E ELEV TARTH ember SROUT FO WA NCED. WATE	ER'S DE 3-57 ON radient v vATION ED r 1993 NDWAT ATER AN . 49 R LEVE	ER ENCOUN ID ELAPSED .2' at 15 mi . MEASURE	OF DRILL 11. DATE ( 28 Sef TERED TIME AFT nutes MENTS (SP ORE BOXES	COMPLET Diember 1 ^t ER DRILL ECIFY)	993 ING
<ol> <li>SIZES AND TYPES OF DRILLING AND SAMPLING EQUIPMENT</li> <li>OVERBURDEN THICKNESS 28.5'</li> <li>DEPTH DRILLED INTO ROCH 48.5'</li> <li>TOTAL DEPTH OF HOLE 77.0'</li> <li>GEOTECHNICAL SAMPLES N.A.</li> </ol>	CME contin Schram dua	uous con I tube ro	UNDIS	DH 9. 10. 10. 15. 16. 17. TURBE	HOLE LO Central d SURFACE 1172.88' DATE ST 26 Sept DEPTH C 67.0' DEPTH 1 COMMEP OTHER V	CATIO owng ELEV FARTH ember GROUT FO WA NCED WATE 9. TOT	ON radient v VATION ED r 1993 NDWAT ATER AN . 49 R LEVE FAL NU	ER ENCOUN ID ELAPSED .2' at 15 mi . MEASURE MBER OF CC	28 Sep TERED TIME AFT nutes MENTS (SP DRE BOXES	ER DRILL	993 ING
DRILLING AND SAMPLING EQUIPMENT 2. OVERBURDEN THICKNESS 28.5' 3. DEPTH DRILLED INTO ROCH 48.5' 4. TOTAL DEPTH OF HOLE 77.0' 8. GEOTECHNICAL SAMPLES N.A.	CME contin Schram dua	uous con I tube ro	UNDIS	OH         9.           10.         10.           15.         16.           17.         17.           TURBE         OTHI	SURFACE 1172.88' DATE ST 26 Sept DEPTH C 67.0' DEPTH 1 COMMEP OTHER V	E ELEV FARTI ember GROUI FO WA NCED WATE	ED r 1993 NDWAT ATER AN . 49 R LEVE TAL NU	ER ENCOUN ID ELAPSED .2' at 15 mi . MEASURE MBER OF CC	28 Sep TERED TIME AFT nutes MENTS (SP DRE BOXES	ER DRILL	993 ING
<ol> <li>2. OVERBURDEN THICKNESS 28.5'</li> <li>3. DEPTH DRILLED INTO ROCH 48.5'</li> <li>4. TOTAL DEPTH OF HOLE 77.0'</li> <li>8. GEOTECHNICAL SAMPLES N.A.</li> </ol>	K DISTURBED VOC		UNDIS 1ETALS ORING WELL	10. 15. 16. 17. TURBE	1172.88 DATE ST 26 Septi DEPTH C 67.0 DEPTH T COMMEN OTHER D	FARTI ember GROUT FO WA NCED. WATE	ED r 1993 NDWAT ATER AN . 49 R LEVE TAL NU	ID ELAPSED 9.2' at 15 mi 1. MEASURE MBER OF CO	28 Sep TERED TIME AFT nutes MENTS (SP DRE BOXES	ER DRILL	993 ING
28.5' 3. DEPTH DRILLED INTO ROCH 48.5' 4. TOTAL DEPTH OF HOLE 77.0' 8. GEOTECHNICAL SAMPLES N.A.	DISTURBED VOC	N	AETALS	115. 116. 17. TURBE	26 Sept DEPTH C 67.0' DEPTH T COMMEN OTHER V D 19	embei GROUJ FO WA NCED WATE 9. TOT	r 1993 NDWAT ATER AN . 49 R LEVE FAL NU	ID ELAPSED 9.2' at 15 mi 1. MEASURE MBER OF CO	28 Sep TERED TIME AFT nutes MENTS (SP DRE BOXES	ER DRILL	993 ING
28.5' 3. DEPTH DRILLED INTO ROCH 48.5' 4. TOTAL DEPTH OF HOLE 77.0' 8. GEOTECHNICAL SAMPLES N.A.	DISTURBED VOC	N	AETALS	16. 17. TURBE	67.0' DEPTH 1 COMMEN OTHER V	FO WA NCED. WATE 9. TO	ATER AN . 49 R LEVEI FAL NUI	ID ELAPSED 9.2' at 15 mi 1. MEASURE MBER OF CO	TIME AFT nutes MENTS (SP ORE BOXES	ECIFY)	
48.5' 4. TOTAL DEPTH OF HOLE 77.0' 8. GEOTECHNICAL SAMPLES N.A.	DISTURBED VOC	N	AETALS	17. TURBE	COMMEN	NCED. WATE 9. TOI	. 49 R LEVE	0.2' at 15 mi	nutes MENTS (SP DRE BOXES	ECIFY)	
<ol> <li>TOTAL DEPTH OF HOLE 77.0'</li> <li>GEOTECHNICAL SAMPLES N.A.</li> </ol>	VOC	N	AETALS	TURBE	D 19	WATE 9. TO1	R LEVE	. MEASURE	MENTS (SP DRE BOXES	<u></u>	11 TOTAL OC
8. GEOTECHNICAL SAMPLES N.A.	VOC	N	AETALS	отні							21 TOTAL CO
			ORING WELL		ER (SPEC)	IFY)	OTUEP	(SPECIFY)	OTHER (S	PECIEV	21 TOTAL COL
			ORING WELL					10112-11-11-1			
20. SAMPLES FOR CHEMICAL ANALYSIS	BACKFILLED	MONIT				1	UTHER		() / A A A A A A A A A A A A A A A A A A		RECOVERY
N.A. 2. DISPOSITION OF HOLE				1018	ER (SPEC)	IFY)	23 SIGN	ATURE OF	NSPECTOR	2	
2. 2.51 OSTION OF HOLL	I		Х					مريعات ماند مريد مريد مريد مريد		-	
		1	FIELD	CORE						·	
LITH. DEPTH DESC	RIPTION OF MATER	RIALS	SCREEN RESULTS	BOX NO.	SAMPLE NO.		LOW UNTS		REM	ARKS	
brow	y, silty, grayisl vn, firm, dry. R/5/2.	h									•
5	PROJECT Fort Riley High Pri								HOLE	NO. DD-93-02	

**G**6

.

·

		HTW	DRIL	LIN	<b>F LO</b>	G		HOLE NO. OBOD-93-03
PROJECT High Pr	r iority Site I	nvestigation , Fort Riley, KS		INSPECT Ed Wi	OR			SHEET 2 OF 10 SHEETS
LITH.	DEPTH	DESCRIPTION OF MATERIALS	FIELD SCREEN RESULTS	CORE BOX NO.	SAMPLE NO.	BLOW COUNTS	I	REMARKS
	9 10	<b>10 - 14.5' CL</b> Clay: brown, soft, moist, with limestone fragments (white), firm.	0.4 ppm	N.A			0 - 10' dry	
_ بنائدهم		PROJECT		-			HOLE	d

.

HOLE NO. OBOD-93-03 .

		HTW	DRILI		G LO	G		HOLE NO. OBOD-93-03
PROJECT High Pri		Investigation, Fort Riley, KS		INSPECT Ed Wie				SHEET 3 OF 10 SHEETS
LITH.	DEPTH	DESCRIPTION OF MATERIALS	FIELD SCREEN RESULTS	CORE BOX NO.	SAMPLE NO.	BLOW COUNTS	R	EMARKS
	14 15 16 17 18 17 18 10 10 10 10 10 10 10 10 10 10	10 - 14.5' (cont.) Clay: brown, soft, moist, with limestone fragments (white). 14.5 - 15.0' CL Clay: gray to light olive brown, fissile. firm. 15.0 - 17.0' Shale, grayish brown. 17.0 - 20.0' Shale, dark reddish brown and dark olive brown.	0.4 ppm	N.A.	N.A.		fissile, not	ft, clayey and weathered. 4' in the 15
	20	च <b>20.0 - 20.5'</b> Shale, gray.					Recovered -25' interv	3.5' in the 20 al.
	21	20.5 - 21.5' Limestone lense, wet, gray.					HOLE	

ftrty\drillog.prs

Fort Riley High Priority Site Investigations

OBOD-93-03

	HTW	DRIL	LINC	<b>J LO</b>	G	HOLE NO. OBOD-93-03
PROJECT High Priority Site I	nvestigation , Fort Riley, KS		INSPECT Ed Wie	OR		SHEET 4 OF 10 SHEETS
LITH. DEPTH	DESCRIPTION OF MATERIALS	FIELD SCREEN RESULTS	CORE BOX NO.	SAMPLE NO.	BLOW COUNTS	REMARKS
	20.5 - 21.5' Limestone lense, wet, gray. 21.5 - 22.5' Shale, reddish brown. 22.5 - 23.5' Shale, dark greenish gray, mottled red.					From 20.5 - 21.5' wet. Water came up to 14.6' bgs at 16:55. Bailed at a rate of approximately 1 gallon per minute with slight drawdown. Recovered 3.5' in the 20 -25' interval. 23.5 - 25.0': Lost core.
	25 - 34.0' Shale, dark gray, fissile hard, becomes olive with depth.	0.1 ppm	N.A.	N.A.		Becoming difficult to auger. Stopped augers. Begin dual tube drilling after setting surface casing. Surface casing set to 28.4'. Used 100 gals. of water in grout for setting surface casing. 26 September 28 September

.

		HTW	DRIL	LINC	<b>J LO</b>	G	HOLE NO. OBOD-93-03
PROJEC' High P	T Tiority Site	Investigation , Fort Riley, KS		INSPECT Ed Wi	OR		SHEET 5 OF 10 SHEETS
111gii 11	loiny one						
LITH.	DEPTH	DESCRIPTION OF MATERIALS	FIELD SCREEN RESULTS	CORE BOX NO.	SAMPLE NO.	BLOW COUNTS	REMARKS
	30 30 31 32 33	Shale, dark gray, fissile, hard, becomes olive with depth.	KESULIS				
	34 35 36 37	<b>34.0 - 40.0'</b> Dark gray limestone with interbedded clay and shale. Shale is well indurated.	0.1 ppm	<b>N.A</b> .	N.A.		Very hard to drill.

ftrty\drillog.prs

OBOD-93-03

-

Fort Riley High Priority Site Investigations -- Marshall Army Air Field

		HTW	DRIL	LINC	5 LO	G	HOLE NO. OBOD-93-03
PROJECT High Prio	ority Site I	nvestigation , Fort Riley, KS		INSPECT Ed Wi			SHEET 6 OF 10 SHEETS
LITH.	DEPTH	DESCRIPTION OF MATERIALS	FIELD SCREEN RESULTS	CORE BOX NO.	SAMPLE NO.	BLOW COUNTS	REMARKS
		40.0 - 44.0' Light gray shale with nterbedded clays. Shale s well indurated. 44.0 - 48.0' Yellowish gray clayey shale.	0.1 ppm	N.A.	N.A.		Begin to see an organic material in the cuttings.

. •

• .-

Fort Riley High Priority Site Investigat

OBOD-93-03

POTET High Priority Site Investigation . Fort Ruley, KS High Priority Site Investigation . Fort Ruley, KS LTTH DEPTH DESCRIPTION OF MATERIALS 46 47 47 46 47 47 47 47 48 46 47 47 47 48 46 47 47 48 47 48 46 47 47 48 47 48 47 48 47 48 47 48 47 48 47 48 47 48 47 48 47 48 48 49 51 51 51 52 52 52 52 52 52 52 52 52 52			HTW	DRIL	LING	G LO	G	HOLE NO. OBOD-93-03
LITE DESCRIPTION OF MATERIALS SCREEN BOX SAMPLE BLOW REMARKS 46 47 47 47 48 48 48 49 50 50 51 51 51 51 51 51 51 51 51 51	PROJECT High Pr	iority Site I			INSPECT	OR		SHEET 7 OF 10 SHEETS
46 47 48 48.0 - 67.0' Dark gray limestones	LITH.	DEPTH	DESCRIPTION OF MATERIALS	SCREEN	BOX	SAMPLE NO.	BLOW COUNTS	REMARKS
53		47 48 49 50 51 52 51 52 51 52 51 52 51 51 52 51 52 51 52 51 52 51 52 51 52 51 52 52 51 51 52 51 51 51 51 51 51 51 51 51 51	Dark gray limestones with interbedded clays and	0.1 ррп				

ftrly\drillog.prs

Fort Riley High Priority Site Investigations

OBOD-93-03

		HTW	DRIL	LIN	G LO	G	HOLE NO. OBOD-93-03
PROJECT High Pr	r iority Site I	nvestigation . Fort Riley, KS		INSPECT Ed Wi	OR		SHEET 8 OF 10 SHEETS
LITH.	DEPTH	DESCRIPTION OF MATERIALS	FIELD SCREEN RESULTS	CORE BOX NO.	SAMPLE NO.	BLOW COUNTS	REMARKS
	DEPTH	DESCRIPTION OF MATERIALS	SCREEN RESULTS	BOX NO.	SAMPLE NO.	BLOW COUNTS	REMARKS
	61	FROTECT					

. •

ftrly\drillog.prs

PROJECT Fort Riley High Priority Site Investigations HOLE NO. OBOD-93-03

HTW DRILLING LOG								
PROFECT High Pr	r iority Site I	nvestigation, Fort Riley, KS	I	NSPECT Ed Wi	OR		SHEET 9 OF 10 SHEETS	
LITH.	DEPIH	DESCRIPTION OF MATERIALS	FIELD SCREEN RESULTS	CORE BOX NO.	SAMPLE NO.	BLOW COUNTS	REMARKS	
	62							
							· · ·	
	63							
	64							
							Becoming very hard to	
	65						drill.	
	66							
	111							
	67							
		67.0 - 74.0' Gray limestone, hard.	0.1 ppm	N.A	N.A.		Water.	
	68							
ftriy\drillog.	.prs	PROJECT Fort Riley High Priority Si	te Investigations	1	<u> </u>		HOLE NO. OBOD-93-03	

ROJECT INSPECTOR	SHEET 10
ligh Priority Site Investigation . Fort Riley, KS Ed Wieland	OF 10 SHEETS
	BLOW REMARKS COUNTS
70       71         71       0.1 ppm         72       0.1 ppm         73       0.1 ppm         73       0.1 ppm         74       74.0 - 77.0         Reddish brown shales and clays, moderately hard.       0.1 ppm         75       0.1 ppm         76       Bottom of hole.	End of water bearing unit. Stopped drilling. Total depth = 77'. Used 100 gallons of water in setting surface casing (grout). Used 140 gallons of water in well construction. Used approximately 60 gallons of water in dual tube drilling. Non-chlorinated drilling source used: Bldg. 3200, Well 7, at Forsyth on McCormick Rd.

and the second second

PROJECT Fort Riley High Priority Site Investigations HOLE NO. OBOD-93-03

<b></b>			· · · · · · · · · · · · · · · · · · ·
	OUIS BERGER & ASSOCIATES, INC.	Client: U. S. Army Corps of Eng. Project: Ft. Riley High Priorit Prepared by: Ed Wieland	
		Checked by: Peter Li	Date: <u>18-FEB-94</u>
MONI	TORING V	VELL AS-BUIL	
Driller: <u>Layne V</u> Drilling Method:		continuous sampler to refusal,	Well No.: <u>OB-93-03</u> Date Installed: <u>28-SEP-93</u>
Location: OB/C	DD Area		
	-		
Elevations: Ground Surface	1172.88'	п	SURFACE CASING: Size:6"
Top of PVC	1174.82'		Material: <u>Steel</u>
			Depth: <u>28.5'</u>
Ground Elevation:			
	28.5'	Casing	Drill Hole Diameter: <u>8" (0' - 28.5')</u> <u>5.25" (28.5' - 77')</u>
43	<u>.5% Bento</u> Type of J	eal Material nite Grout Annular Seal	Riser:2"Diameter:2"Material:PVCSch.:40Type of Joints:Flush ThreadTotal Length:64'Stick-Up:2.33'
fac	51.8'	N N	
n Ground Surface	Тур	e of Seal	Screen:         2"           Diameter:         2"           Material:         PVC           Slot Size:         0.02           Length:         15'           Screened Interval:         76.7' - 61.7'
Depth from		Filter Material	<u>Sump:</u> Length: <u>4" Cap</u> Type of Cap: Threaded PVC
	77.0'		Centralizer: Used <u>X</u> Not Used <u> </u>
	NA Type	of Seal t Base	Depths: <u>62' - 77'</u>
	NA Type of Clean Was		Depth to Water From Top of Riser at Completion: <u>47.0'</u>
- Form: ft <del>rly\mwdiagrm.prs</del>			Note: Not to Scale

WELL SPECIFICATION FORM
CLIENT: Louis Berger & Associates, Inc.
JOB NUMBER: High Priority SI
WELL OWNER: Fort Riley & HQ 1st Division
ADDRESS:
CITY, STATE, ZIP CODE: Fort Riley, Kansas
PHONE: (913) 239-3343
WELL NUMBER OR OTHER IDENTIFICATION: OB-93-03
WELL INSTALLATION DATE: 9-28-93
GEOLOGIST SUPERVISING INSTALLATION: Mike Miles (SAIC)
GROUND SURFACE ELEVATION (FT): 1172.88'
TOP OF CASING ELEVATION (FT): 1174.82'
WELL STICK-UP (FT): 2.33'
TOTAL BORING DEPTH (FT): 77.0'
BORING DIAMETER (IN): 0' TO 28.5' = 8". 28.5' TO 77' = 5.25"
TOTAL DEPTH OF OUTER CASING (FT): 28.5'
OUTER CASING MATERIAL: Steel
OUTER CASING DIAMETER (IN):6"
TOTAL DEPTH OF INNER CASING (FT. EXCLUDING SCREEN): Total Length = 64'; From Surface = 61.7'
INNER CASING MATERIAL: PVC
INNER CASING DIAMETER (IN): 2"
TOTAL LENGTH OF WELL SCREEN (FT): 15' SCREENED INTERVAL (FT): 76.7' -61.7'
WELL SCREEN MATERIAL:PVC
WELL SCREEN DIAMETER (FT): 0.167
SCREEN SLOT SIZE (IN):0.020"

.

•

.

.

# WELL SPECIFICATION FORM (Cont'd)

WELL NUMBER: OB-93-03									
BACKFILL MATERIAL AROUND SCREEN:       Clean Washed Silica Sand         DEPTH RANGE OF BACKFILL (FT):       77' TO 58.7'									
SEAL MATERIAL ABOVE SCREEN: 1/4" Bentonite Pellets DEPTH RANGE OF SEAL (FT): 58.7' TO 51.8'									
BACKFILL MATERIAL AROUND CASING: 5% Bentonite Grout									
DEPTH RANGE OF BACKFILL (FT): 51.8' TO 0'									
DESCRIPTION OF TOP SEAL: 5% Beatonite Grout capped with a concrete pad.									
DESCRIPTION OF WELL COVER:									
OTHER ADDITIONAL INFORMATION:									

# WELL DEVELOPMENT RECORD

CLIEN	T: Fort Riley - High Priority Si	tes	· .	JOB NO:	High P	riority SI			
FIELD	PERSONNEL: Ed Wieland (SA	AIC), Brian Meier (I	Layne Weste	m)		SHE	ET:	1 0	F: 1
1.	WELL NUMBER: OB-93-	)3							
2.	DATE OF INSTALLATION	29 September 1993	}			<u> </u>			
3.	DATE OF DEVELOPMENT:	2 October 1993							
4.	STATIC WATER LEVEL: BE	FORE DEVELOPME	ENT (FT):	50.34'		24 HOU	IRS AFTE	ER (FT):	
5.	QUANTITY OF WATER LOSS	DURING DRILLIN	IG, IF USEI	) (GAL):	60 gal.			·	
6.	QUANTITY OF STANDING W	ATER IN WELL A	ND ANNUL	US BE70	RE DEVE	LOPMENT	(GAL):	9.3 gal.	
			<u>START</u>		I	<u>DURING</u>			END
7.	PHYSICAL APPEARANCE		muddy		cloudy		clear		clear
	SPECIFIC CONDUCTANCE (µ1	nhos/cm)	900		590		590		<b>59</b> 0
	TEMPERATURE (°C)		15.0	-	15.9	_	16.0		16.0
	pH (s.u.)		8.15		6.87		6.95		6.95
	TURBIDITY (NTU)		-		42.0		11.3		11.8
8.	DEPTH FROM TOP OF WELL	CASING TO BOTTO	OM OF WEI	.L (FT):	79.3'	_			
9.	SCREEN LENGTH (FT): 15			( /-			<u></u>		
10.	DEPTH TO TOP OF SEDIMENT		OPMENT (	FT): 79.4	4'	AFTER D	EVELOPN	MENT (F	[): <b>79.4</b> '
				_			2,2001		
11.	TYPE AND SIZE OF WELL DE	VELOPMENT EQUI	IPMENT:	1 7/8" Sur	ge block, 1	1/2" x 3 '	bailer, an	d 2" Grur	dfos Pump
12.	DESCRIPTION OF SURGE TEC	HNIQUE, IF USED	: Surge, I	pail, and p	ump.				
13.	HEIGHT OF WELL CASING A	BOVE GROUND SU	RFACE (FT	): <u>18</u>					
14.	QUANTITY OF WATER REMO	VED (GAL): 5	553 gal	т	IME OF R	EMOVAL	(HR:MIN)	): 4:0	0
			-						

LOUIS BERGER AND ASSOCIATES, INC. WELL DEVELOPMENT FORM

DECEMBER 1993

.

.....

					HT	W	DRIL	LI	NG I	0	<u>,</u>			HOLE N OB-93-0	NO. 14: SB1
	ANY NAM Berger &		ciates	Inc					SUBCONT					SHEET	1 SHEETS
3. PROJEC	CT			***	ort Riley, KS			le we	stern W 4. LOCAT EOD I	TON		area, Fort F	tiley, KS	101 0	
	OF DRILL								6. MANUFACTURER'S DESIGNATION OF DRILL						
	AND TYPE	S OF			4.25 x 8" Ho	llow S	tem Auger		Mobile drill B-57, Schram Rotodrill T-660H Dual Tube 8. HOLE LOCATION						ube
DRILLI EQUIPN	ING AND S MENT	SAMP	LING		CME continu NX Core	ious co	ore sampler		South of 9. SURFA			v			
					5.25 tricone-	revers	e circulation		1158.3	2			•		
									10. DATE 27 Se		TED er 1993		11. DATE 1 Oc	COMPLE lober 199	
12. OVERE 20.5	BURDEN T	ніск	NESS							I GROU - 48.0		TER ENCOUN	ITERED		
13. DEPTH	IDRILLEI	) INTO	O ROCK	ζ							ATER A	ND ELAPSEI		TER DRII	LING
36.5' 14. TOTAL	. DEPTH C	F HO	LE	_					COMM 17. OTHE			3.1 after 10 EL MEASURE		PECIFY)	
57.0'															
18. GEOTE N.A.	CHNICAL	SAM	PLES		DISTURBED		UND	ISTUR	BED		TAL NU	MBER OF CO	ORE BOXE	S	
20. SAMPL ANALY		HEMI	CAL		VOC	_	METALS	_	THER (SPE		OTHE	R (SPECIFY)	OTHER (	SPECIFY)	21. TOTAL COR RECOVERY
						Metal	ity Pollutant Is		A 6020 IC A 8330 H						RECOVERI
22. DISPOS	TTION OF	HOLI	E	BA	CKFILLED	MONI	TORING WELL	. 0	THER (SPE	CIFY)	23. SIG	NATURE OF	INSPECTO	R	- <b>k</b>
							Х				2	ED WIELA	ND CN		
LITH.	DEPTH		DESCI	RIPTIC	ON OF MATERI	ALS		CORE BOX NO.	SAMPLE NO.	_	BLOW DUNTS		REN	<b>AARKS</b>	
			) - 5'				0.2 ppm	N.A	N.A.			0 - 5'	dry.	2.5'	of
					wn to redd							recove	-		
			rown Iry.	1, HF	m to hard,							caught in barrel).			
	. =		uy.										t m Ua	111CI)	•
	1	1													
									OBOD						
	_								SB1-00 disturbe						
		1													
	2 —	E								_					
	_														
	=	e N													
	_	Ē													
		SUS													
	3	Ĩ													
	_	Ę													
		M													
	4 —														
	, —														
	<u> </u>		P	ROJEC	T								HOLE	NO.	

·

ftrty\drillog.prs
-------------------

OB-93-04, SB1

· -----

¥.

PROJECT High Priority Site Investigation . For Riley. KS     INSPECTOR Ed Wieland     Stept : GP # SHEETS       LTTH.     DESCRIPTION OF MATERIALS S - 10' CL Clay, brown to light reddish brown, firm to hard, dry to damp.     INSPECTOR BOX RESULTS NO.     BLOW NO.     REMARKS       6		HTW DRILLING LOG HOLE NO. OB-93-04; SB1												
LTH.       DEFTH       DESCRIPTION OF MATERIALS       SCREEN       BOX       SAMPLE       BLOW       REMARKS         0.9 ppm       N.A       N.A       N.A       N.A       N.A       S-10' dry to damp.         6					INSPE	CTOR			SHEET 2					
Clay, brown to light reddish brown, firm to hard, dry to damp. 6 7 10 10 10 10 10 10 10 10 10 10	LITH.	DEPTH	DESCRIPTION OF MATERIALS	SCREEN	BOX	SAMPLE		H	REMARKS					
$= \begin{bmatrix} 10 - 15' \text{ CL} \\ \text{Clay, dark brown to} \\ \text{brown, soft to hard,} \end{bmatrix} \begin{bmatrix} 0.4 \text{ ppm} \\ \text{N.A} \end{bmatrix} \begin{bmatrix} \text{N.A} \\ \text{N.A} \end{bmatrix} \begin{bmatrix} 10 - 15' \text{ damp.} \end{bmatrix}$			Clay, brown to light reddish brown, firm to hard, dry to damp.		N.A	N.A. OBOD- SB1-002		Sample fr	om 7 - 9'					
11     Image: Constraint of the second			Clay, dark brown to brown, soft to hard, damp.	0.4 ppm		OBOD- SB1-003		10 - 15' da	amp.					

ftrly\drillog.prs

Fort Riley High Priority Site Investigations

OB-93-04; SB1

	HTW DRILLING LOG HOLE NO. OB-93-04: SB1												
PROJECT High Pr	iority Site I	nvestigation , Fort Riley, KS		INSPECTO Ed Wie	OR		·	SHEET 3 OF 8 SHEETS					
LITH.	DEPTH	DESCRIPTION OF MATERIALS	FIELD SCREEN RESULTS	CORE BOX NO.	SAMPLE NO.	BLOW COUNTS		EMARKS					
	14	10 - 15' (cont.) Clay, dark brown to brown, soft to hard, damp. 15 - 19' CL	0.4 ppm 0.4 ppm	N.A.	N.A.		10 - 15' da 15 - 19' da	amp. amp (moist).					
	16	Lay, light brown, firm, damp.											
	19	<b>19 - 20' CL, GC</b> Clay, as above, with limestone fragments, white, 0.5-1.5" diameter cherty, light gray.	0.2 ppm	N.A. Core Box 1			chemical b	ger; refusal. ber ber					

firty\drillog.prs

Fort Riley High Priority Site Investigations

OB-93-04; SB1

	HTW DRILLING LOG HOLE NO. OB-93-04; SB1												
PROJEC High Pr		Investigation , Fort Riley, KS		INSPECT Ed Wie			SHEET 4 OF 8 SHEETS						
LITH.	DEPTH	DESCRIPTION OF MATERIALS	FIELD SCREEN RESULTS	CORE BOX NO.	SAMPLE NO.	BLOW COUNTS	REMARKS						
	=	20.5 - 22.7'					Core Run 1: 9/30/93,						
		Limestone, shaley lime-											
	_	stone, locally cherty, also				- ·	15:25 - 16:00 hours.						
	_	vuggy limestone at 21.8',		Core			Recovered 2' of 4' in						
		white to gray where		Box			the 20.58 - 24.1' interv	al.					
	$ ^{22}$	shaley. Chert is light		1		-							
		gray.											
		22.7 - 24.1'											
	23 —	Shale, light brown.					Wet shale at 22.7'.						
	23	Shale, light brown.											
	_												
	=												
	24	24.1 - 25.3'											
		Shale, yellowish brown					Core Run 2: 9/30/93,						
		with white calcite vugs					16:00 - approximately						
		and calcite (5%) low					16:45 hours.						
		permeability.											
	25	permeability.					24.1 - 29.1': 100 perce	nt					
	=						recovery.	ĺ					
	ヨ	25.3 - 28.3'											
	ヨ	Shale, black.											
	26												
								1					
	27 —												
	_												
	28 —												
	$\square$				ĺ								
		28.3 - 29.1'		Core									
		Gradational contact		Box									
		imestone, gray fossil		1									
		forms.											
	·	PROJECT				<u>i</u>	HOLE NO.						

· ``1

Fort Riley High Priority Site Investigations

	HTW DRILLING LOG HOLE NO. OB-93-04; SB1												
PROJECT High Pr		nvestigation . Fort Riley, KS		INSPECT Ed Wi	OR		SHEET 5 OF 8 SHEETS						
LITH.	DEPTH	DESCRIPTION OF MATERIALS	FIELD SCREEN RESULTS	CORE BOX NO.	SAMPLE NO.	BLOW COUNTS	REMARKS						
	30 31 32 33 34 35 36 37	<ul> <li>29.1 - 29.7' Limestone as above, grading to limy shale.</li> <li>29.7 - 34.1' Shale, limy, dark gray to olive gray.</li> <li>Massive gypsum up to 1" diameter at 32.3'.</li> <li>34.1 - 39.1' Shale, dark gray, limy.</li> </ul>	RESULTS	Core Box 1	NO.		Core Run 3: 9/30/93, from approximately 17:00 - 18:45 hours. Cut 29.1 - 34.1': Recovered 4.1'.						
		PROJECT		1		L	HOLE NO.						

ftrly\drillog.prs

Fort Riley High Priority Site Investigations

OB-93-04; SB1

		HTW	DRIL	LINC	G LO	G	HOLE NO. OB-93-04; SB1
PROJECT High Pr		Investigation . Fort Riley. KS		INSPECT Ed Wi			SHEET 6 OF 8 SHEETS
LITH.	DEPTH	DESCRIPTION OF MATERIALS	FIELD SCREEN RESULTS	CORE BOX NO.	SAMPLE NO.	BLOW COUNTS	REMARKS
	38	34.1 - 39.1' (cont.) Shale, dark gray, limy.					Core Run 4: 10/1/93, 9:05 - 9:44 hours. Recovered 4.1'. Used 475 gallons of water from 20.5 - 39.1'.
	39 40	<b>39.1 - 40.8</b> ' Shale, dark gray.		Core Box 1 Core Box 2			September 30 October 1 Core Run 5: 10/1/93, 10:00 - 10:18 hours. 39.1 - 44.1': Recovered 5', 100 percent.
	41 42 42 11 11	Limestone, very shaley, gray to light gray. 41.2 - 43.2' Shale dark gray with gypsum. White to pinkish white, up to 2" across as massive concentrations.					
	43	43.2 - 44.1' Limestone, shaley, very fossiliferous, fossil hash – shell fragments and whole 44.1 - 44.8' Limestone, shaley, very fossiliferous, fossil hash.					HOLE NO.

.

1. The second second

firiy\drillog.prs

Fort Riley High Priority Site Investigations

OB-93-04; SB1

	HTW DRILLING LOG HOLE NO. OB-93-04: SB1												
PROJECT				INSPECT	-		<u></u>	SHEET 7					
High Pr	iority Site I	Investigation , Fort Riley, KS		Ed Wie	eland			OF 8 SHEETS					
L							Y	]					
LITH.	DEPTH	DESCRIPTION OF MATERIALS	FIELD SCREEN RESULTS	CORE BOX NO.	SAMPLE NO.	BLOW COUNTS	I	REMARKS					
		44.8 - 46'		Core									
	_	Limestone soft, yellowish		Box 2									
	Ξ	brown with dark bluish		BUX 2									
		gray chert blebs.											
	Π	gray enert blebs.											
	46 —	AC AD DI Limestono					•						
	_	46 - 48.8'. Limestone,											
		light brown, slightly											
		yellowish, vuggy,											
		fossiliferous. Lost core											
	47	47.8 - 48.35' in vuggy					× .						
	_	section. Vugs are present		1									
	П	across the full horizontal											
	П	cross-section of core.											
	1												
$\frac{1}{1}$	48 —												
	_						Driller rep	orted soft zone					
<b>H</b>	Π						here with	hard section					
	П												
							below.						
	49	48.8 - 49.2' Shale, dark gray,					Core Dun	6. 10/1/02					
	49	wavy bedding with fossil hash.						6: 10/1/93,					
		49.2 - 49.7' Limestone,					10:48 -11:	19 hours.					
		yellowish brown, vuggy, up to					49 1- 54 1	': 100 percent					
	П	0.25" diameter.	•					. Too percent					
		49.7 - 50.2' Chert, light					recovery.						
	50	gray cuts across fossils.											
	_	50.2 50.01 Limestone											
		<b>50.2 - 50.9</b> ' Limestone, yellowish brown, minor											
日日日	_	vugs, 0.0625' diameter.											
		vugs, 0.0025 utameter.											
	51	50.9' - 51.9' Limestone,											
		shaley, dark gray to		1									
		locally black, wavy											
		-					1						
		bedding with fossil hash.											
苦节	52	51.9' - 53' Limestone,											
		light gray, hard, slightly		Core									
		fossiliferous.		Box 2									
	- <b>-</b>				1								
			1	Core									
╞╧╧╧╡	53			Box 3	1								
	]				L	l	1	E NO					

ftrty\drillog.prs

PROJECT Fort Riley High Priority Site Investigations

OB-93-04; SB1

۰.

		HTW	DRIL	LING	<b>J LO</b>	G	HOLE NO. OB-93-04; SB1
PROJEC High Pr		Investigation, Fort Riley, KS		INSPECT Ed Wi			SHEET 8 OF 8 SHEETS
LITH.	DEPTH	DESCRIPTION OF MATERIALS	FIELD SCREEN RESULTS	CORE BOX NO.	SAMPLE NO.	BLOW COUNTS	REMARKS
	54	53 - 53.8' Shale, ivory, fossiliferous, dark gray. 53.8 - 54.2' Limestone, dark gray fossiliferous. 54.2 - 57' Limy shale and shaley limestone.		Core Box 3			<ul> <li>275 gallons drilling water.</li> <li>End of Core, drilling.</li> <li>Begin dual tube rig drilling.</li> <li>Stopped drilling. Total depth = 57'. 750 gallons of water used for core drilling; 20 gallons of water to ream; 60 gallons to aid in well construction. 830 gallons total added to well.</li> </ul>
	58 59 60	Bottom of hole.					NOTE ON WATER PRIOR TO CORE DRILLING: On 1 October 1993 at 08:30 water level was 9.6'. Bailed approximately 3 minutes, and drew water level down 1'. After 3 additional minutes water level came up 0.25'. Water source for drilling fluid: Bldg. 3200, Well No. 7 (non-chlorinated), McCormick Rd., Camp Forsyth.

ł

ftrty\drillog.prs

PROJECT Fort Riley High Priority Site Investigations HOLE NO. OB-93-04; SB1

LOUIS BERGER & ASSOCIATES, INC.	
Driller: Layne Western Drilling Method: 8.25"x 8" auger with CM air rotary dual tube to T Location: OB/OD Area	WELL AS-BUILT DIAGRAM Well No.: OB-93-04 Date Installed: 01-OCT-93
Elevations: Ground Surface <u>1158.32'</u> Top of PVC <u>1160.07'</u>	SURFACE CASING: Size: <u>6"</u> Material: <u>Steel</u> Depth: <u>20'</u>
20.0' Surface <u>5% Bent</u> Type of <u>Cement G</u> 31.8' Type of <u>Cement G</u> <u>Type of</u> <u>Cement G</u> <u>Type of</u> <u>Type of</u> <u>Type of</u> <u>Type of</u> <u>Cement G</u> <u>Type of</u> <u>Type of</u> <u>Type of</u> <u>Cement G</u> <u>Type of</u> <u>Cement G</u> <u>Cement G</u> <u>Type of</u> <u>Cement G</u> <u>Type of</u> <u>Cement G</u> <u>Type of</u> <u>Cement G</u> <u>Type of</u> <u>Cement G</u> <u>Type of</u> <u>Cement G</u> <u>Type of</u> <u>Cement G</u> <u>Cement G</u> <u>Type of</u> <u>Cement G</u> <u>Type of</u> <u>Type of</u> <u>Cement G</u> <u>Type of</u> <u>Type of</u> <u>Ty</u>	Casing Drill Hole Diameter: 8" (0' - 20') 5.25" (20' - 56.8')  Riser: Diameter: 2" Material: PVC Sch.: 40 Type of Joints: Flush Thread Total Length: 43.8' Stick-Up: 2.1' Screen: Diameter: 2" Material: PVC Stick-Up: 2.1' Screen: Diameter: 2" Material: PVC Slot Size: 15' Screened Interval: 56.7' - 41.7' Sump: Length: 15' Screened Interval: 56.7' - 41.7' Sump: Length: 4" Type of Cap: Threaded PVC C Centralizer: Used X Not Used Depths: 41.7' & 56.7'
Туре с	Depth to Water From Top of Riser at Completion: 23.1' Note: Not to Scale

WELL SPECIFICATION FORM
CLIENT: Louis Berger & Associates, Inc.
JOB NUMBER: High Priority SI
WELL OWNER: Fort Riley & HQ 1st Division
ADDRESS:
CITY, STATE, ZIP CODE: Fort Riley, Kansas
PHONE: (319) 239-3343
WELL NUMBER OR OTHER IDENTIFICATION: OB-93-04
WELL INSTALLATION DATE: 1 October 1993
GEOLOGIST SUPERVISING INSTALLATION: Mike Miles (SAIC)
GROUND SURFACE ELEVATION (FT): 1158.32'
TOP OF CASING ELEVATION (FT): 1160.07'
WELL STICK-UP (FT): 2.33'
· · · · · · · · · · · · · · · · · · ·
TOTAL BORING DEPTH (FT): 56.8'
BORING DIAMETER (IN): 0.0' TO 20.0' = 8, 20.0' TO 56.8' = 5.25"
TOTAL DEPTH OF OUTER CASING (FT): 20.0'
OUTER CASING MATERIAL: Steel
OUTER CASING DIAMETER (IN):6"
TOTAL DEPTH OF INNER CASING (FT. EXCLUDING SCREEN):
INNER CASING MATERIAL: PVC
INNER CASING DIAMETER (IN):2"
TOTAL LENGTH OF WELL SCREEN (FT): 15' SCREENED INTERVAL (FT): 56.7' - 41.7'
WELL SCREEN MATERIAL: PVC
WELL SCREEN DIAMETER (FT):0.167
SCREEN SLOT SIZE (IN):0.020"

-.

.

# WELL SPECIFICATION FORM (Cont'd)

WELL NUMBER: OB-93-04
BACKFILL MATERIAL AROUND SCREEN: Clean Washed Silica Sand
DEPTH RANGE OF BACKFILL (FT): 56.8' TO 37'
SEAL MATERIAL ABOVE SCREEN: 1/4" Bentonite Pellets
DEPTH RANGE OF SEAL (FT): 37' TO 31.8'
BACKFILL MATERIAL AROUND CASING: 5% Bentonite Grout
DEPTH RANGE OF BACKFILL (FT): 31.8' TO 0'
DESCRIPTION OF TOP SEAL: Grout to surface with a 3' concrete pad placed around well.
DESCRIPTION OF WELL COVER: 6" steel casin: with locking cap, embedded into the grout and concrete pad.
OTHER ADDITIONAL INFORMATION:

-----

7

·

### WELL DEVELOPMENT RECORD

CLIEN	T: Fort Riley - High Priority Sites		JOB NO:	High Priority	/ SI	
FIELD	PERSONNEL: Steve Keller (SAIC)				SHEET:	1 of 1
1.	WELL NUMBER: OB-93-04					
2.	DATE OF INSTALLATION: 1 October 1993					· · · · · · · · · · · · · · · · · · ·
3.	DATE OF DEVELOPMENT: 9 October 1993					
4.	STATIC WATER LEVEL: BEFORE DEVELOP	MENT (FT):	32.87'	24	HOURS AFTE	ER (FT):
5.	QUANTITY OF WATER LOSS DURING DRILL	LING, IF USEI	O (GAL):	 750 gal.		
6.	QUANTITY OF STANDING WATER IN WELL	AND ANNUL	US BEFOR	E DEVELOPN	IENT (GAL):	49 gal.
		<u>START</u>		DURI	NG	END
7.	PHYSICAL APPEARANCE	cloudy	sligh	tly cloudy	clear	clear
	SPECIFIC CONDUCTANCE (µmhos/cm)	455	_	560	550	550
	TEMPERATURE (°C)	13.0		14.1	15.4	15.6
	pH (s.u.)	6.60	<u></u>	6.76	7.0	6.93
	TURBIDITY (NTU)		_	46.2	6.2	5.4
8. 9.	DEPTH FROM TOP OF WELL CASING TO BOT SCREEN LENGTH (FT): 15'	TOM OF WEI	.L (FT):	59.1'	<u>,</u>	
10.	DEPTH TO TOP OF SEDIMENT: BEFORE DEV	ELOPMENT (	FT): 58.2		ER DEVELOP	MENT (FT): 58.8'
11.	TYPE AND SIZE OF WELL DEVELOPMENT EQ		· · · · ·			· · · · · · · · · · · · · · · · · · ·
12.	DESCRIPTION OF SURGE TECHNIQUE, IF USE	ED: Surge, t	pail, and pur	np.		
13.	HEIGHT OF WELL CASING ABOVE GROUND S	SURFACE (FT	): <u>145</u>			······
14.	QUANTITY OF WATER REMOVED (GAL):	1025 gal	TI	ME OF REMO	VAL (HR:MIN	I): 3:45

LOUIS BERGER AND ASSOCIATES, INC. WELL DEVELOPMENT FORM

DECEMBER 1993

CSI

1. COMPANY NAME										SB2	
					IG LA					SHEET 1	
Louis Berger & Associates, Inc.			Layne	Layne Western Witchita, KS						OF 3 SI	TEETS
3. PROJECT High Priority Site Investigation , Fort Riley.	KS					lange.		area, Fort Ri			
5. NAME OF DRILLER John Gornick			-		6. MANUF Mobile			OF DRII	T		
7. SIZES AND TYPES OF 4.25 x 8			m Auger		8. HOLE I	OCAT	ION				
DRILLING AND SAMPLING <u>CME o</u> EQUIPMENT	ontinue	ous co	re sampler		South o 9. SURFAC						
					1185'(10						
					10. DATE : 28 Sep		TED rr 1993			COMPLET ptember 19	1
12. OVERBURDEN THICKNESS							ER ENCOU	VTERED.			
N.A. 13. DEPTH DRILLED INTO ROCK				-	16. DEPTH			ND ELAPSEI	TIME A	FTER DRIL	LING
N.A. 14. TOTAL DEPTH OF HOLE				-+	COMM 17. OTHEL			L MEASURE	MENTS (	SPEC (Y)	
20.0'											
1: •BOTECHNICAL SAMPLES DISTUR	BED		UNDI	STUR	BED	19. TC	OTAL NU	MBER OF CO	RE BOXI	ES	
20. SAMPLES FOR CHEMICAL VOC		N	AETALS	-				R (SPECIFY)	OTHER	(SPECIFY)	21. TOTAL CORE
ANALYSIS		Priorit Metal	ty Pollutant		A 6020 IC A 8330 HI						RECOVI
22. Disposition of Hole Backfille			ORING WELL				) 23. SIGN	IATURE OF	NSPECTO	DR	
X				T	Grouted			WIELAND			
			FIELD k		;·	-	2	- Dall-			
LITH DEPTH DESCRIPTION OF M	ATERI	IALS	SCREEN	BOX NO.			BLOW		RE	MARKS	
			Į					Dryte	117	,	
Clay, dark yell	wis!							Dry to	14./	•	
brown, firm, dr			i								
disturbed soils	•										
		1	!								
					:						
						ļ					
³ <u>∃</u> <u>∃</u> <u>3-5'</u> CL											
☐ Clay, dark yello	wish				OBOI	D- !					
brown, firm wit				SB2-0	<b>01</b> ,						
	ments that are white,										
angular to subr											
dry, disturbed.											
					1						
							•				
PROJECT Fort Riley Hig					<u>.</u>				HOI	LE NO.	

furty/drillog.prs

C52

	HTW DRILLING LOG HOLE NO. SB2													
PROJECT High Prio		nvestigation, Fort Riley, KS		INSPE			SHEET 2 OF 3 SHEETS							
LITH	DEPTH	DESCRIPTION OF MATERIALS	FIELD SCREEN RESULTS	CORI BOX NO.	SAMPLE	BLOW COUNTS	REMARKS							
		<b>5 - 8.5' CL</b> Clay, reddish brown, firm to hard, dry.          8.5 - 10' CL Clay, yellowish red, and very hard, undisturbed, dry.         10 - 14.7' CL Clay, yellowish red, firm to hard, dry.		NO.			Boundary between disturbed and undisturbed soils based on appearance.							
1	3	PROJECT					HOLENO							

-

.

ftrly\drillog.prs

Fort Riley High Priority Site Investigations

HOLE NO. SB2

		нтw і	י חאר	ING	LOC	Ţ	HOLE NO.								
PROFEC	HTW DRILLING LOG     HOLE NO.       ROJECT     INSPECTOR     SHEET 3       High Priority Site Investigation , Fort Riley, KS     Ed Wieland     OF 3 SHEETS														
High Pr	iority Site I	nvestigation, Fort Riley, KS													
итн	DEPTH	DESCRIPTION OF MATERIALS	FIELD SCREEN RESULTS	CORE BOX NO.	SAMPLE NO.	BLOW COUNTS	REMARKS								
	$14 \\ 14 \\ 15 \\ 16 \\ 17 \\ 18 \\ 19 \\ 19 \\ 10 \\ 19 \\ 10 \\ 10 \\ 10 \\ 10$	10 - 14.7' CL (cont.) Clay, yellowish red, firm to hard, dry. 14.7 - 20' SC Sand, medium-fine, with clay (5-10%), yellowish red, moist, soft. Limestone and shale fragments in clay, angular to subangular up to 2" diameter.					14.7 - 20' moist. Stopped drilling. Total depth = 20'.								
		Bottom of hole.													
	21-		· · ·												
furty\drillog.		PROJECT Fort Riley High Priority Site	Investigations				HOLE NO. SB2								

						НЛ	W	DRIL	LP	IG L	OG	r r			HOLE N SB3	Ю.	
1. COMPA	ANY N	NAME								IG SUBCONTRACTOR SHEET 1							
Louis	Berg	er & 1	Asso	ciates, I	nc.	•				Vestern – Witchita, KS OF 3 SHEETS							
3. PROJE										4. LOCATION							
High P	riorit	y Site	Inve	stigatio	n , Fo	rt Riley, KS				EOD Range, OB/OD area, Fort Riley, KS							
5. NAME	OFD	RILLE	ER	i.						6. MANUFACTURER'S DESIGNATION OF DRILL Mobile drill B-57							
7. SIZES A						4.25 x 8" Ho				8. HOLE LOCATION							
DRILLI EQUIPI			٩MP	LING		CME contin	uous ca	ore sampler		South c 9. SURFA			proximately 1	25' east of	<u>SB2.</u>		
D. Com										1185'(1		EVANUI	•				
					]					10. DATE		TED		11. DATE	COMPLE	TED	
												er 1993		· · · · · · · · · · · · · · · · · · ·	tember 1	993	
12. OVERI N.A.	BURE	DEN T	HIC	KNESS						15. DEPTI N.A.	IGRO	UNDWA	TER ENCOU	NTERED			
13. DEPTH	I DRI	LLED	INT	OROC	ĸ						TOW	ATER A	ND ELAPSEI	TIME AF	TER DRI	LING	
N.A.										COMM	ENCE	D.					
14. TOTAL	. DEP	THO	FHC	DLE						17. OTHEI	R WAT	ER LEVI	EL MEASURI	EMENTS (S	PECIFY)		
20.0" 18. GEOTE	ECHN	ICAL	SAN	<b>IPLES</b>		DISTURBED		UND	ISTUR	BED	19. TC	TAL NU	MBER OF CO	ORE BOXES	s		
N.A. 20. SAMPL	FCF			ICAL		VOC	1	METALS		HED /CD	CIEV		D (CDECTES)	OTTER	enror-	IN TOTAL CORT	
ANALY			M					ity Pollutant		A 6020 IC			K(SPECIFY)	UTHER (	SPECIFY)	21. TOTAL CORE RECOVERY	
							Meta	•		A 8330 HI							
22. DISPOS	SITIO	NOF	HOL	E	BA	CKFILLED	MONT	TORING WEL	LO	THER (SPI	ECIFY	) 23. SIGI	NATURE OF	INSPECTO	R	L	
						Х	-			Grouted			ED WIE	LAND,			
	1	_	·					FIELD	CORE	r			e u	il A			
LITH	DE	РТН		DESC	RIPTI	ON OF MATEI	RIALS	SCREEN RESULTS	BOX	SAMPLI NO.		BLOW		REN	IARKS		
		_		0 - 4	ľ C	L		3.5 ppm			_		0 202	den			
		_		Cla	v. da	rk yellowi	sh	pro pp					0 - 20'	ury.			
						firm, dry to											
		_				moist. Als											
		_		-		d limeston											
	1																
						its up to 0.											
		_	0			r in the cla	ay.									-	
			nple	Dist	urb	ed.											
			Sam														
		_	e S							OBOE						2	
	2	L	ō							SB3-00							
		L	s C							disturbe							
			Continuous							aisturb							
			nu													1	
		Π	nt														
	2		ပိ													ł	
	5	Π															
		_														1	
	4 -			4 7		• <b></b>											
				4 - 7.				0.6 ppm									
						dish brown							Distur	bed so	oils.		
	firm, with some gray							OBOD			Undis	turhed	soil				
	shale streaks, dry.								SB3-00	-		Ondis		50113			
	٢.									undisturt (4.5 - 6.0							
				IT	ROJE	<u>7</u>	1			(4.5 - 0.(	<u>. L</u>		L	HOLE	210	J	

Fort Riley High Priority Site Investigations

		HTWI	ORILI	LING	G LOG	Ì	HOLE NO. SB3
PROJEC High Pr		nvestigation . Fort Riley, KS		INSPEC			SHEET 2 OF 3 SHEETS
штн.	DEPTH	DESCRIPTION OF MATERIALS	FIELD SCREEN RESULTS	CORE BOX NO.	SAMPLE NO.	BLOW COUNTS	REMARKS
	6 7 8 8	4 - 7.7' CL (cont.) Clay, reddish brown, firm, with some gray shale streaks, dry. 7.7 - 8.0' CL Clay, silty, reddish brown, undisturbed, dry. 8.0 - 9.2' CL Clay, reddish brown, firm, dry.	0.6 ppm		OBOD- SB3-003 undisturbed (4.5 - 6.0 [°] )		
	9	9.2 - 10' CL Clay, reddish brown, firm, with small limestone granules. 10 - 15' CL Clay, reddish brown, firm with small pieces of dark brown shale up to 0.5" diameter, dry.	0.4 ppm		OBOD- SB3-003 undisturbed (12 - 13.5')		

futy/drillog.prs

PROJECT Fort Riley High Priority Site Investigations ١

	HTW DRILLING LOG														
	PROJECT INSPECTOR SHEET 3 High Priority Site Investigation , Fort Riley, KS Ed Wieland OF 3 SHEETS														
High Pi	nonty Site I	nvestigation, Fort Kiley, KS													
LITH	DEPTH	DESCRIPTION OF MATERIALS	FIELD SCREEN RESULTS	CORE BOX NO.	SAMPLE NO.	BLOW COUNTS	REMARKS								
	14 14 15 16 17 18 19 19 19 19 19 10 10 10 10 10 10 10 10 10 10	<b>10 - 15' CL</b> (cont.) Clay. reddish brown, firm with small pieces of dark brown shale up to 0.5" diameter, dry, locally fissile. <b>15 - 20' CL</b> Clay, reddish brown, firm with small pieces of dark brown shale up to 0.5" diameter. Locally contains limestone fragments, angular to subangular. 1-2" diameters. Dry. <b>Bottom of hole.</b>	0.4 ppm		OBOD- SB3-003 undisturbed (12-13.5°)		Stopped drilling. Total depth = 20'.								
	21														
triy\drillog.p		PROJECT Fort Riley High Priority Site I	westigations				HOLE NO. SB3								

.

					НТ	W	DRIL	LI	NGL	OG					HOLE N	O.	
	ANY NAI						2. DRII	LING	SUBCONI	RACT	OR	· · · · ·			SHEET 1		
	Berger d	2 Ass	ociates,	Inc.			Lavr	ie Wes	tern - Wi		KS				OF 3 S	HEETS	
3. PROJE High H		te In	vestigatio	on . Fo	ort Riley, KS				4. LOCATION EOD Range, OB/OD area, Fort Riley, KS								
5. NAME	OF DRIL						·		6. MANUFACTURER'S DESIGNATION OF DRILL								
John G 7. SIZES		FSO	E		4.25 x 8" Ho	lear Sta	Allowr		Mobile drill B-57 8. HOLE LOCATION								
DRILL	ING AND				CME contin	uous co	ore sampler		8. HOLE LOCATION North of East pit.								
EQUIP	EQUIPMENT										9. SURFACE ELEVATION 1193'(topo)						
									10. DATE	_	ED		11.	DATE C	OMPLET	ED	
	DIMOS										r 1993				ember 19	93	
12. OVER N.A.	BURDEN	THE	CKNESS						15. DEPTH N.A.	IGRO	UNDWA	TER ENCO	UNTE	ERED			
13. DEPTI N.A.	H DRILLI	ED IN	TO ROC	K								ND ELAPSE	DT	ME AFT	ER DRIL	LING	
IN.A. 14. TOTAL	L DEPTH	OFH	OLE		···				COMM 17. OTHEI	-		EL MEASU	EME	ENTS (SP	ECIFY		
20.0°				·			1	-									
18. GEOTI N.A.	ECHNICA	L SA	MPLES		DISTURBED		UNE	ISTUF	RBED	19. TC	TAL NU	MBER OF C	ORE	BOXES			
20. SAMPI ANALY		CHE	MICAL		VOC		METALS				OTHE	R (SPECIFY	) 01	THER (SI	PECIFY)	21. TOTAL CORE RECOVERY	
12023						Meta	ty Pollutant Is		A 6020 IC A 8330 HI							RECOVERI	
22. DISPOS	SITION O	F HO	LE	BA	CKFILLED	MONT	TORING WEL	I O	THER (SPI	CIFY	23. SIGI	NATURE OI	7 INSF	PECTOR			
					Х	ŀ			Grouted		EC	WIELA					
_				L			FIELD	CORE		Т	~	1					
LITH.	DEPTH	ł	DESC	RIPTI	ON OF MATER	UALS	SCREEN RESULTS	BOX NO.	SAMPLE NO.		BLOW DUNTS		-	REM	ARKS		
		PTH DESCRIPTION OF MARTE 0 - 1' CL/OH Clay. Dark. brow organic matter, fin dry, disturbed. 1 - 4' CL Clay. Reddish brown with white fragments, dry, disturbed. 5 snoon 1 - 6' CL Clay. Reddish brown with white							OBOI SB4-00 (2'-5')	1		0 - 15	, I	Dry.			
triy.dnillog.pri			F	ROJE Fort F	CT Liley High Priori	ty Site In	uvestigations	OB/C	DD Area			,, <u></u>		HOLE N SB4	<b>Ю</b> .	-	

C58

PRODECT High Provinty Site Lawessingation . Fort Riley, KS LTR DEFTH DESCRIPTION OF MATERIALS FIELD OCE SAMPLE E Weishand DESCRIPTION OF MATERIALS FIELD OCE SAMPLE E COUNTS PARTY DESCRIPTION PARTY DESCRIPTI															
LTH DEFTH DESCRIPTION OF MATERIALS SCHEEN BOX SMATE BLOW NO E BLOW NO E CONTS A - 6' CL (Cont.) Clay. A - 6' CL (Cont.) Clay. A - 6' CL (Cont.) Clay. Clay. Reddish brown with angular white fragments. Appears undisturbed below 6. B - 10' CL Clay. As above with less fragments. firm. dry. 9 10 - 15' CL Clay. Reddish brown, firm. imestone fragments throughout, 10 - 15' CL Clay. Reddish brown, firm. dry. 9 10 - 15' CL Clay. Reddish brown, firm. dry. 9 10 - 15' CL Clay. Reddish brown, firm. dry. 9 10 - 15' CL Clay. Reddish brown, firm. imestone fragments throughout, 10 - 15' CL Clay. Reddish brown, firm. imestone fragments throughout, H Clay. Reddish brown, firm. imestone fragments throughout, Clay. Reddish brown, firm. dry. Clay. Reddish brown, firm.			nvestigation, Fort Riley, KS												
Clay. Reddish brown with angular white fragments. Appears undisturbed below 6'. 7	итн	DEPTH	DESCRIPTION OF MATERIALS		REMARKS										
Clay. Reddish brown with angular white fragments. Appears undisturbed below 6 ⁻ .						SB4-002 disturbed		Disturbed soils.							
11 - 15' CL Clay. Reddish brown, firm limestone fragments throughout, dry. 12 - 100 12 - 100 12 - 100 12 - 100 12 - 100 12 - 100 12 - 100 SBD- SB4-003 undisturbed		8	Clay. Reddish brown with angular white fragments, dry. At 6', 30% less fragments. Appears undisturbed below 6'. 8 - 10' CL Clay. As above with less fragments,					Undisturbed soils.							
			Clay. Reddish brown, firm limestone fragments throughout, dry.			SB4-003 undisturbed									

•

-- 1

		HOLE NO. SB4					
PROJECT High Priori	ity Site Ir	HTW	SHEET 3 OF 3 SHEETS				
LITH D	EPTH	DESCRIPTION OF MATERIALS	FIELD SCREEN RESULTS	CORE BOX NO.	SAMPLE NO.	BLOW COUNTS	REMARKS
		address       10 - 15' CL (Cont.)         Clay.       15 - 20' CL         Clay. Light       yellowish brown, soft to         firm, slightly moist.       10 - 15' CL (Clay. Light)         Bottom of hole.       10 - 15' CL (Cont.)		NO.	NO.	COUNTS	15 - 20' Moist. 20' Stopped drilling.
21 furty/drillog.prs	<u> </u>	PROJECT Fort Riley High Priority Site 1	Investigations -		rea		HOLE NO. SB4

				НЛ	W	DRIL	LI	NG L	OG	r r			HOLE N SB5	Ю.
1	ANY NAM Berger &		ates Inc					SUBCON					SHEET	
3. PROJE	CT						ne we	stern Wi 4. LOCAT		KS		·	OF 3 2	SHEE 15
	Priority Site		tigation . F	Fort Riley, KS							) area, Fort R DESIGNATIO			
John G		EK							e drill		JESIGNATIO	NOFDRILL	-	
	AND TYPE		ING	4.25 x 8" Ho				8. HOLE			<u> </u>			
EQUIP		MMPL	ING	CME contin	uous co	ore sampler		North of 9. SURFA			N			
								1194'(t						
								10. DATE 29 Sep		r 1993		11. DATE C 29 Sept	COMPLET	
12. OVERI N.A.	BURDEN	THICK	VESS						IGRO	UNDWA	TER ENCOU	NTERED		
	HDRILLEI	D INTO	ROCK				N.A. 16. DEPTI	1 TO W	ATER A	ND ELAPSEI	TIME AFT	ER DRII	LING	
13. DEPTH DRILLED INTO ROCK       16. DEPTH TO WATER AND ELAPSED TIME AFTER DRILLING         N.A.       COMMENCED.         14. TOTAL DEPTH OF HOLE       17. OTHER WATER LEVEL MEASUREMENTS (SPECIFY)														
18.0'								II. UTHE	K WAI	ERLEV	EL MEASURI	EMENIS (SI	PECIFY)	
18. GEOTECHNICAL SAMPLES DISTURBED UNDISTURBED 19. TOTAL NUMBER OF CORE BOXES N.A.														
20. SAMPL ANALY	ES FOR C	HEMIC		VOC		METALS		THER (SPI PA 6020 IC		OTHE	R (SPECIFY)	OTHER (S	PECIFY)	21. TOTAL CORE RECOVERY
					Meta	ity Pollutani Is		PA 8020 IC. PA 8330 HI				4		RECOVERI
22. DISPOS	SITION OF	HOLE	B/	CKFILLED	MONT	IORING WEI	I C	THER (SPI	CIFY	23. SIG	NATURE OF	INSPECTOR		
				Х				Grouted			m.	mic	~	
штн.	DEPTH		DESCRIPT	ION OF MATER	UALS	FIELD SCREEN RESULTS	COR BOX NO.	SAMPLE		BLOW		REM	ARKS	
			A) (7)				LNU.	NO.	-10	OUNTS				
	-	7	- 4' CL	ark brown,		0.1 ppm (0 - 4')					Recov	ery 20	)".	
	=		-	n limestone		· /								
	_		-	ts. Well										
	1	11 I	5	ated. Some	.									
		•	rganics.											
		1	- 6				ļ							Ĩ
	_	ample												
		Sai											· .	
	2 —	ore			ł									
		Ñ												
	 	ontinuous			[									ĺ
		inu												
	_	on								i				
	3 —	0												
								OBOE						
								SB5-00						
								disturbed	<b>'</b>					
								(3'-4')						
	4 —	Ā	· · 8'			0.1 ppm			_					
				gray, silty, wi		(4 - 8')		Ì			Recov	erv 4'.		
calcareous nodules.														
				clay, light										
				, with limesto below, dry,	ne									
	5		sturbed.											
			PROJ		v Site 1		0.0.0					HOLEN	iO.	
tydrillog.prs			rort	Riley High Priorit	y sule Ir	vesuganous	- 08/	JU Area				SB5		

•

			HOLE NO. SB5					
PROJEC High Pr	T iority Site I	nvestigation, Fort Riley, KS		INSPE Mike	CTOR Miles			SHEET 2 OF 3 SHEETS
цтн	DEPTH	DESCRIPTION OF MATERIALS	FIELD SCREEN RESULTS	CORE BOX NO.	SAMPLE NO.	BLOW COUNTS	]	REMARKS
	6	<b>4 - 8</b> ' Clay. (Cont.)	0.2 ppm		OBOD- SB5-002 (5'-6')		Disturbed	soils
·	7	us Core Sample					Disturbed Undisturb	
	9 9	8 - 10' CL Clay. Light brown, silty with calcareous shale and limestone fragments. Consolidated and undisturbed, dry.	0.2 ppm		OBOD- SB5-003 (9'-10')		Recovery	2'.
	ĨĦĨ	10 - 14' CL Clay. Light brown, silty, no fragments Well consolidated, dry.	0.1 ppm					
niyetrilog.pr	13	PROJECT Fort Rikey High Priority Site In	Ivestigations -	- OB/OD	Area		HOL SB	E NO. 5

ftrly/drillog.prs

		HTWI	DRILI	LING	LOG			HOLE NO. SB5
PROJEC High Pr		nvestigation , Fort Riley, KS		INSPECT Mike N	OR			SHEET 3 OF 3 SHEETS
LITH	DEPTH	DESCRIPTION OF MATERIALS	FIELD SCREEN RESULTS	CORE BOX NO.	SAMPLE NO.	BLOW		REMARKS
		10 - 14' Clay. (Cont.) 14 -15' ML Silt. light gray, clayey with some very fine sand. 15 - 16' ML Silt, reddish brown, clayey with some very fine sand and some limestone tragments. 16 - 18' CL Clay, silty, olive green. No fragments. Well consolidated.						
		Bottom of hole					18' Stoppe	

ftrty\drillog.prs

•

Fort Riley High Priority Site Investigations - OB/OD Area

			HI	W	DRIL	LIP	NG L	OG	r r			HOLE NO. SB6	
	ANY NAME						SUBCON					SHEET 1	
3. PROJE		Associates,	IIIC.		Layı	e wes	tern – Wi 4. LOCAT		KS			OF 3 SHEETS	
			on, Fort Riley, KS				EOD I	Range,		area. Fort R		·····	
5. NAME John Ge	OF DRILLE ornick	ER					6. MANU Mobile			DESIGNATIO	N OF DRILI	•	
	AND TYPES		4.25 x 8" Ho				8. HOLE	LOCAT	ION				-
EQUIP	ING AND S. MENT	AMPLING	CME contin	uous a	ore sampler		Northe:			N			
							1185'(t			·			
					<u></u>		10. DATE 1 Octo				1	XOMPLETED xer 1993	
1	BURDEN T	HICKNESS					15. DEPTH			TER ENCOU	· · · · · · · · · · · · · · · · · · ·		b
N.A. 13. DEPTH	HDRILLED	INTO ROC	ĸ				<u>N.A.</u> 16. DEPTE	ITON	ATERA	ND FLAPSEI		ER DRILLING	
N.A.							COMM	ENCE	).				
14. TOTAL 18.0'	DEPTHO	FHOLE					17. THE	RWAT	ERLEV	EL MEASUR	EMENTS (S	PECIFY)	
18. GEOTI N.A.	ECHNICAL	SAMPLES	DISTURBED		UND	ISTUR	BED	19. TC	TAL NU	MBER OF CO	ORE BOXES	<u> </u>	
20. SAMPL ANALY	ES FOR CH	<b>IEMICAL</b>	VOC		METALS				OTHE	R (SPECIFY)	OTHER (S	PECIFY) 21. TOT	
ANALI	313			Priori Meta	ity Pollutant		A 6020 IC A 8330 HI		l			REC	OVERY
22. DISPOS	STTION OF I	HOLE	BACKFILLED	1	IORING WEL				23. SIGI	NATURE OF	INSPECTOR		
			X				Grouted			5	3th -	. Kll	
LITH	DEPTH	DESC	RIPTION OF MATER	UALS	FIELD SCREEN RESULTS		SAMPLE		LOW			ARKS	
		0 - 2	<i>A</i> ?			NO.	<u>NO</u> .		DUNTS	0.10			
			Recovery.		0.1 ppm					0 - 18	Dry.		l
			cecovery.										
	1												
											•		
		0)											
	2 —	nple											
		Sar											
		ore											
		<b>SO</b>	9.4' CL										
	Ξ		(disturbed zon	e)									
	3 —		noderately lidated, abund										
			fragments.						1				
			.4' CL	{									
	크		(disturbed zor	ne)									
		-	l fragments les										1
	4		or equal to 1", or										
			dark brown.					·					
						ļ							ŀ
					· ·		OBOD	1					
	<u>,</u> 二						SB6-00						
	<u> </u>	 	ROJECT		-		(disturbed)				HOLE		

•

					r 20. 			
		HTW	DRILI	LIN	G LOC	r T		HOLE NO. SB6
PROJEC High Pr		vestigation, Fort Riley, KS		INSPE Steve	CTOR e Keller			SHEET 2 OF 3 SHEETS
LITH	DEPTH	DESCRIPTION OF MATERIALS	FIELD SCREEN RESULTS	CORI BOX NO.	SAMPLE NO.	BLOW COUNTS		REMARKS
	7	<ul> <li>3.4 - 8.4' CL (Cont.) Clay. (disturbed zone) Gravel fragments less than or equal to 1", clay moist, dark brown.</li> <li>8.4 - 9.5' Weathered shale. (undisturbed) Poorly indurated, semi-plastic, partings contain white powdery carbonate mineral. Dry and overall color medium yellow-green.</li> <li>10.7 - 13.5' ML Siltstone. Medium yellow-green, well sorted, dry, poorly indurated. Grades downward to unlaminated clay with some blocky fracturing, minor orange oxidation mottles, dry.</li> </ul>	0.2 ppm 0.1 ppm (9.5°-13.5°)		Cont. OBOD- SB6-001 disturbed (4.5'-8') OBOD SB6-002 (11.5'-12.5')		Disturbed Undisturt Dry. <b>9.5 - 10.7'</b> No Recov	very.
		PROJECT					HOL	ENO

### ftrly\drillog.prs

PROJECT Fort Riley High Priority Site Investigations -- OB/OD Area

.

HTW DRILLING LOGHOLE NO. SB6ROJECT High Priority Site Investigation , Fort Riley, KSINSPECTOR Steve KellerSHEET 3 OF 3 SHEETS													
PROJECT			INSPECT	OR		SHEET 3							
High Priority Site	Investigation, Fort Riley, KS		Steve K	leller		OF 3 SHEETS							
LITH DEPTH	DESCRIPTION OF MATERIALS	FIELD SCREEN	CORE BOX	SAMPLE	BLOW	REMARKS							
	10.7 -13.5' (Cont.) Silt 13.5 - 15.5' Siltstone. Highly indurated medium gray-green, well sorted siltstone, calcareous, one possible shell fragment. Trace coarse-grained calcite crystals. Dry, "pops" in fingers, calcareous. 15.5 - 18' No Recovery.	0.1 ppm (13.5'-18')	NO.	NO.	COUNTS								
	Bottom of hole.					18' Stopped drilling.							
19 19 20 20	PROJECT					HOLE NO.							

Fort Riley High Priority Site Investigations - OB/OD Area

					HT	W	DRIL	LP	NG L	OG	r			HOLE N SB7	0.
1. COMPA							2. DRII	LING	SUBCONT	RACT	OR			SHEET	
<u> </u>		& A	ssociates, I	nc.	•		Layn	e Wes	tern – Wi		KS			OF 2 S	HEETS
	riority S			m . Fc	ort Riley, KS					Range.		area, Fort R			
5. NAME ( John Go		LLE	R							FACTL e drill [		ESIGNATIO	N OF DRIL	L	
7. SIZES A		PES	OF		4.25 x 8" Hol				8. HOLE	LOCAT					
DRILLI EQUIPN		DSA	MPLING		CME contin	uous co	ore sampler		North o			,			
	••••••								9. SURFA		SALIO!	<b>`</b>			
									10. DATE					COMPLET	ED
12. OVERI N.A.	BURDE	NTH	ICKNESS						15. DEPTH N.A.	HGRO	LINDWA	TER ENCOU	NTERED		
13. DEPTH N.A.	IDRILL	EDI	INTO ROC	К		•						ND ELAPSEI	) TIME AF	TER DRIL	LING
14. TOTAL 9.5'	DEPTI	HOF	HOLE				<u> </u>					EL MEASURI	EMENTS (S	PECIFY)	
18. GEOTE	ECHNIC	AL S	AMPLES		DISTURBED		UND	ISTUR	BED	19. TC	TAL NU	MBER OF CO	ORE BOXE	s	
N.A. 20. SAMPL		CIT	ENGON		Noc	<b>.</b>			TLUED (OP)		Lorr		077	000000	
20. SAMPL ANALY		, CHI	CMICAL		VOC		METALS		A 6020 IC		<u>I OTHE</u>	K (SPECIFY)	OTHER (	SPECIFY)	21. TOTAL CORE RECOVERY
						Meta	ls	EP	A 8330 HI					•••••••	
22. DISPOS	TION	OF H	IOLE	BA	CKFILLED	MONT	TORING WEL	1 0			23. SIGI	NATURE OF	INSPECTO	r ~. 4	$\mathcal{M}$
					_X				Grouted			· · · · · · · · · ·	STr.	m. h	Min-
штн	DEPI	н	DESC	RIPTI	ON OF MATER	RIALS	SCREEN	CORE BOX	SAMPLI		BLOW		REN	MARKS	
		=	0 - 0.5	, OH			RESULTS	NO.	NO.	0	OUNTS				
		$\neg$	1		moist, organ	ic	0.2 ppm (0'-4.5')					Moist	•		
		$\exists$	clayey												i
			0.5 -												i
					dium brov										
	1 —	1			oist, distu										
		二.	5 zone	mat	erial, mino	or									
			angul	lar g	ranules an	id									
		<u>ا</u>	le pebbl	les.							:				
			ore						овог						
	2 -		ŭ						SB7-00						
	·		snc						(1'-3')						
			nu						ļ						
			ontinuou												
		-	Ŭ												
	3 -									-					ł
		-	3 - 4.			, , ,					,				
				-	ghly distur	Ded,									
	•			•	stic, with										
			1		angular										
	4 —		granu	nes a	and pebble	:s.									
	-														
		_	4.5 - 4.	7' CI			0.2 ppm	l				Distu	hed s	oils	
					as 0.5'-3').		(4.5'-9.5')		OBOL	)-				J113.	
	-		4.7 - 6.	1'					SB7-00						
	5_				inued on ner	rt pg.)			(4.5-5.5')					_	
futboling ran			F	ROJE Fort I	CT Riley High Priori	ity Site I	ovestigations	- OB/0	DD Area				HOLE SB7	NO.	

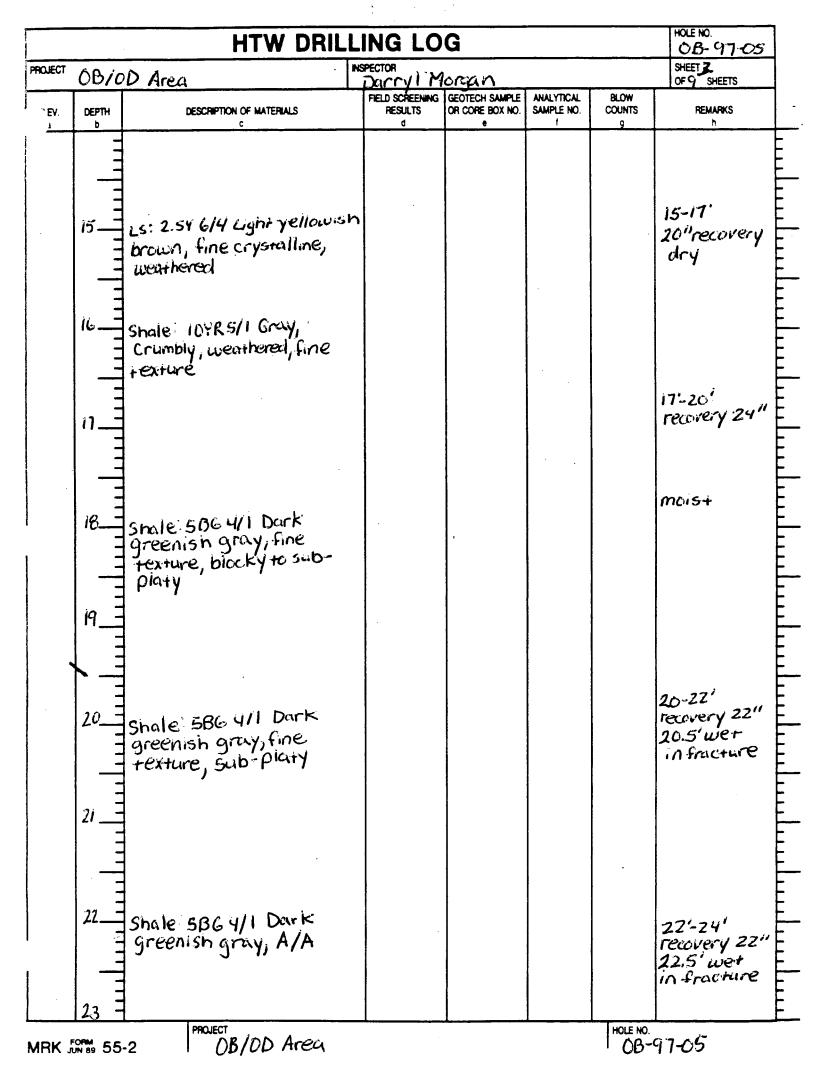
.

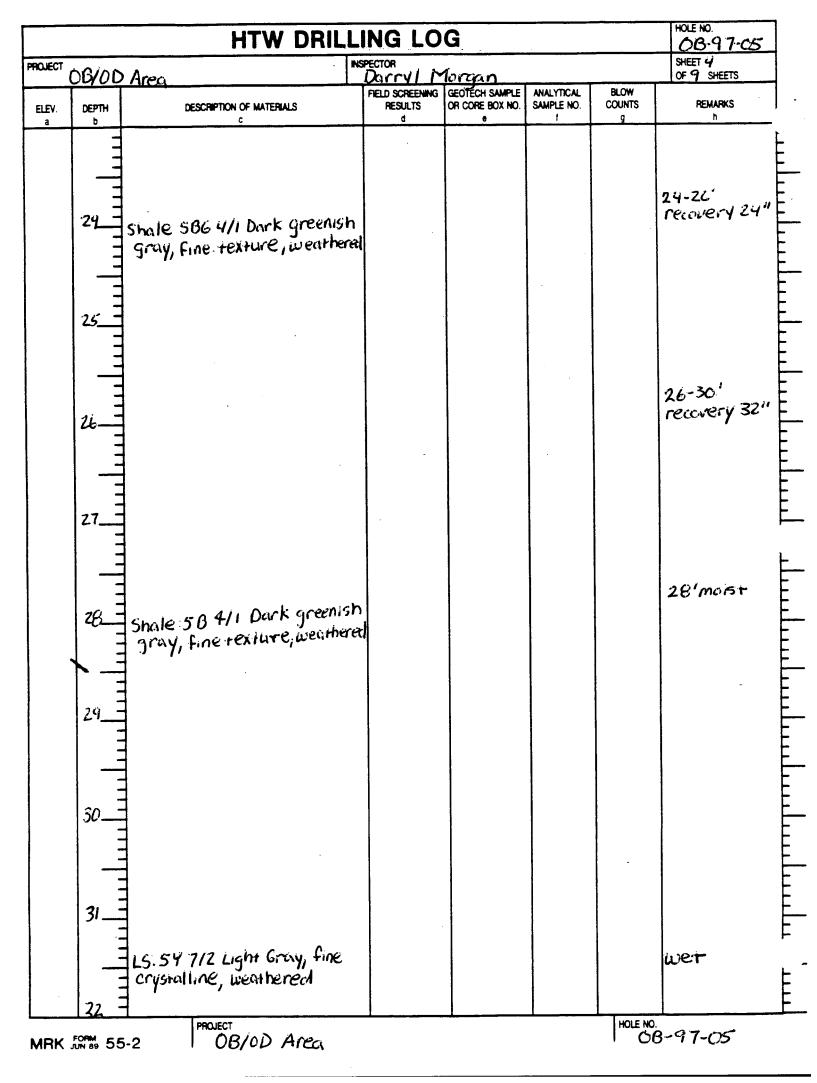
۲

farty/dnillog.prs

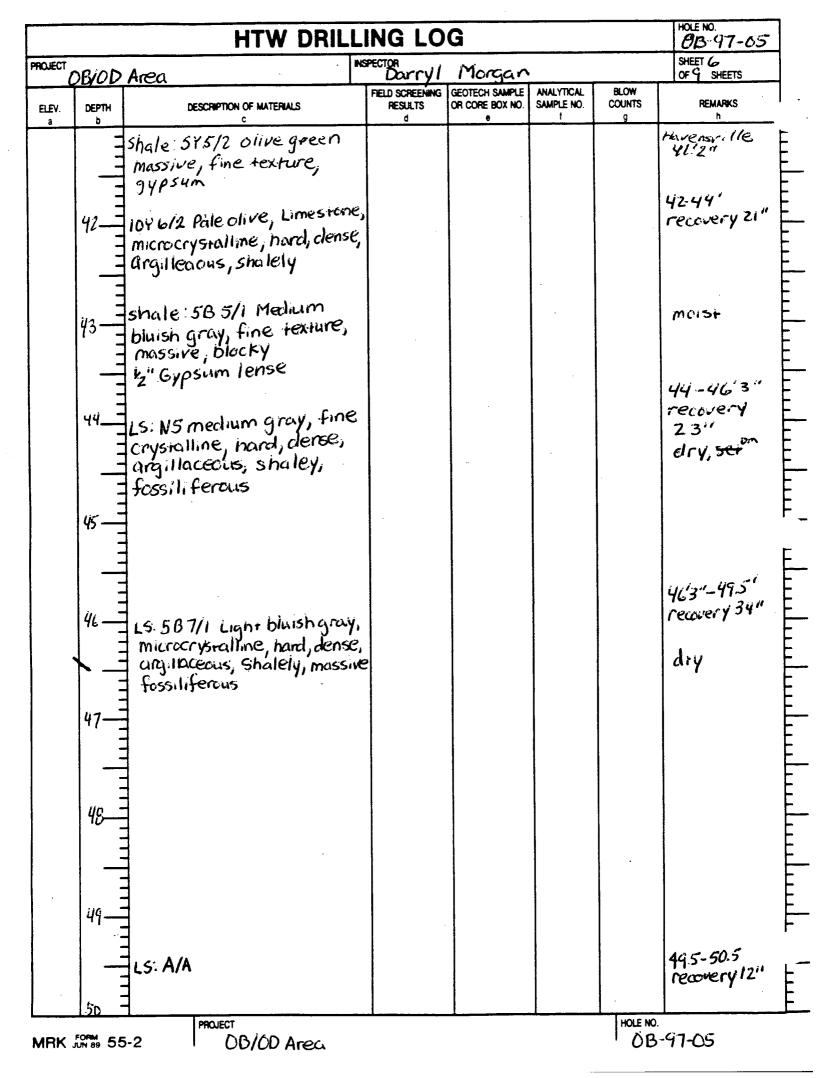
		HTW	DRILI		G LOC	3	HOLE NO. SB7
PROJEC High Pr		nvestigation , Fort Riley, KS		INSPE			SHEET 2 OF 2 SHEETS
итн	DEPTH	DESCRIPTION OF MATERIALS	FIELD SCREEN RESULTS	CORE BOX NO.	SAMPLE NO.	BLOW COUNTS	REMARKS
		4.7 - 6.1' CL (Cont.) Clay. Intercalcated light brown and olive-yellow, fissile, minor silt content Blocky, nearly dry. 6.1 - 9.5' CL Clayey Silt. Light yellow-green, highly fissile, ochre oxidation patches, dry, highly laminated, weakly indurated, with trace black fracture coatings.			(cont.) SB7-002 OBOD SB7-003 (8.5-9.5)		5' Undisturbed Soils, nearly dry. 6' Intercalcated because horizontal color layering is not necessarily stratigraphic bedding. 9.5' Stopped Drilling.
		Bottom of hole.					

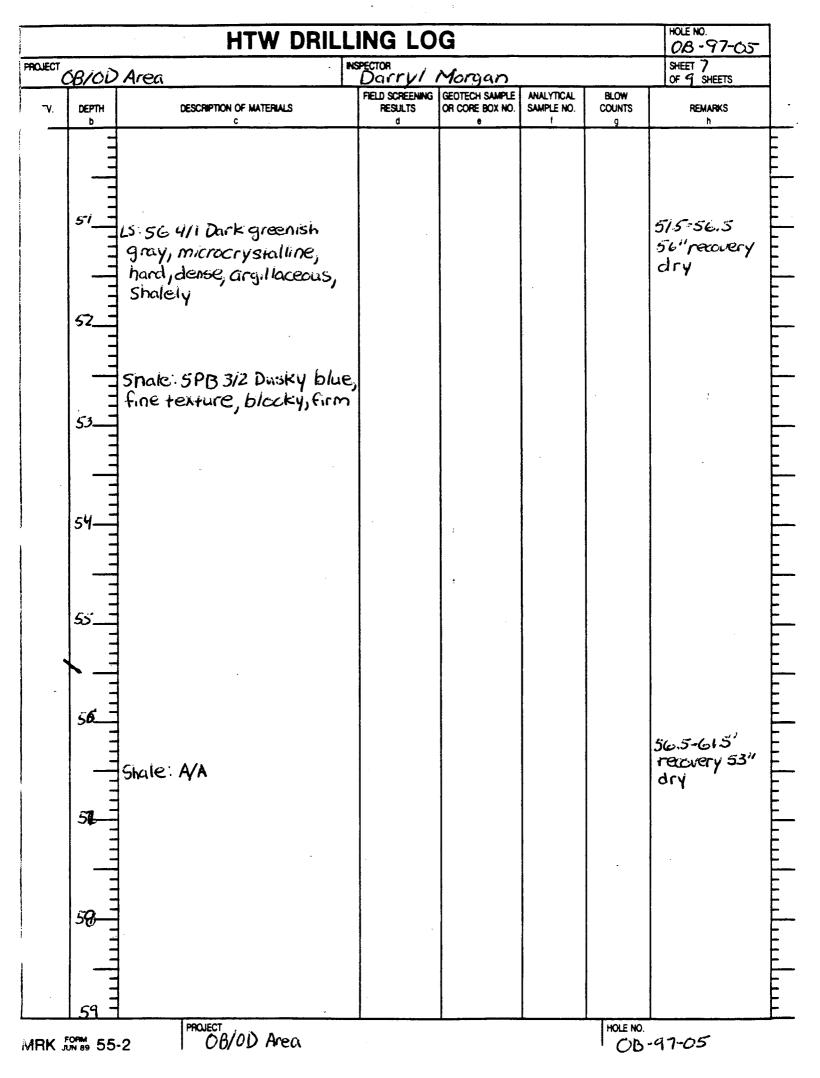
Fort Riley High Priority Site Investigations - OB/OD Area


HTW DRILLING LOG       HOLE NO.         1. COMPANY NAME       2 DRILLING SUBCONTRACTOR       SHEET 1         Louis Berger & Associates, Inc.       Lavne Western – Witchita, KS       OF 1 SHEETS														
				<u> </u>	ſW	DRIL	LÏ	NG L	<u>DG</u>	۱ ۲				ю.
1			sociates,	Inc.				-						
3. PROJE				E Dil Vo				4. LOCAT	ION					
5. NAME				on, Fort Riley, KS	<u> </u>	. <u></u>					) area, Fort R DESIGNATIO			
John Go								Mobile	drill I	B-57				
	NG AN		OF MPLING	4.25 x 8" Ho CME contin	<u>llow S</u> nuous (	tem Auger		8. HOLE I Southea						
EQUIPI	MENT							9. SURFAC	EEL		N	-	<del></del>	
								1180'(to 10. DATE 9		ED		11. DATE (	COMPLET	ED
2 October 1993     2 October 1993       12. OVERBURDEN THICKNESS     15. DEPTH GROUNDWATER ENCOUNTERED														
4.5								IS. DEPTH N.A.	GRO	UNDWA	TER ENCOU	NTERED		
13. DEPTH DRILLED INTO ROCK 0.5' 16. DEPTH TO WATER AND ELAPSED TIME AFTER DRILLING COMMENCED.														
14. TOTAL	DEPTH	IOFI	HOLE								EL MEASUR	EMENTS (S	PECIFY)	
5' 18. GEOTE	CHNIC	AL S	AMPLES	DISTURBED	,	UNI	DISTUI	RBED	19. TO	TAL NI	MBER OF CO	ORE BOXES		
N.A. 20. SAMPL		CLIE		1/00	<del></del>									
ANALY:			MICAL	VOC	Prio	METALS rity Pollutan		THER (SPE A 6020 ICE	<u>CIFY)</u> MC		R (SPECIFY)	OTHER (S	PECIFY)	21. TOTAL CORI RECOVERY
1 DIODOO	THE OLI I				Met	als	EP	A 8330 HP	LC					
2. DISPOS	rnon	OF HO	DLE	BACKFILLED	MON	ITORING WE			CIFY)	23. SIG	NATURE OF		ξ	$\mathcal{N}$
				X	<u> </u>			Grouted				STL	m. 1	illen
LITH	DEPT	н	DESR	IPTION OF MATER	IALS	FIELD SCREEN RESULTS			- I -	LOW		REM	ARKS	·
		_	0 - 2.	8' OH		0.2 ppm								
	•		Distu	irbed zone		(0'-4.5')								
	•		1	rial. Clay.										
				um to dark										
		Ξ		n, moist, plast				ľ						
	-			minor angular tone fragment			Ì							
	-		1	o lower contac										
	-													
	2 —	<u> </u>							_					
	-		4								2' Dist	urbed	soils	. Moist.
	-	e Sa						OBOI SB8-00						
	-	15						(2'-3')	1					
	-	1 suc	2.8 - 4.	5' CL										
	3	٦ã		Undisturbed) Lig					1		<b>01 T</b> T			<b>z</b> .
	-	Ξť		een, moist, plasti irbed, with	с,			OBOD			3' Unc	listurb	ed. N	Aoist.
	-	Ξ ^Ω	minor s	silt content.				SB8-002	2					
	_	1		y weathered shale		1. 1.		(3'-4')						
4 — Inincoarse-grained sand lens at approximately 4',														
	1	7	approxi	imately 0.5' thick	.									
	_	Ŧ		ant carbonaceous al 4'-4.5'.	•	0.2 ppm								
		Ξ	Residu			(4.5'-9.5')								
			Botto	m of hole.							5' Stop	pped I	Drillir	ng.
	<u>.</u>	-	PI	ROJECT			<u> </u>		+			HOLEN	'n	<u> </u>
y\dnillog.prs			1	Fort Riley High Priori	y Site I	ovestigations -	- OB/O	D Area				SB7		


• • • • · · · · · · · · ·

Mobilization #1 -March/April 1997 (Wells OB97-05 through OB93-08)

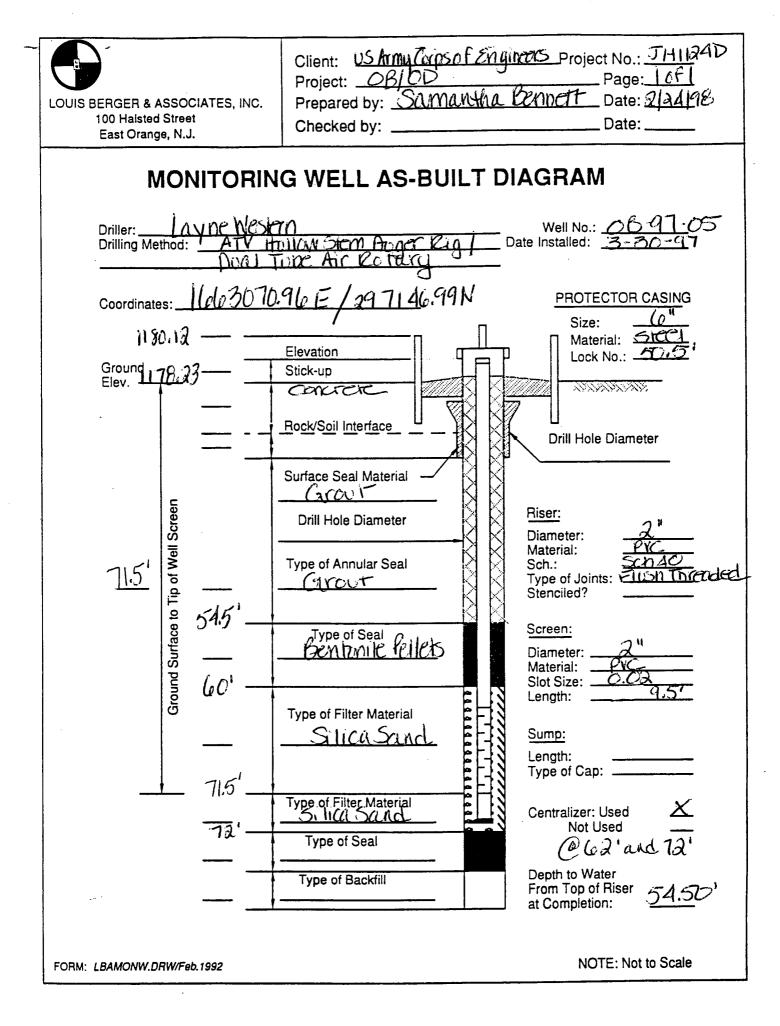

<b></b>			HTW [	DRILLI	NG	LO	G				HOLE	no. 3~り7-05
1. COMPA				2.		SUBCONTR	ACTOR 1237ern				SHEET	SHEETS
PROJEC	т. ^ч	jers Asso	ciares	L	y	4. LOCAT	ON,					
	B/OD	Area					<u>Riky k</u>	CICNIA	TION OF DRILL,			
5. NAME O		ornick				ATV -	Hallow.	Stew	Aucen Ki	Dut	Uhe A	in Rotary
7. SIZES A	ND TYPES OF	DRILLING D	val Tube hin Roto			8. HOLE I		1	t the P	$\pi$ + R		2+
AND SA	MPLING EQUI	لي الم	D' bit by remi			9. SURFA	CE ELEVATION	<u>N c</u>	TAT	VMIL DU		11
				8	-	11	78.39					
						10. DATE	STARTED 20-97	P		11. DATE COMP 3-30		
12. OVERE	BURDEN THIC	iness (Weath	<u> </u>			15. DEPT	H GROUNDWA	TER EN	COUNTERED	, <u></u> _,	<u></u> ๅ	)
	8′	(Weath	ered)			16 0501	20.5		APSED TIME AFTE	CA.CTURES		
13. DEPTH						ID. DEPT	51.5		6 hours			
14. TOTAL	DEPTH OF H		<u></u>			17. OTHE	R WATER LEV		SUREMENTS (SP	ECIFY)		
18. GEOTE	CHNICAL SAM	APLES	DISTURBED	UNDI	STURBED	19	. TOTAL NUM	BER OF	CORE BOXES			
	Yes_				<u> </u>		(SPECIFY)		HER (SPECIFY)	OTHER (SF	ECIEV	21. TOTAL CORE
20. SAMPL	. 2	MICAL ANALYSIS	VOC	METAL	.5		(SPECIFY)		HER (SPECIFT)	UTTER (Sr		RECOVERY
ļ	Y25		×			07115	(0050E)()	00.0		505 67 00		>98 %
22. DISPO	SITION OF HC	DLE	BACKFILLED	MONITORING	WELL	OTHER	(SPECIFY)		signature of in Na:Vrijl		<b>a</b> 0	
	Yes						Lanatrou à	1				
ELEV.	DEPTH b	Ď			CREENING SULTS d	GEOTECH S OR CORE BO e		ANALYTICAL SAMPLE NO. f	BLOW COUNTS g		REMARKS h	
		Medium fine to	, Dark yellowi Medium plast clilgtancy, tr Coarsegrave	icity, ace el-chert								very 58" Sy mois <del>i</del>
MRK	FORM 55		PROJECT OBIOD	Anca	· · · · · ·		· · · · · · · · · · · · · · · · · · ·			HOLE NO.	97-C	5


		HTW DRILL	ING LO	G			HOLE NO. 0B-47-05
PROJECT	)B/01		Darry M				SHEET Z OF 9 SHEETS
ELEV. a	DEPTH b	DESCRIPTION OF MATERIALS		GEOTECH SAMPLE OR CORE BOX NO. e	ANALYTICAL SAMPLE NO. f	BLOW COUNTS g	REMARKS
		2.546.4 Light yellowish brown, medium plasticity medium dilatancy, medium strength, CL					5-10' 22"recovery
	7						
	8	LS: 2.576/4 Light Vellowist brown, fine crystalline, Weathered, some chert 8-91 fossiliferous					8' Hard Drilling
	9	LS: 2.5Y 6/4 Light Vellowish brown, fine crystalline,					10-15' recovery 17"
	~	some weathered shale					
	17					- -	
MRK		PROJECT 0B/OD Area				HOLE NG	-97-05





	HTW DRI	LLING LO	G			HOLE NO. 08-97-05
TOBJOD,	Areu	INSPECTOR Darry / /	Morcan			SHEET 5 OF 9 SHEETS
DEPTH	DESCRIPTION OF MATERIALS	FIELD SCREENING RESULTS d		ANALYTICAL SAMPLE NO. 1	BLOW COUNTS 9	REMARKS
33_1	5: Pale yellowish orange 104 R 8/6, pitted, vuggul, microcrystalline, hard, de	nse				auger refasa 32.5'-36.5 Recovery 46"
34_1	LS: 104R6/2 Pale yellowis brown, pitted, vuggy, weathered, hard, dense, Microcrystalline, chert and gypsum throughout	sh				dry moist
35	und 99ps		4		-	saturated
31	LS: 5PB 3/2 Dusky blue pitted vuggy, hard dens microcrystalline, very cherty	e e,				36.5-41.5 recovery 36
36	Gypsum Z"lense LS: IDYR G/Z Pale yellou brown, pitted, Vuggy, microcrystalline, hard, dense, with chert and gypsum	ں ا	-			
40						
41 =	PROJECT					






CT	ARIAN			NG LO Darryi M				SHEET & OF 9 SHEETS
I.	OB/OD DEPTH	DESCRIPTION OF MATERIALS		FIELD SCREENING RESULTS	GEOTECH SAMPLE OR CORE BOX NO.	ANALYTICAL SAMPLE NO.	BLOW COUNTS q	REMARKS
		LS: 56 4/1 Dark greenish g microcrystalling hardide	ray nse				<b>*</b>	59'3'-59'6"
		LS: 56 4/1 Dark greenish g microcrysialline, hard, dei argillaceous, shalely Shale: 5PB 3/2 Dusky b fine texture, blocky, fim	lue					
	60_1	tine texture, blocky, fim	m					
	61					· .		
								615-66.5' recovery 60"
	62		avi					
		is: 56 8/1 Light greenishgr finecrystalline, hard, dens angillaceous, very fassili	ry, Ri, Caroli			4		s <del>aturated</del> dry
		Crinoids	rtiu					
	63							
		507/1 Light bluishgray, Chert	9"					
	64	LS: 10YR6/2, Pale yellowis	'n					Saturated
	<u> </u>	brown, fine to micirocrys Vuggy, pirted, chalky	sralli	ne				
	65_							
	66							
		$\frac{1}{2}$	eh					66.5-68.75
		LS:10YR 6/2, Pale yellows brown, fine to microcrys	halln	e,				recovery 26'
	67	Pitted, vuggy, fossiliferau Chalky	-					
	-	Chert: 587/1 light bluish	graz	<b>y</b>				
	68	PROJECT						

	HTW DRILL		G			HOLE NO. 08-97-05
BIOD A	areq	Darry 1	Morgan			SHEET 9 OF 4 SHEETS
EV. DEPTH	DESCRIPTION OF MATERIALS	FIELD SCREENING RESULTS d	GEOTECH SAMPLE OR CORE BOX NO. e	ANALYTICAL SAMPLE NO. f	BLOW COUNTS g	REMARKS
12-155	Ale 5642/1 Greenish hack; fine +exture; blacky	2				68' drill bit drop 4" 68'9"-730' Fecovery 54" TD 730'

,



_____

WELL SPECIFICATION FORM

----- .

---

CLIENT: US ARMY CORPS. OF ENGINEERS - KANSAS CITY DISTRIC JOB NUMBER: JHIJAD
WELL OWNER: FORT RILEY - DES ADDRESS: BUILDING A07 MAIN POST CITY, STATE, ZIP CODE: FORT RIJEY, ROUDSOS 66442-6016 PHONE: (785)239-3343
WELL NUMBER OR OTHER IDENTIFICATION: 08-97-05 WELL INSTALLATION DATE: 3-30-97 GEOLOGIST SUPERVISING INSTALLATION: Darry Morgan
ground surface elevation (FT):       1178.23         top of casing elevation (FT):       1180.12         well stick-up (FT):       1:891
TOTAL BORING DEPTH (FT):     72'       BORING DIAMETER (IN):     8.25''
total depth of outer casing (FT): $50.5'$ outer casing material: $512C$ outer casing diameter (IN): $6''$
TOTAL DEPTH OF INNER CASING (FT. EXCLUDING SCREEN): $\frac{102}{PVC} = FTOM Surface (04'=Totze)$ INNER CASING MATERIAL: $2^{11}$
INNER CASING DIAMETER (IN): QC TOTAL LENGTH OF WELL SCREEN (FT): 9.5' WELL SCREEN MATERIAL: QVC WELL SCREEN MATERIAL: Q''
well screen diameter (FT):     2       screen slot size (IN):     0.03

LOUIS BERGER AND ASSOCIATES, INC. WELL SPECIFICATION FORM

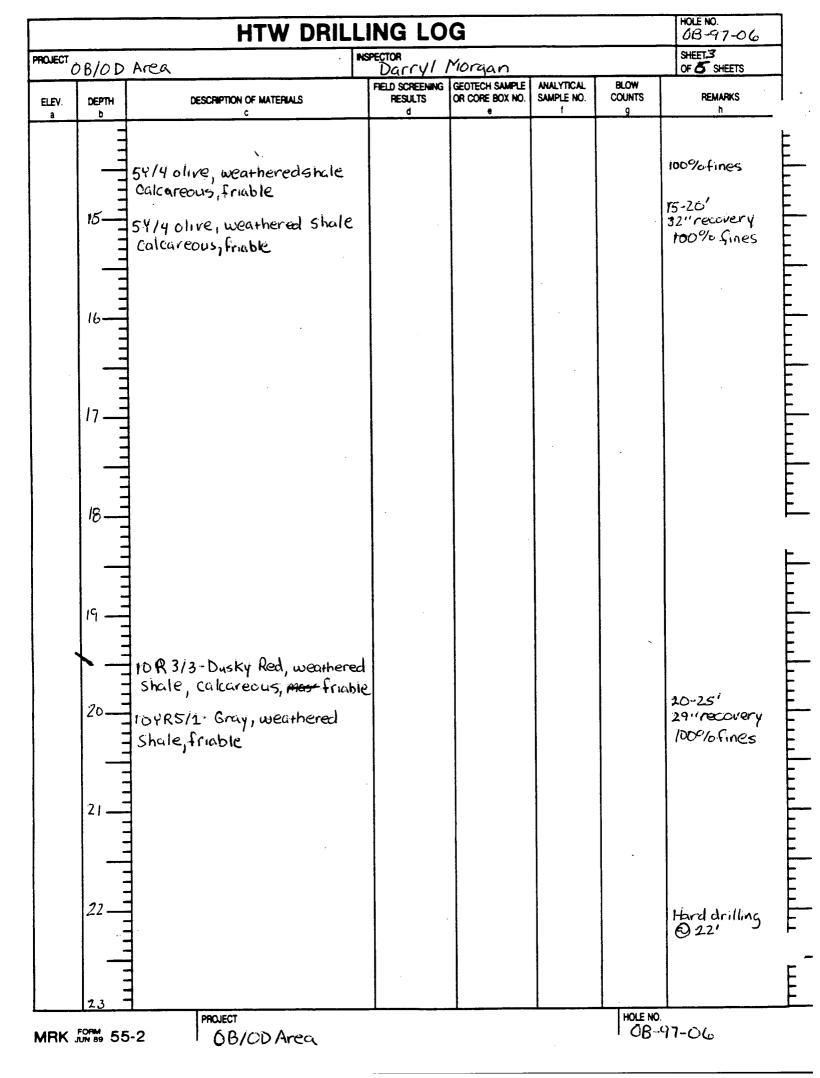
WELL SPECIFICATION FORM (Cont'd)

**.**..

WELL NUMBER:
BACKFILL MATERIAL AROUND SCREEN:
SEAL MATERIAL ABOVE SCREEN:
BACKFILL MATERIAL AROUND CASING:
DEPTH RANGE OF BACKFILL (FT):
DESCRIPTION OF TOP SEAL: Grout Capped With Concrete
DESCRIPTION OF WELL COVER: (o" DIAMETER STEEL.
OTHER ADDITIONAL INFORMATION:

LOUIS BERGER AND ASSOCIATES, INC. WELL SPECIFICATION FORM

-


JANUARY 1992

•

CLIEN	TARMY CORP OF ENGINEERS-	KANSAS JOB	NO. JG-	12.70		
	PERSONNEL Darryl Morgan	-179		_ SHEET:/	OF:	
1.	WELL NO .: 08-97-05					
2.	date of installation: $3-29-97$	!				
3.	DATE OF DEVELOPMENT: _6-10-9	7	•			
4.	STATIC WATER LEVEL: BEFORE DEVELOPM	лент <u>56.3</u>	<u>5</u> FT. 24 HOUE	RS AFTER 40.5	56-34 6 FT.	
5.	QUANTITY OF WATER LOSS DURING DRILLI	ING, IF USED <u>(</u>	). <u>0</u> _gal.			·
6.	QUANTITY OF STANDING WATER IN WELL A	AND ANNULUS F	BEFORE DEVELOP	MENT <u>18.30</u>	GAL.	
		START		UNG	END	
7.	PHYSICAL APPEARANCE	Gray	1t gray	clear	<u>clear</u>	
	SPECIFIC CONDUCTANCE (umhos/cm)	[248	1194	1151	1/84	,
	TEMPERATURE (°C)	76.8°F (2)	4.9) <u>75.99</u> (24	1,4) <u>75.39F/24</u>	) 73.0°F (2	12-8)
	pH (s.u.)	7.41	7.00	7.54	7.02	,
8.	DEPTH FROM TOP OF WELL CASING TO BOT	FOM OF WELL _	<u>73.0</u> _{FT}			
9.	screen lengthFT.					
10.	DEPTH TO TOP OF SEDIMENT: BEFORE DEVE	elopment <u>72.</u>	<u>94</u> ft. after di	EVELOPMENT <u>72</u>	<u>98 </u> ft.	
11.	TYPE AND SIZE OF WELL DEVELOPMENT EQ	UIPMENT: S+0	liniess stee	1 bailer		
12.	DESCRIPTION OF SURGE TECHNIQUE, IF USE	o: <u>Surg</u> e	with stainl	ess steel b	ailer	
13.	HEIGHT OF WELL CASING ABOVE GROUND ST		· ·			
14.	quantity of water removed $55.0$	_GAL. TIME OF	REMOVAL 4hr	<u>5 50min</u> hr./MIN.		
15.	TURBIDITY IN NEPHELOMETRIC UNITS	12.6	NTUs			

				HTW	DRILI	LING	i LO	G		<u> </u>		HOLE	NO. 5-97-06
1. COMPA	NY NAME	raurd	Ac	sociates		2. DRILLING	SUBCONT	NCTOR STR. M.				SHEE OF A	t 1 Sheets
3 PROJEC		<i>.</i>	115	Jeonarca	A_	Layn	4. LOCAT		kc	·· , <u>, .</u>			
·	OF DRILLER	MEA			·		6. MANUF	ACTURER'S D	<u>n</u> Esigna	TION OF DRILL	101		01
Joh	n Gorn			123 11-11			ATV H	lollow &	en	Augsha	[Dual]	Val.A	is Rotry
•	NID TYPES OF		A	V Hollow Sten	Joy Ki	tie.	8. HOLE	OCATION N c.T	` n	B-93-0	53		0
			10	M 1 1 1		0	9. SURFA	CE ELEVATION				<u></u>	
					0		10. DATE	13.44		í	11. DATE COM		·
								1-97			3-23-0	77	
12. OVERI		KNESS				-	15. DEPT	H GROUNDWA	ter en	COUNTERED			
13. DEPTH	I DRILLED INT	O ROCK		<u>.</u>			16. DEPT		NDEL	APSED TIME AFT	ER DRILLING CO	MPLETED	
14. TOTAL	DEPTH OF H	Gros	ted	to 36.5' and 6	at well	)				SUREMENTS (SF	PECIFY)		
	ECHNICAL SAI	MPLES		DISTURBED	Ŭ	NDISTURBED	) 19	. TOTAL NUME	BER OF	CORE BOXES			<b>.</b>
20. SAMPI	LES FOR CHE	MICAL ANALYS	SIS	VOC	MET	TALS	OTHER	(SPECIFY)	ОТ	HER (SPECIFY)	OTHER (S	PECIFY)	21. TOTAL CORE RECOVERY
	25			$\times$					<b> </b>				>98 %
	SITION OF HO	)LE		BACKFILLED	MONITORI	NG WELL	OTHER	(SPECIFY)		Ignature of IN			
<u> </u>	ون				$\times$	• • • • • • • • • • •					Morga	<u>n</u>	
ELEV. a	DEPTH b			CRIPTION OF MATERIALS		RE	CREENING SULTS d	GEOTECH SA OR CORE BO e		ANALYZCAL SAMPLE NO. f	BLOW COUNTS 9		REMARKS .
		med St Mostly		rawn, med p zth, med dild wy, trace si lt							HOLE NO.	52" 100% Some	cecovery o Fines . Fe stain
MRK /	50 mm 55		PRO	OB/OD	Areq						HOLE NO.	97-00	6

EV. DEPTH		HTW DRILLING LOG										
EV. DEPTH	HOUECT OB/OD Area Darry Morgan											
	DESCRIPTION OF MATERIALS		GEOTECH SAMPLE OR CORE BOX NO.	ANALYTICAL SAMPLE NO.	BLOW COUNTS	OF SHEETS						
	10YR 4/3 - Brown, low plasticity,					5-10						
=	med d.latancy, low strength,					27"recovery 100% ofines						
	Some silt, some clay, ML					some Fe stain Mottle, dry						
<u> </u>						•						
Ť												
1_												
8												
۹ <u>-</u>												
10	munito o mai desiciti					10-15'						
	med dilatancy, med strength	)				33" recovery						
	104R4/3-Brown, med plasticity med dilatancy, med strength, mostly clay, little silt, CL					100% ofines						
	-											
12												
14 -	PROJECT				HOLE NO.							



		HTW DRILL	ING LO	G			HOLE NO. 08-97-06
ROJECT	ÔB/D	D Area	PECTOR Darryl Ma	xijan			Sheet 4 Of 6 Sheets
רי קע.	DEPTH	DESCRIPTION OF MATERIALS		GEOTECH SAMPLE OR CORE BOX NO.	ANALYTICAL SAMPLE NO. f	BLOW COUNTS g	REMARKS
	24	10R 3/3 Dusky Red, weathered Shale, crumbly					very moist to wet
	25	Shale 567 4/1; Dark greenish Gray, weathered,					25-27 <b>.5'</b> 32''recovery
	26						
	28	LS: 1067 7/2; Pale Yellowish Green, microcrystalline; hard; dense, argillaceous					core 27.5-30'
•							· · · ·
	29	LS-SY 8/1, Yellowish gray Microxrystalline, soft-crumbly Vuggy, pitted, weathered					29.0.'-29.5' Lost core Sample in Vuggy zone Saturated
	30	Shale: 56 312 Dusky green, Very fine texture, plany, firm, Calcareous LS: 1067 512 Gazyish green, Microcrystalline, hand, dense, Argillaceous				· ·	
	31	LS: A/A with quartz inclusion					
ARK !	FORM 55	PROJECT	<u></u>			HOLE NO.	47-06

		HTW DRILL	ING LO	G			HOLE NO. 08-97-06	
ECT D	BIOD	Area	PECTOR	Morgan			SHEET 5 OF SHEETS	
EV.	ОЕРТН b	DESCRIPTION OF MATERIALS	FIELD SCREENING RESULTS d	GEOTECH SAMPLE OR CORE BOX NO.	ANALYTICAL SAMPLE NO.	BLOW COUNTS q	REMARKS	
<u> </u>			<u>v</u>			y		-
	II							
	11							
	33							•
	<i>"</i>							
	111							
	, 111	. 8						
	34-1	563/2 Dusky green, platy, weathered Shale, 2"			-			
		LS: 5Y BIL yellowish graygreen,			· ·			
		Microciystalline, hard, dense, Vuggy, pitted						
	35	vuggy, piried						
					-		· · · · · · · · · · · · · · · · · · ·	
							35.5'-38.0' recovery 31"	
							recovery si	
	36	LS: 548/1 yellowish gray greer						
		hard, dense, microcrystalline, angillaceous, 2"chert layer Shale: 10645/2 Greenish gray,						
		angullaceous, 2" chert layer					36.54038.0	
		platy, fine texture, with gypsu	m				limy and Calcaeous	
	31	inclusions					Havensville	,
							Shale @ 36.5'	
1	<u> </u>							
				-				
	38—-	Shale: 56 3/Z Dusky green,					38.0-41.8"	
		platy, fine texture					recovery 44"	
							10/11/10 391	
	39	Shale: 56 3/2 Dusky green,					38'10''+0 39' Gypsum layer	~
	-	platy, fine texture					-//	
		LS 548/1 yellowish gray,						
	40_	hard, dense, microcrystalline,						
		hard, dense, microcrystalline, Argillaceous, shaley, with Sypsium inclusions						
	41 -							
		-2 PROJECT OB/OD Area		•	•	HOLE NO.	-97-06	-

-----

		HTW DRILL	· · · · · · · · · · · · · · · · · · ·				HOLE NO. 018-97-06
OUECT	DB/OD	Area	SPECTOR Darry 1 M	SMGAN			SHEET 6 OFC SHEETS
"' EV.	DEPTH b	DESCRIPTION OF MATERIALS	FIELD SCREENING RESULTS d	GEOTECH SAMPLE OR CORE BOX NO.	ANALYTICAL SAMPLE NO. f	BLOW COUNTS 9	REMARKS
<u>,</u>	, , , , , , , , , , , , , , , , , , , ,						
		gypsim inclusions.					TD@41'8"
	42						Grout hole up to 36.5'
•							
		-					
		PROJECT				HOLE NO.	

LOUIS BERGER & ASSOCIATES, INC. 100 Halsted Street East Orange, N.J.	Client: <u>IS Armu Corps of Engine</u> Project: <u>OB/OD</u> Prepared by: <u>Samantha</u> P Checked by:	
Driller: LANNE Western Drilling Method: ATV HDILO Dual Tu	r Air Potary	Well No.: <u>OB-97-06</u> Date Installed: <u>3-23-47</u>
Coordinates: <u>Ileb3420.5</u> il 75.37 Ground, <u>1173.36</u> Elev. <u>Ileb3420.5</u> Ground, <u>1173.36</u> Understand Understand Ground Surface to <u>18</u> Understand Understand Ground Surface to <u>18</u> <u>36</u> <u>36</u> <u>36</u> <u>36</u> <u>36</u> <u>36</u> <u>36</u> <u>36</u> <u>36</u> <u>36</u> <u>36</u> <u>36</u> <u>36</u> <u>36</u> <u>36</u> <u>36</u> <u>36</u> <u>36</u> <u>36</u> <u>36</u> <u>36</u> <u>36</u> <u>36</u> <u>36</u> <u>36</u> <u>36</u> <u>36</u> <u>36</u> <u>36</u> <u>36</u> <u>36</u> <u>36</u> <u>36</u> <u>36</u> <u>36</u> <u>36</u> <u>36</u> <u>36</u> <u>36</u> <u>36</u> <u>36</u> <u>36</u> <u>36</u> <u>36</u> <u>36</u> <u>36</u> <u>36</u> <u>36</u> <u>36</u> <u>36</u> <u>36</u> <u>36</u> <u>36</u> <u>36</u> <u>36</u> <u>36</u> <u>36</u> <u>36</u> <u>36</u> <u>36</u> <u>36</u> <u>36</u> <u>36</u> <u>36</u> <u>36</u> <u>36</u> <u>36</u> <u>36</u> <u>36</u> <u>36</u> <u>36</u> <u>36</u> <u>36</u> <u>36</u> <u>36</u> <u>36</u> <u>36</u> <u>36</u> <u>36</u> <u>36</u> <u>36</u> <u>36</u> <u>36</u> <u>36</u> <u>36</u> <u>36</u> <u>36</u> <u>36</u> <u>36</u> <u>36</u> <u>36</u> <u>36</u> <u>36</u> <u>36</u> <u>36</u> <u>36</u> <u>36</u> <u>36</u> <u>36</u> <u>36</u> <u>36</u> <u>36</u> <u>36</u> <u>36</u> <u>36</u> <u>36</u> <u>36</u> <u>36</u> <u>36</u> <u>36</u> <u>36</u> <u>36</u> <u>36</u> <u>36</u> <u>36</u> <u>36</u> <u>36</u> <u>36</u> <u>36</u> <u>36</u> <u>36</u> <u>36</u> <u>36</u> <u>36</u> <u>36</u> <u>36</u> <u>36</u> <u>36</u> <u>36</u> <u>36</u> <u>36</u> <u>36</u> <u>36</u> <u>36</u> <u>36</u> <u>36</u> <u>36</u> <u>36</u> <u>36</u> <u>36</u> <u>36</u> <u>36</u> <u>36</u> <u>36</u> <u>36</u> <u>36</u> <u>36</u> <u>36</u> <u>36</u> <u>36</u> <u>36</u> <u>36</u> <u>36</u> <u>36</u> <u>36</u> <u>36</u> <u>36</u> <u>36</u> <u>36</u> <u>36</u> <u>36</u> <u>36</u> <u>36</u> <u>36</u> <u>36</u> <u>36</u> <u>36</u> <u>36</u> <u>36</u> <u>36</u> <u>36</u> <u>36</u> <u>36</u> <u>36</u> <u>36</u> <u>36</u> <u>36</u> <u>36</u> <u>36</u> <u>36</u> <u>36</u> <u>36</u> <u>36</u> <u>36</u> <u>36</u> <u>36</u> <u>36</u> <u>36</u> <u>36</u> <u>36</u> <u>36</u> <u>36</u> <u>36</u> <u>36</u> <u>36</u> <u>36</u> <u>36</u> <u>36</u> <u>36</u> <u>36</u> <u>36</u> <u>36</u> <u>36</u> <u>36</u> <u>36</u> <u>36</u> <u>36</u> <u>36</u> <u>36</u> <u>36</u> <u>36</u> <u>36</u> <u>36</u> <u>36</u> <u>36</u> <u>36</u> <u>36</u> <u>36</u> <u>36</u> <u>36</u> <u>36</u> <u>36</u> <u>36</u> <u>36</u> <u>36</u> <u>36</u> <u>36</u> <u>36</u> <u>36</u> <u>36</u> <u>36</u> <u>36</u> <u>36</u> <u>36</u> <u>36</u> <u>36</u> <u>36</u> <u>36</u> <u>36</u> <u>36</u> <u>36</u> <u>36</u> <u>36</u> <u>36</u> <u>36</u> <u>36</u> <u>36</u> <u>36</u> <u>36</u> <u>36</u> <u>36</u> <u>36</u> <u>36</u> <u>36</u> <u>36</u> <u>37</u> <u>36</u> <u>36</u> <u>36</u> <u>36</u> <u>36</u> <u>36</u> <u>36</u> <u>36</u> <u>36</u> <u>36</u> <u>36</u> <u>36</u> <u>36</u> <u>36</u> <u>36</u> <u>36</u> <u>36</u> <u>36</u> <u>36</u> <u>36</u> <u>36</u> <u>36</u> <u>36</u> <u>36</u> <u>36</u> <u>36</u> <u>36</u> <u>36</u> <u>36</u> <u>36</u> <u>36</u> <u>36</u> <u>36</u> <u>36</u> <u>36</u> <u>36</u> <u>36</u> <u>36</u> <u>36</u> <u>36</u> <u>36</u> <u>36</u> <u>36</u> <u>36</u> <u>36</u> <u>36</u> <u>36</u> <u>36</u> <u>36</u> <u>36</u> <u>36</u> <u>36</u> <u>36</u>	BE/AUGOL.15 N         Elevation         Stick-up         Concrete         Rock/Soil Interface         Surface Seal Material         Arout         Drill Hole Diameter         Type of Annular Seal         Frontonic         Type of Seal         Protocot         Type of Filter Material	PROTECTOR CASING         Size: $Q^{i'}$ Material: $Orell$ Lock No.:       Lock No.:         Drill Hole Diameter $3.25"$ Biser: $D'ameter$ Diameter: $2''$ Material: $PVC$ Sch.: $Sch.AO$ Type of Joints: $EluSh$ Threaded         Stenciled? $Screen:$ Diameter: $2''$ Material: $PVC$ Slot Size: $-O2$ Length: $9.57'$
	Type of Filter Material	Sump: Length: Type of Cap: Centralizer: Used Not Used @ 26.5' and 36.5' Depth to Water From Top of Riser at Completion: NOTE: Not to Scale

•

. .

WELL SPECIFICATION FORM
CLIENT: US ARMY CARPS OF ENGINEERS - KANSAS CITY DISTRICT
JOB NUMBER: JH1124D
WELL OWNER: FORT RILEY - DES
ADDRESS: BUILDING 407 MAIN POST
CITY, STATE, ZIP CODE: <u>Ft. Piky Kansas</u> 106442-6016
PHONE: $(100) d0^{-1} - 3940$
Well number or other identification: $08-97-06$
WELL INSTALLATION DATE:
GEOLOGIST SUPERVISING INSTALLATION: DATCH! MORGAN
GROUND SURFACE ELEVATION (FT):
TOP OF CASING ELEVATION (FT): 1175.37
WELL STICK-UP (FT):
TOTAL BORING DEPTH (FT):36.5'
BORING DIAMETER (IN):
TOTAL DEPTH OF OUTER CASING (FT): 18.0
OUTER CASING MATERIAL:SICC.
OUTER CASING DIAMETER (IN):
TOTAL DEPTH OF INNER CASING (FT. EXCLUDING SCREEN):
INNER CASING MATERIAL: PVC
INNER CASING DIAMETER (IN):
TOTAL LENGTH OF WELL SCREEN (FT):9.5'
WELL SCREEN MATERIAL:
WELL SCREEN MATERIAL:
SCREEN SLOT SIZE (IN):

---

**.** .

LOUIS BERGER AND ASSOCIATES, INC. WELL SPECIFICATION FORM

-

. .

WELL SPECIFICATION FORM (Cont'd)

---

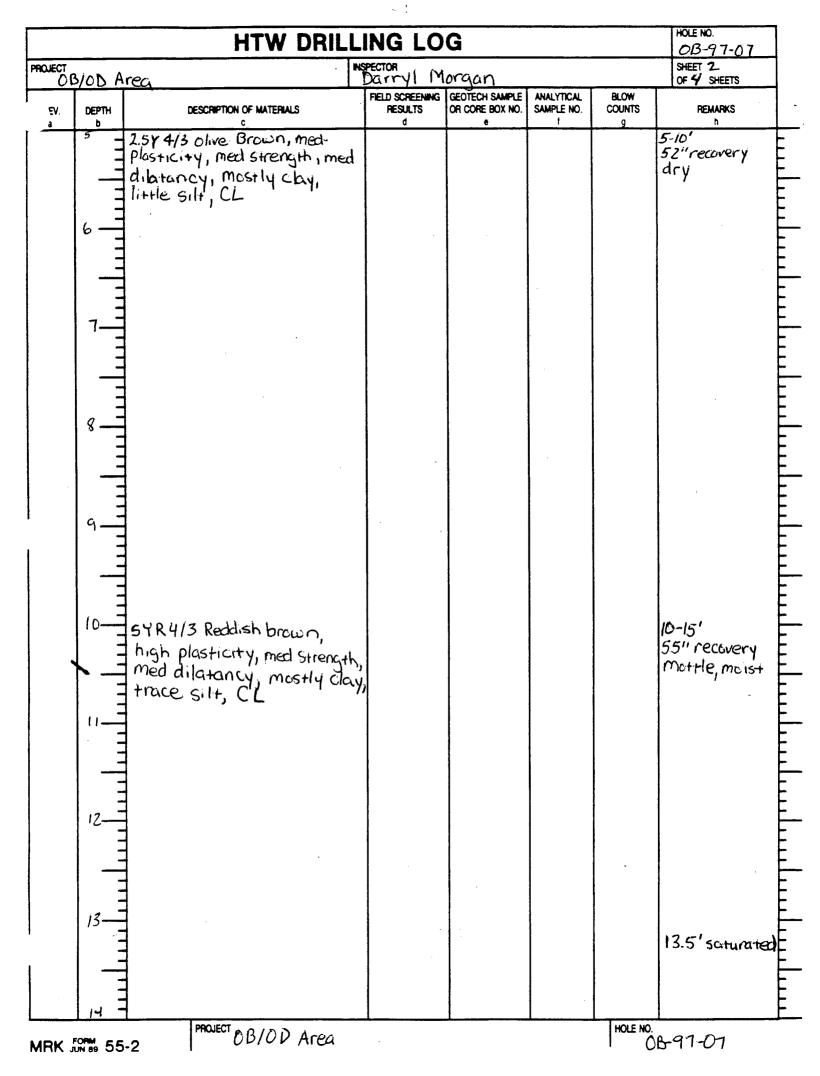
WELL NUMBER: 08-97-06
BACKFILL MATERIAL AROUND SCREEN: 10.20 MOVIE SUND DEPTH RANGE OF BACKFILL (FT): 23' TO 36.5'
seal material above screen:Bentonite Depth range of seal (FT):18'
BACKFILL MATERIAL AROUND CASING:Groupt
DEPTH RANGE OF BACKFILL (FT):
DESCRIPTION OF TOP SEAL: Grout Capped With Concrete
DESCRIPTION OF WELL COVER: 6"Drameter Steel
OTHER ADDITIONAL INFORMATION:
· · · · · · · · · · · · · · · · · · ·
• •

LOUIS BERGER AND ASSOCIATES, INC. WELL SPECIFICATION FORM

---

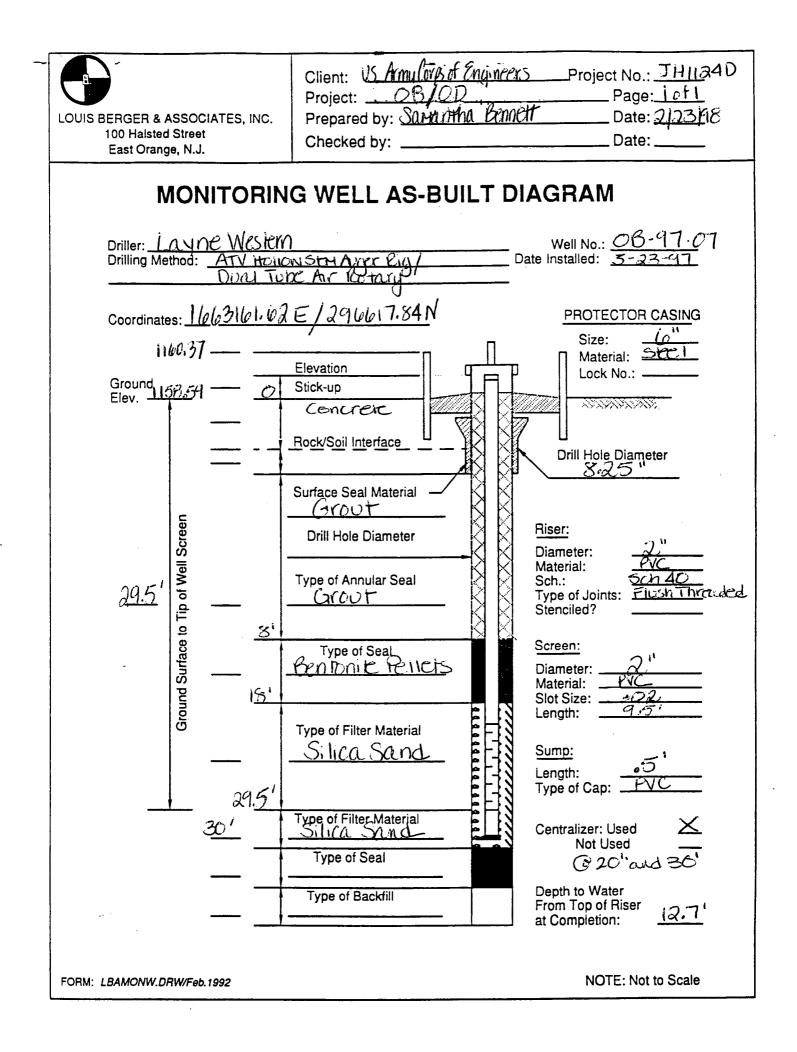
.

---


	. US Army Corps of Engin David Stein												
FIELD I	PERSONNEL: LAVID SICILI		SHI	EET: OI	F:								
1.	WELL NO .: 08-97-06												
2.	DATE OF INSTALLATION:	7	<u></u>		<del></del>								
3.	DATE OF DEVELOPMENT: 3 3 36 9	7											
4.	STATIC WATER LEVEL: BEFORE DEVELOPME	NT 21.55	TOC FT. 24 HOURS AF	TER _21.5	7_FT. After Development								
5.	QUANTITY OF WATER LOSS DURING DRILLING, IF USED NOT AL.												
6.	QUANTITY OF STANDING WATER IN WELL AN	ND ANNULUS B	EFORE DEVELOPMENT	ГG <i>4</i>	AL.								
	Total gallons removed	Digge I START	35gal DURING		50gal END								
7.	PHYSICAL APPEARANCE NTU	13.12	11.30		13.10								
	SPECIFIC CONDUCTANCE (umhos/cm)	1548	1541		1536								
	TEMPERATURE °F	65.7	63.9		63.2								
	pH (s.u.)	7.43	6.65		7.62								
8.	DEPTH FROM TOP OF WELL CASING TO BOTTO	OM OF WELL	FT.										
9.	SCREEN LENGTHFT.												
10.	DEPTH TO TOP OF SEDIMENT: BEFORE DEVEL	OPMENT	FT. AFTER DEVEL	OPMENT	FT.								
11.	TYPE AND SIZE OF WELL DEVELOPMENT EQU	IPMENT:		·	<u> </u>								
	Layne 2"Submer	sible Pu	чр										
12.	DESCRIPTION OF SURGE TECHNIQUE, IF USED	<u> </u>	& RMP	., <del>, ,</del>									
13.	HEIGHT OF WELL CASING ABOVE GROUND SU	REACE	FT.										
14.	_		removal <u>Zhy St</u>										
14.	TURBIDITY IN NEPHELOMETRIC UNITS	13.10		<u>.</u>									


LOUIS BERGER AND ASSOCIATES, INC. WELL DEVELOPMENT RECORD

...


2

			HTW I	DRILL	ING	LO	G				HOLE	NO. 2-97-87	
1. COMPAN	Y NAME	5	Associates	2.	DRILLING	SUBCONTR	ACTOR IE W2	to.	<u> </u>		SHEE	r 1 Sheets	
		<u> </u>	Associates			4. LOCATI	ON .			0		VC	
	3/0D ,	Area_					ACTURER'S D			<u>I - FT. F</u>	illy,	<u> </u>	
5. NAME OF		rnick							Aven Ra	a Dirl7	the l	is Roteni	
7. SIZES AN	ID TYPES OF		Wat Tune Air Ko			8. HOLE L	OCATION		0 0	?[		0	
AND SAM	ipling Equii		TV Hollow Hern O" bit for Bornin		4				5-93-04	ŧ			
			c al pr partient	}	2	115	8.59						
		-	``			10. DATE <b>7</b> ~	started 21-97			11. DATE COMP			
12. OVERBL	JRDEN THICK	NESS				15. DEPT	H GROUNDWA	TER EN	COUNTERED		<u> </u>		
	20'		· · · · <u>· · -</u> · · · · · · · · · · · · · · · · ·				3.5						
13. DEPTH I	DRILLED INTO	O ROCK					.60 (16			ER DRILLING CON	MPLETED		
14. TOTAL D	DEPTH OF H	OLE		<u> </u>					SUREMENTS (SP	PECIFY)			
18. GEOTEC	<u>30'</u>	MPLES	DISTURBED		STURBED	I I 19	TOTAL NUM	BER OF	CORE BOXES	<u> </u>			
, A	N N	0					None.	-	Ø				
20. SAMPLE	1	MICAL ANALYSIS	voc	METAL	_S	OTHER	(SPECIFY)		HER (SPECIFY)	OTHER (SI	PECIFY)	21. TOTAL CORE RECOVERY	
	Yes_		× ×			L						%	
22. DISPOS	ITION OF HO	DLE	BACKFILLED	MONITORING									
L Y	25				<b>.</b>		•	1		Morgo	m.		
ELEV.	DEPTH b		DESCRIPTION OF MATERIALS			CREENING SULTS d	GEOTECH S OR CORE BC e		ANALYTICAL SAMPLE NO. f	BLOW COUNTS 9		REMARKS	
	2 3 4 5	Med sire Mostly (	Brawn, med pla ength, med di l clay, few silt	larancy ;CL							reco mois	very 56" +	
MRK រ៏			PROJECT DB/DI	> Area	_l				<u></u>	HOLE NO.	3 -9-	1-07	





OB/OD	A=0.	Darryl M	Sheet 4 Of 4 Sheets			
DEPTH	DESCRIPTION OF MATERIALS	FIELD SCREENING RESULTS	GEOTECH SAMPLE OR CORE BOX NO.	ANALYTICAL SAMPLE NO.	BLOW COUNTS	REMARKS
	Shale: 56 3/2 Dusky green,			· · · · ·	¥	
	Shale: 56 3/2 Dusky green; Platy, finm					
-						
24						· · ·
=						
25-						
_						
24						
27						
-						
	the so all is a prochase					27:6"+0 27'10"
	US: SO IN Light Blaist gray,					
28-	Gradlaceous sholety unit is at					
10	Shale 56 3/2 Dusky green,					
	LS: 58 7/1 Light Bluish gray, micro crystalline, hard, dense, argillaceous, Shalely, 4" thick Shale 56 3/2 Dusky green, platy, firm					
29-	4					
	4					
30-	4					TD 30'
	1					
<del>-</del>	4					
			1			



WELL SPECIFICATION FORM

-

ì.

ومحتود للمان

CLIENT: US ARMY CORPS. OF ENGINEERS - KANSASCITY DISTRICT
WELL OWNER: FORT RILEY-DES ADDRESS: BUILDING 407 MAIN POST CITY, STATE, ZIP CODE: FORT RILEY, Kansas 66427-6016 PHONE: (785),239-3343
well NUMBER OR OTHER IDENTIFICATION: 08-97-07 well INSTALLATION DATE: <u>3-23-97</u> geologist supervising INSTALLATION: <u>DATCH MOGAN</u>
GROUND SURFACE ELEVATION (FT): $1158.59$ TOP OF CASING ELEVATION (FT): $1160.37$ WELL STICK-UP (FT): $1.78^{\circ}$
TOTAL BORING DEPTH (FT):     30'       BORING DIAMETER (IN):     8.35''
TOTAL DEPTH OF OUTER CASING (FT):     18'       OUTER CASING MATERIAL:     Stccl       OUTER CASING DIAMETER (IN):     6''
TOTAL DEPTH OF INNER CASING (FT. EXCLUDING SCREEN): <u>20'= From Surface</u> 22'= Totu INNER CASING MATERIAL: <u>PYC</u>
INNER CASING DIAMETER (IN): 2" TOTAL LENGTH OF WELL SCREEN (FT): 9.5' WELL SCREEN MATERIAL: PVC Q"
WELL SCREEN DIAMETER (FT): $\mathcal{Q}$ SCREEN SLOT SIZE (IN): $\mathcal{Q}$

LOUIS BERGER AND ASSOCIATES, INC. WELL SPECIFICATION FORM

JANUARY 1992

 $\mathbf{x}$ 

WELL	SPECIFICATION FORM (Cont'd)	
WELL	SPECIFICATION FORM (COM OF	

an. .

•--

WELL NUMBER: 0B-97-07
backfill material around screen: <u>Silica Sand</u> Depth range of backfill (FT): <u>18'</u> to <u>30'</u>
SEAL MATERIAL ABOVE SCREEN: Bentonie Peilets DEPTH RANGE OF SEAL (FT): B' TO 18' BACKFILL MATERIAL AROUND CASING: GROUT
DEPTH RANGE OF BACKFILL (FT): DESCRIPTION OF TOP SEAL: CANDED WITH CONCRETE.
Description of well cover: (o" Diameter Steel
OTHER ADDITIONAL INFORMATION:

LOUIS BERGER AND ASSOCIATES, INC. WELL SPECIFICATION FORM

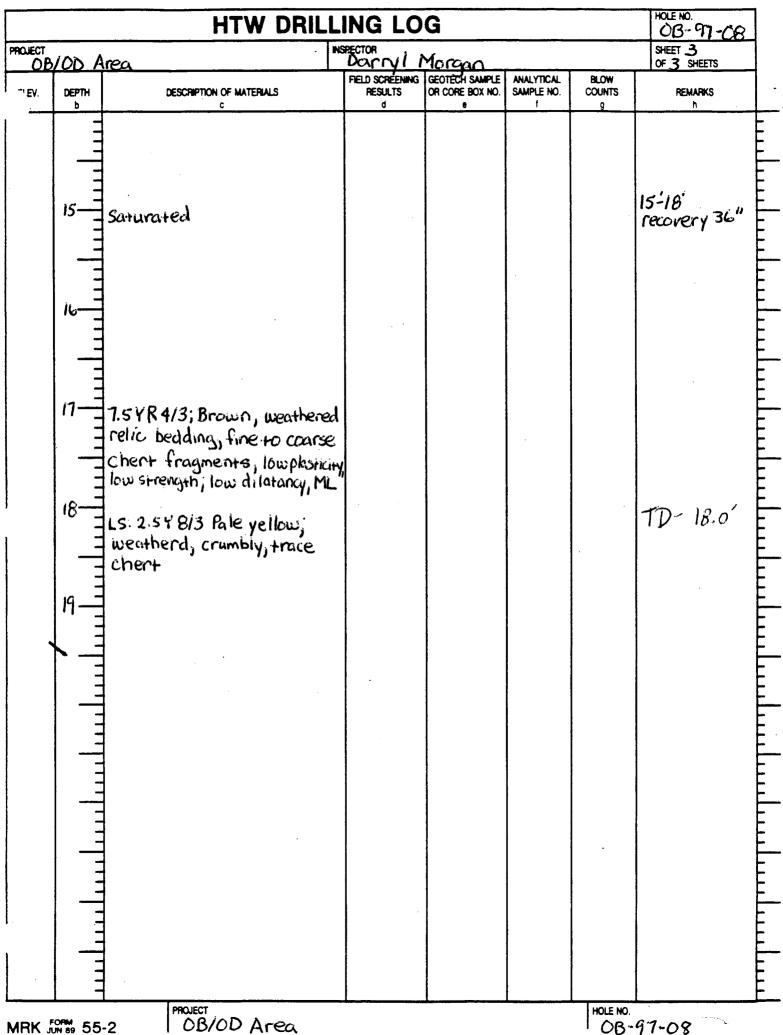
·

JANUARY 1992

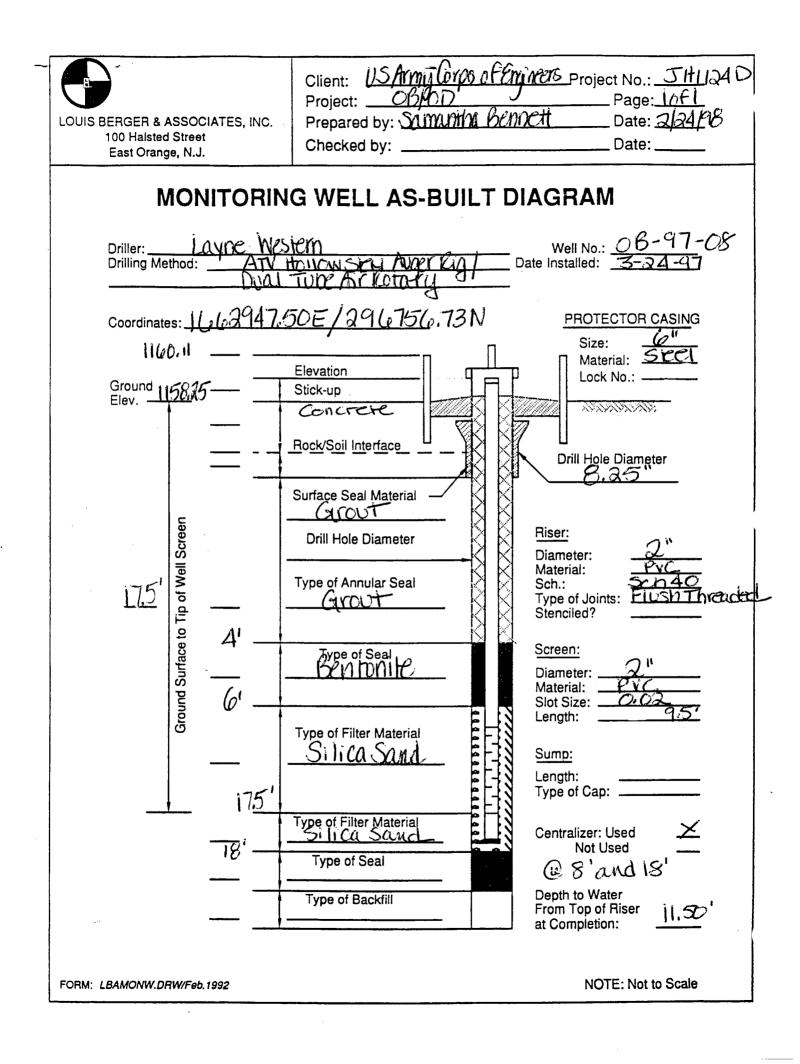
.

CLIEN	VI US Army Corps of Engineers JOB NO. JHI124D
FIELD	PERSONNEL: DAVID STEM
1.	WELL NO.:
2.	date of installation: $3 - 23 - 97$
3.	DATE OF DEVELOPMENT: 3-27-97
4.	STATIC WATER LEVEL: BEFORE DEVELOPMENT 15,15 FT. 24 HOURS AFTER 17.91' FT. after
5.	QUANTITY OF WATER LOSS DURING DRILLING, IF USED GAL.
6.	QUANTITY OF STANDING WATER IN WELL AND ANNULUS BEFORE DEVELOPMENT $\frac{\nu_{1.78}}{1.78}$ Gal.
	Total randoms) 58 62 190 200 268 410 470 -
7.	STARTDURINGENDPHYSICAL APPEARANCENTU $105:3$ $03:3$ $(69.9)$ $71.1$ $69.8$ $45:9$ $10.8$ SPECIFIC CONDUCTANCE (umhos/cm) $960$ $670$ $1040$ $680$ $740$ $640$ $650$ $690$
	SPECIFIC CONDUCTANCE (umhos/cm) $\underline{9160}$ $610$ $\underline{1040}$ $680$ $\underline{140}$ $640$ $\underline{650}$ $\underline{690}$ TEMPERATURF $(°F)$ $\underline{57.0}$ $553$ $\underline{70.5}$ $\underline{63.3}$ $\underline{63.2}$
	pH (s.u.) B317 8.28 B.06 B.13 B.Cc 8.16 B. 30 9.88
8.	DEPTH FROM TOP OF WELL CASING TO BOTTOM OF WELL 32 FT.
9.	SCREEN LENGTH 9.5 FT.
10.	DEPTH TO TOP OF SEDIMENT: BEFORE DEVELOPMENTFT. AFTER DEVELOPMENTFT.
11.	TYPE AND SIZE OF WELL DEVELOPMENT EQUIPMENT:
	Layne 2" Submersible Pump
12.	DESCRIPTION OF SURGE TECHNIQUE, IF USED:
13.	HEIGHT OF WELL CASING ABOVE GROUND SURFACE: 1.78 FT.
14.	QUANTITY OF WATER REMOVED 410 GAL. TIME OF REMOVAL 6/05 HR./MIN.
15.	TURBIDITY IN NEPHELOMETRIC UNITS 10, 8 NTUS

.


LOUIS BERGER AND ASSOCIATES, INC. WELL DEVELOPMENT RECORD

.


CI IENTE	ARMY CORPOFEngineers - KANSASJOBNO JG-1170
	ERSONNEL: DAN KEOHAWE CITY SHEET: OF:
FIELD P	
1.	WELL NO .: 0897-07
2.	DATE OF INSTALLATION: 3-23-97
3.	DATE OF DEVELOPMENT: 6-17-97-Reclevelopment 4 6-18-97
4.	STATIC WATER LEVEL: BEFORE DEVELOPMENT $14.12$ FT. 24 HOURS AFTER $14.34$ FT.
5.	QUANTITY OF WATER LOSS DURING DRILLING, IF USED $N/A$ gal.
6.	QUANTITY OF STANDING WATER IN WELL AND ANNULUS BEFORE DEVELOPMENT GAL.
	START DURING END
7.	PHYSICAL APPEARANCE TUrbic 156 58.1 25.4
	SPECIFIC CONDUCTANCE (umbos/cm) 785 791 580 520
	SPECIFIC CONDUCTANCE (umhos/cm) $785$ $791$ $580$ $520$ TEMPERATURE (°C) $80^{\circ}F(2bb)$ $82^{\circ}F(27.8)$ $12 \cdot 2^{\circ}C^{534}$ $512 \cdot 4^{\circ}C^{54}$
	$\frac{7.42}{7.42} \frac{7.41}{6.71} \frac{6.70}{6.70}$
8.	DEPTH FROM TOP OF WELL CASING TO BOTTOM OF WELL $28 \cdot 3$ ft.
9.	SCREEN LENGTHFT.
9. 10.	DEPTH TO TOP OF SEDIMENT: BEFORE DEVELOPMENT $28.3$ ft. After Development $28.4$ ft.
	TYPE AND SIZE OF WELL DEVELOPMENT EQUIPMENT: 2-inch Stainless Steel
11.	builer & Z-inch PUC Dladder Pump
-	
12.	description of surge technique, if used: 2-inch Stamless steel
	bailer.
13.	HEIGHT OF WELL CASING ABOVE GROUND SURFACE: 1.65 FT.
13.	QUANTITY OF WATER REMOVED 65 GAL. TIME OF REMOVAL 4/20 MUHR./MIN.
14.	TURBIDITY IN NEPHELOMETRIC UNITS 25.4 NTUS

				HTW	DRILL	ING	LO	G				HOLE	10. -97-0 <b>8</b>
1. COMPA		;	<u> </u>	·····	2.	DRILLING	SUBCONTR	ACTOR				SHEET	1 SHEETS
PROJEC	<u>us Be</u> i	rger f	<u>A 55</u>	ociates	I	Layr	A LOCATI			-		10- 3	SHEEIS
		Area					FT	. Kilen	K	ς			
5. NAME O	FDRILLER						6. MANUF	1 19		TION OF DRILL	<i>0</i> .·		
	ND TYPES O	An	Holley Hen		8. HOLE L	<u>Ho No</u>	<u>N</u>	ten Au					
	MPLING EQU			"OD AUPAS	miger pro			500 f	et	West,	of Sout	h Bur	n Pit
									N 				
							10. DATE	157.9"	<u> </u>		1. DATE COMP		
								-21-9	1		3-24-9		
12. OVERBURDEN THICKNESS 15. DEPTH GROUNDWATER ENCOUNTERED 15.													
13. DEPTH		O ROCK						1 TO WATER	£ .	APSED TIME AFTE	R DRILLING CON	PLETED	<u>.</u>
14. TOTAL	DEPTH OF H	IOLE				<u> </u>				SUREMENTS (SPE	CIFY)		
18 05075	<u>18</u> ECHNICAL SA			DISTURBED	וסאוו	STURBED	   10		BER OF	CORE BOXES	<u></u>		
I IO. GEUIE		mr leð					19	TO TAL NUM					
20. SAMPL	ES FOR CHE	MICAL ANALY	SIS	VOC	METAL	S	OTHER	(SPECIFY)	ТО	HER (SPECIFY)	OTHER (SF	ECIFY)	21. TOTAL CORE
	Yes			$\times$			Explos	ives	Sv	0 C	Nitra	Nitra	RECOVERY %
22. DISPOS	SITION OF H	DLE		BACKFILLED	MONITORING	WELL	÷	(SPECIFY) ·		GIGNATURE OF INS	PECTOR		
	les				$\times$				] $i$	bryl I	). Morg	an	
ELEV.	DEPTH b		DESC	CRIPTION OF MATERIALS	3		CREENING SULTS d	GEOTECH S OR CORE BC e		ANALYTICAL SAMPLE NO. 1	BLOW COUNTS 9	F	REMARKS h
			12;È	Park grayis Dark grayis Dark grayis Diasticity, m Y, Medium								D-S' recov	ery 40"
MRK J	EORM 55	L		DB/OD Are	201	<u></u>		<u> </u>		L	HOLE NO.	17-08	8

		HTW DRIL	LING LO	G		<u> </u>	HOLE NO. 08-97-08
PROJECT	<u> </u>		Darryl Morgan				SHEET 2 OF 3 SHEETS
ELEV.	DEPTH	DESCRIPTION OF MATERIALS	FIELD SCREENING RESULTS d	GEOTECH SAMPLE OR CORE BOX NO.		BLOW COUNTS g	REMARKS
2		104R4/3; Brown, medium plasticity, medium dilatanc med strength, CL					5:10' recovery 46" Moist
	8-						
	9_						
	10-	104R 3/2; Very dark grayi brown, low plasticity, lowto medium dilatancy low strength, dry, ML	sh			-	10-15' Pecovery 60"
	11			1.			
MRK	iy June 5	5-2 OB/OD Area				HOLE N OB	o. - 97-08



MRK JUN 89 55-2



WELL SPECIFICATION FORM
CLIENT: U.S. ALMY CORPS OF ENGINEERS - KANSAS CITY DISTRICT
JOB NUMBER: UTINGA
WELL OWNER: FORT RILEY - DES
ADDRESS:BUILDING 407 MAIN POST
CITY, STATE, ZIP CODE: FORT RIPU, Kansas 66442-6016
PHONE: (785) 239-3343
well number or other identification: $08-97-08$
WELL INSTALLATION DATE:3-24-97
GEOLOGIST SUPERVISING INSTALLATION:
GROUND SURFACE ELEVATION (FT):
TOP OF CASING ELEVATION (FT):
WELL STICK-UP (FT): 1.86
TOTAL BORING DEPTH (FT):
BORING DIAMETER (IN):
TOTAL DEPTH OF OUTER CASING (FT):
OUTER CASING MATERIAL:Sieel
OUTER CASING DIAMETER (IN):
TOTAL DEPTH OF INNER CASING (FT. EXCLUDING SCREEN): $\frac{\delta' = FROM GROUNDSURFACE 10'-DTAL}{OUTO$
INNER CASING MATERIAL:
INNER CASING DIAMETER (IN):
TOTAL LENGTH OF WELL SCREEN (FT):
WELL SCREEN MATERIAL:
WELL SCREEN DIAMETER (FT):
SCREEN SLOT SIZE (IN):

-

---

LOUIS BERGER AND ASSOCIATES, INC. WELL SPECIFICATION FORM

٤

WELL SPECIFICATION FORM (Cont'd)
WELL NUMBER: 0B-97-08
BACKFILL MATERIAL AROUND SCREEN: <u>Silica Sand</u> DEPTH RANGE OF BACKFILL (FT): <u>Co'</u> TO 18'
DEPTH RANGE OF BACKFILL (FT):
SEAL MATERIAL ABOVE SCREEN: <u>Bentonile</u>
BACKFILL MATERIAL AROUND CASING: GYOUT
DEPTH RANGE OF BACKFILL (FT):
DESCRIPTION OF TOP SEAL:Grout Capped With Convert.
Description of well cover: Ce " Dia Neter Steel
OTHER ADDITIONAL INFORMATION:
· · · ·

- .

**~**·

----

~

JANUARY 1992

----

# WELL DEVELOPMENT RECORD

and the second second

CLIENT US AVMY COXPS OF Engineers JOB NO. JHUZAD
FIELD PERSONNEL: DAVID STOIN SHEET: OF:
1. WELL NO.: 08-97-08
2. Date of installation: $3 - 24 - 97$
3. DATE OF DEVELOPMENT: $3 - 29 - 97$
4. STATIC WATER LEVEL: BEFORE DEVELOPMENT 13.58 FT. 24 HOURS AFTER FT.
5. QUANTITY OF WATER LOSS DURING DRILLING, IF USEDGAL.
6. QUANTITY OF STANDING WATER IN WELL AND ANNULUS RECORD DEVEN
Total Removed (galons) 30 45 47 52
START DURING END
7. PHYSICAL APPEARANCE $200^{+}$ $62.5$ $47.8$ 11.10
SPECIFIC CONDUCTANCE (umhos/cm) 500 480 000 080
TEMPERATURE (°F) <u>59.6</u> <u>56.3</u> <u>55,8</u> <u>53.5</u>
pH (s.u.) 9.73 9.26 9.26 9.30
8. DEPTH FROM TOP OF WELL CASING TO BOTTOM OF WELL 20 FT.
9. SCREEN LENGTH 9.5 FT.
10. DEPTH TO TOP OF SEDIMENT: BEFORE DEVELOPMENTFT. AFTER DEVELOPMENTFT.
11. TYPE AND SIZE OF WELL DEVELOPMENT EQUIPMENT:
Layne 2" Submarsible Pump
12. DESCRIPTION OF SURGE TECHNIQUE, IF USED: <u>SURGE CUILS PUMP</u>
13. HEIGHT OF WELL CASING ABOVE GROUND SURFACE: B6'FT.
4. QUANTITY OF WATER REMOVED $\underline{Da}$ Gal. TIME OF REMOVAL $\underline{1/19}$ HR./MIN.
5. TURBIDITY IN NEPHELOMETRIC UNITS ///// NTUS

-

Mobilization #2 -June/July 1997 (Piezometers OB97-09 through OB93-13) JUN-25-1997 1ാ:ധാ

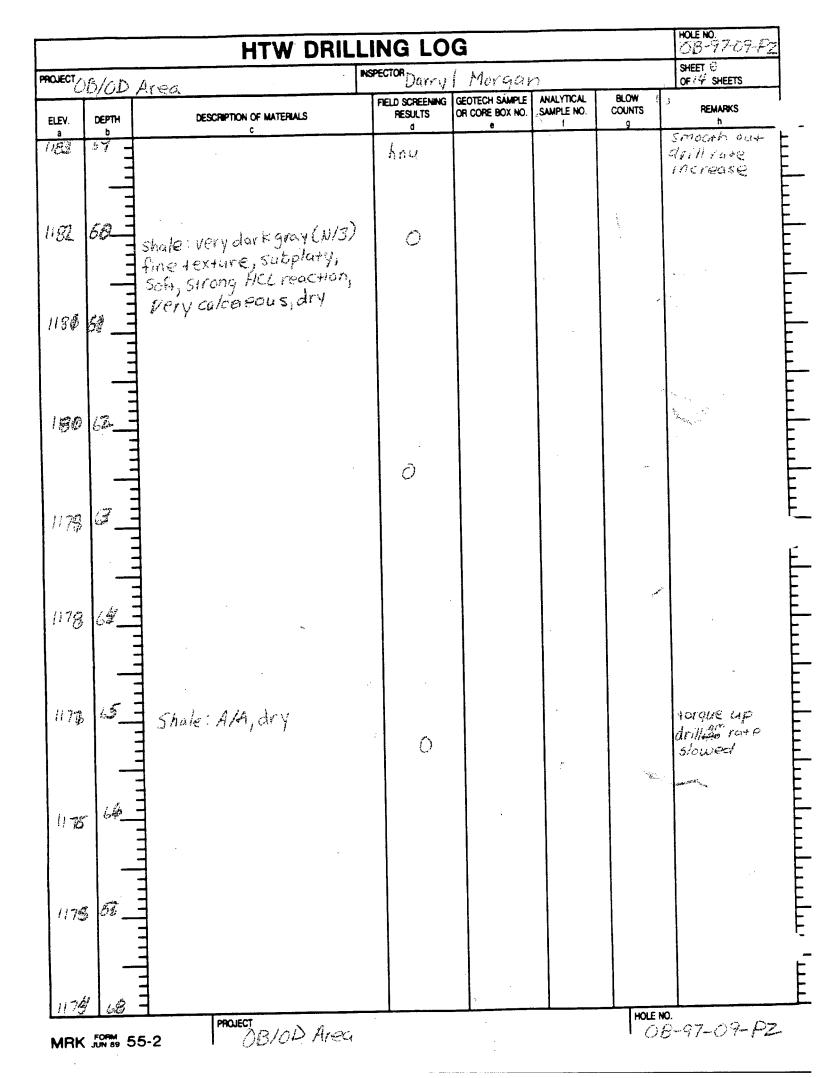
|--|--|

	HTW D	BILLING	g log				HOLE NO. 08-97-9 PZ
			NG SUBCONTRACT				SHEET 1 OF 14 SHEETS
Louis Berger	- & Associates, Ir	nc L	avne.	OBIO	DAREA	RANGE	16
OB/OD Areq			- F	<u>-t. r</u>	ILEY NO	N JAJ	
5 NAME OF DRULER			6. MANEFAC	TURER'S DES -60	INGERSO	I-RAND	AIR RIG
7. SIZES AND TYPES OF DRILLING	5 18" bit air rot	Bry +0114					POGRAVHIC HIGH
AND SAMPLING EQUIPMENT	S Jana Ar ( U	Hinas	THEF				
	ream with 973		12	41.74+	eet above	MEAN SE	a level
			10. DATE S			1-7-9-	7
					ER ENCOUNTERED	DELFE	72 FL/78 FL
12. OVERBURDEN THICKNESS 3.	5 feet		Mol	STURE A	THE APSED TIME AFT	ER DRILLING COM	PLETED
13. DEPTH DRILLED INTO ROCK	1 Feet			46-32	Ft D.9-2	1 <u>2 am</u>	5
14 TOTAL DEPTH OF HOLE			01	.33Ft	B.G.S/6	-10-97	
114.5	DISTURBED	UNDISTU	RBED 19.	TOTAL NUME	A A A A A A A A A A A A A A A A A A A		
18. GEOTECHNICAL SAMPLES			the second s	(SPECIFY)	OTHER (SPECIFY)	OTHER (SP	ECIFY) 21. TOTAL CORE
20. SAMPLES FOR CHEMICAL ANAL	YSIS VOC	METALS		1-41	· · · · · · · · · · · · · · · · · · ·		N/A *
N/A				(SPECIFY)	23. SIGNATURE OF	NSPECTOR	
22. DISPOSITION OF HOLE	BACKFILLED	MONITORING W	Neste	a	Darryl	Morge	m
		L	Piezo	GEOTECH S	AMPLE ANALYTICAL	BLOW	
ELEV. DEPTH	DESCRIPTION OF MATERIALS		RESULTS	OR CORE BO	DX NO. SAMPLE NO.	COUNTS 9	REMARKS h
	c Cl'strong	AU7/)	hny				Begindrilling
242 - Lines	crystalline, me	dium	nnų				@ 1030hrs 6697 wah
- tine	d slightly chall	ku.	5				57, "bit
abu	d, slightly chall nd ant Chert, Dr	V I	0				air rot orry
1241 1 -	<b>.</b>	,					
		(					
	le (pale yellow,	(57/14)					
- fine	texture, sft, ca reaction, 50%	liceeous,					
1240 2	eque and chert	Incontes			•		
	esione and chert Scm to 3.0cm) D	по- <u>у</u> пе	0				
1239 3						Į	
Field Field	prence	- 770 D FP					slow drilling
	actore : oale vel	مان الكتيم					500 41 11100
	e crystalline, st	t, slightn					
1238 4 we	e crystalline, sta athered, some c	hert, Dry					
			0				
1237 5 7	PROJECT					HOLE	TOTAL P.02

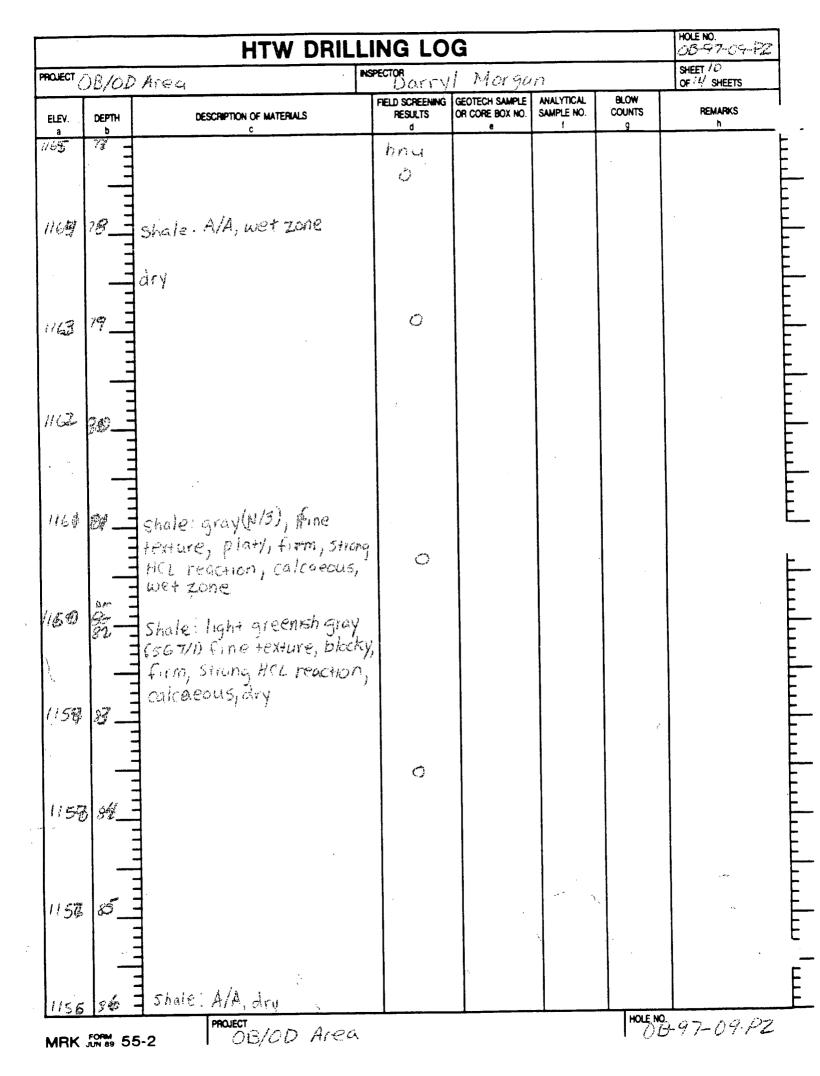
.

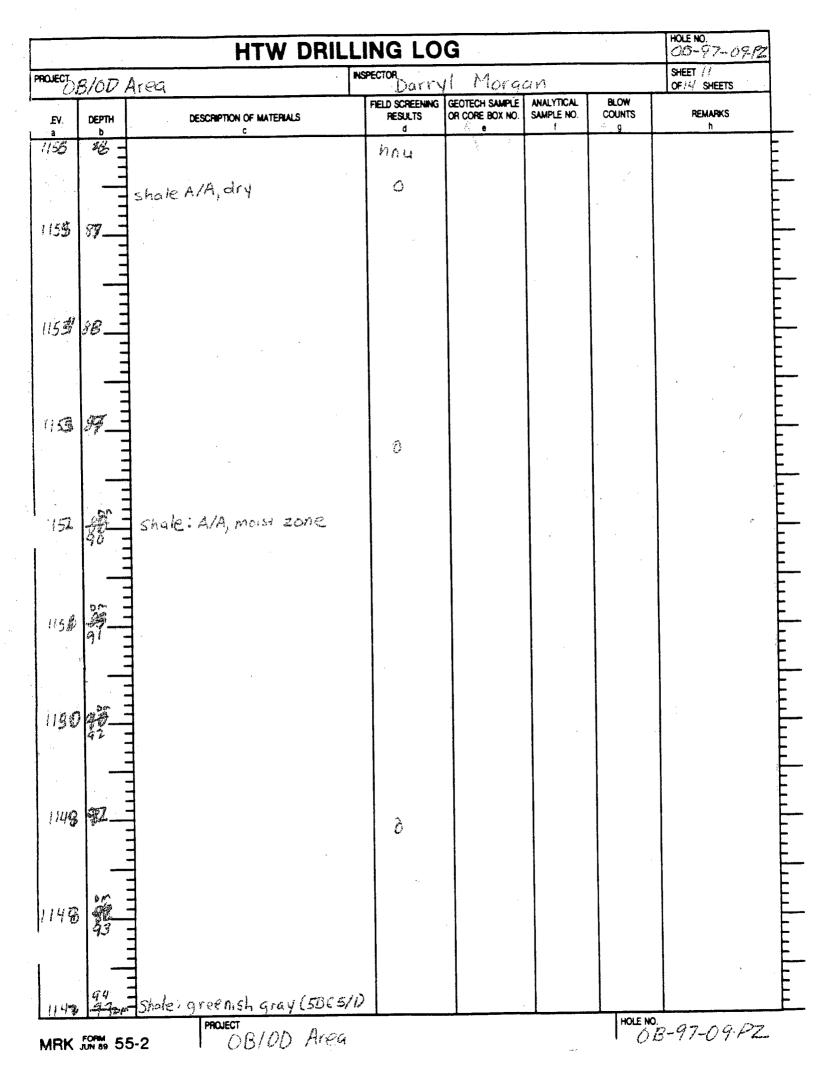
		HTW DRIL	LING LO	G			HOLE NO. 08-97-09-P2
JECT	B/DD	Area	INSPECTOR Darry	1 Morgan	n		SHEET 2. OF 1 4 SHEETS
EV.	DEPTH	DESCRIPTION OF MATERIALS	FIELD SCREENING RESULTS d	GEOTECH SAMPLE OR CORE BOX NO. 8	ANALYTICAL SAMPLE NO. 1	BLOW COUNTS 9	REMARKS
a 377	5 -		hn 6	· · · · ·		. ,	
						· •	
			0				•
36		state plate gettow CARE					
		topthe part for televine,					
		categoods, the reaction	2				
35	7	shale: pale yellow (547/	4),				smooth dulling
		Shale: pale yellow (547/ fine texture, Osteacus, HCl reaction, 50% fines, 50% Limestone and chert fragm (0.5cm to 3.0cm) dry					
		Limestone and chert frage	ients				
-711		(U.Sch to Soch ) ary	ab				
34		Limestone: pake yellow (54 fine crystalline, medium ho	ard.				
		slightly chalky, some che					
		ary					
33	9						
•							
232	10						torque up
	-						,
		- *					Smooth out
231			0				
	-	ý.					torque up
230	2 <i>12</i> —	Limestone: A/A abundan	14				
		chert, dry					
		<b>1</b>					
229	1 13 -	Emesione Shale: vellow	548/6				Smooth out
1		pm timestone Shale: yellowl fine texture, soft, 50% f 50% Limestone fragments (0.5 cm to 3.0 cm	ines				
		- 20% Limestone tragments (0.5 cm to 3.0 cm	5				
,							
226	3 14 .	PROJECT	<u>l</u>			HOLE N	B-97-09P

ECT	nint	HTW DRILL	PECTOR	Morgan	A.		<u> () 8 - 47 - 04 /)</u> Sheet 3 Of (4 Sheets
У.	DEPTH	DESCRIPTION OF MATERIALS	FIELD SCREENING RESULTS d	GEOTECH SAMPLE OR CORE BOX NO.	ANALYTICAL SAMPLE NO.	BLOW COUNTS 9	REMARKS
a 28	▶ /⅔ - 	Linestone A/A, dry	hnu				
			0				
227	15	Stronglaude SVR S/6), madium plauticity, medium dilateracy CL (100% fines) dry					smooth out montore at 15-1101 torgue up
2.740		Limestone: A/A, abundant Chent, dry					
			C				
atta yang sara 1997 - Kanal Kata Kanalari Kata Kanalari	17						
	10	Limesione: A/A, a bundani Chenr, dry					smoth bout
		hand and the second s	Ċ				torque us
7 <u>3</u> 3	/3	umestane: Once yellow (2.546/8) fine crystolline, medium hardy-osoft, slightly chalky, some chert, slightly	1				
1222	20	chalky, somechern; slightly useathered, dry	0				
1711							
1220		Lome Stone : A/A, dry					
1219	FORM 5	5-2 PROJECT 08/00 Area			_1	HOLE N	o. ≫-97-09 PZ

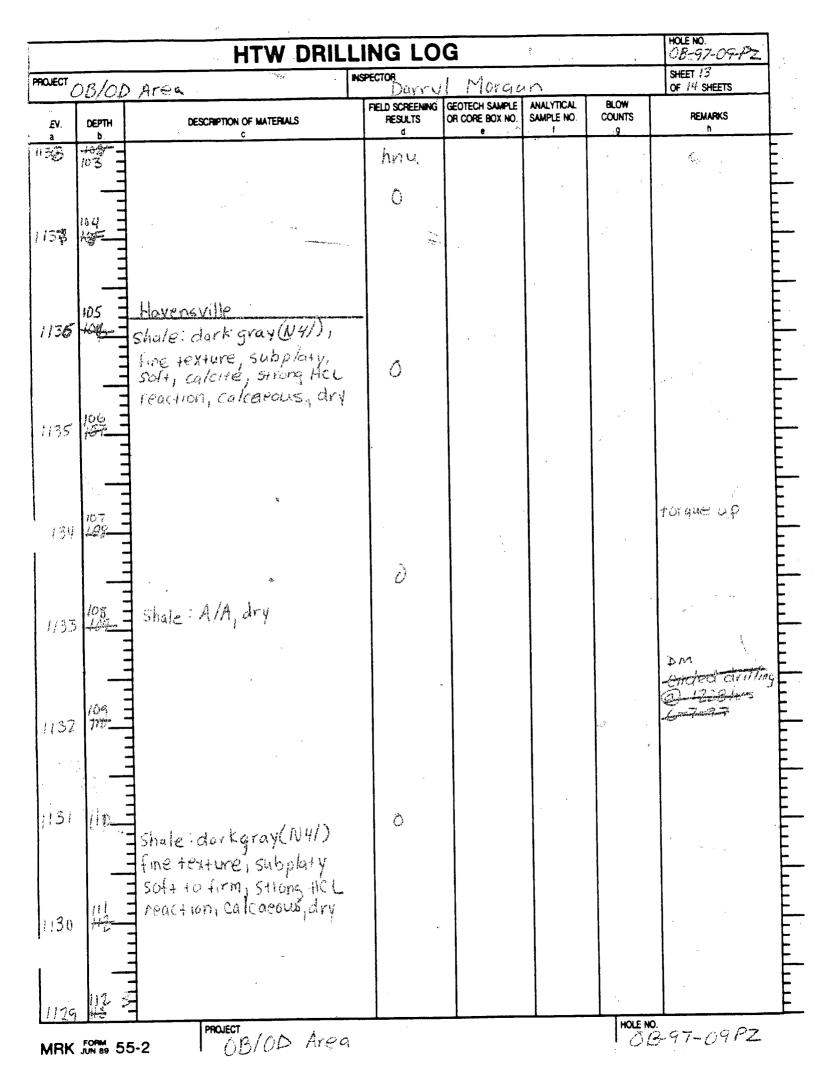

		HTW DRIL					HOLE NO. 08-97-09-PZ
OJECT	OB/OD	Area	NSPECTOR : y/			-	Sheet () OF / 4/ Sheets
ELEV.	DEPTH	DESCRIPTION OF MATERIALS	FIELD SCREENING RESULTS d	GEOTECH SAMPLE OR CORE BOX NO. e	ANALYTICAL SAMPLE NO. 1	BLOW COUNTS 9	REMARKS h
214	23 -		hnu				
			2				
10000	2//		0				
1218	<u>آ</u> کُنا ا	Limestone: white (NB/) fine crystalline, hard,					
		dense, fossillerous, slight Chalky, abundant chert,	ly				Compression on 119 froze up
1217	7	diy				-	@ 1130hrs Gixed compresso
121 1	47	shale pale olve (54614) subplaty, firm to hard,					resumed dritte BHODERS 6-7-9
		Mc Reaction, very calceaous Limestone: A/A dry	5				
1216							نم
	-		Õ				drilling rate
•	-	stale: light greensh gray (SC7/D blocky, fine textu	16.				increased moisture at
1215		fumtohard, HCL reaction	2n ,				26-291
لور مین م م		Pery colcaeous, dry					×
÷. -							
	- 79						
1214			0				
						-	
1213	29	of it is to reconciliant					
ني ) <i>درا</i> ۲		Shale: dark green gray (564/1) fine texture,	~~~				
		blocky, slight ACL react					
1212	30			1			
• <u>-</u> •			_				
			Ô				
1211	31	shale light are mish gra	Ý	-			
		shale light greenish gray (5647/1) moist, fine textur blocky to subplaty, firm, weak HCL reaction, glightl calceanus	e,				
	<u></u>	Weak Hel reaction, al-Li					
1210		Calceaous	7				
· · · · ·	FORM 5	5-2 PROJECT OB/OD Are	~a			HOLE NO	). 3-97-09PZ

		HTW DRIL	LING LO	G			HOLE NO. 전원 · 연구· 09· 구고	
ROJECT	08/00	År⊷s.	INSPECTOR Dary	Darry Morgan				
EV. a	рертн	DESCRIPTION OF MATERIALS	FIELD SCREENING RESULTS	GEOTECH SAMPLE OR CORE BOX NO. e	ANALYTICAL SAMPLE NO. f	BLOW COUNTS 9	REMARKS	
	22 - 5 4 4 4 - 4 - 4 - 4 - 4 - 4 -	hale: dark greenish grag SGY4/12 fine texture, firm ardy pon colratous, No rea ICL dry	to der D					
<u>194</u>								
208	34		Ô					
1707	<u></u>							
<u>)</u> 26	5% <b>  111</b>		Ô					
1706		Stale: dark reddich gray 1592472), fine texture, sch	÷					
130 ¹⁾		shale: dark reddish brou Shale: dark reddish brou Shale: dark reddish brou SVR 3/3) A/A reaction HC. SVR 3/3) A/A	ey ey C					
∮ ° û]			Ô					
1204			A,					
have 17		2 PROJECT 68/00 Area					3-97-09PZ	


	<i>*</i> *	HTW DRIL	LING LO	G			HOLE NO. 98-97-09-P	
ROJECT	BIOD	Area	NSPECTOR Darry	1 Morga	Ł		Sheet 6 Of 14 Sheets	
ELEV.	DEPTH	DESCRIPTION OF MATERIALS	FIELD SCREENING RESULTS d	GEOTECH SAMPLE OR CORE BOX NO. e	ANALYTICAL SAMPLE NO.	BLOW COUNTS g	REMARKS	
7.04	41	Shale: Greenish gray (SE 6/. Sine texture, subplaty,	Dihau					
		fine texture, subplaty, soft stiong HCL reaction very calcaleous. dry						
1200		-	4					
		shole: dark reddish brown (SYR 3/3), fine texture, Sub blocky, shong HCL reaction, very calcaeous,						
		fraction, viery calcaeous, dry						
1198	43	shale: light greenish gray (5647/1) A/A, dry	/					
		CODY NO. W. JOILY						
المجلم ومر	1944 -							
1198			0					
1197	45							
							J.	
1196	46	shale: dark greenish gra 15644/1) Line texture:	λ¥					
		(5644/1), fine texture, subplaty, soft, weak Hi reaction, slightly cakeao				d.		
1106	5 47	dry	_0			-		
5 ° } •			1. market (1. market) 1. market (1. market) 1. market (1. market)					
							· ·	
1199	148							
1.08	110		0		- 49 			
113	49							
1193	\$50							


HTW DRILLING LOG								
	10D Area				Sheet 7 Of 14 Sheets			
-	РТН	DESCRIPTION OF MATERIALS	FIELD SCREENING RESULTS d	GEOTECH SAMPLE OR CORE BOX NO. e	ANALYTICAL SAMPLE NO. f	BLOW COUNTS g	REMARKS h	
72 5		sne: light gray (N7)	hnu ) d 6				Vidue 66091 Hyper white reasoning Hergine 400 In Minate	
中豪 51	= fine <ry = dry</ry 	swe: light gray (N71. Istalline, mediani har					s louised	
瞬日 50	🗌 🗍 ग्रेसेंस चल	greenisi, gray (366 ature, subplayy, sofi	7				smucth out drill rote	
123 50	dry	L Maction, Mhialade	2385				increased	
SE 54							:	
11 <b>SF</b> , 55	uluulu		0					
186 56	Eline te Soft i	dery darkgray (N3 exture, ploty, lamina No HCC reaction, Non 1005, dry	5 4 <del>5 4</del> 5					
5	-		0					
1 8 <b>9</b> 58	- And the	very dark gray (NB exture, subplany, have HCL reaction, very 10115, dry					t aque up drill rate shua	

·




HTW DRILLING LOG								
CT ,	<i>8/00</i>		NSPECTOR Daving	1 3 3			Sheet of OF 14/ Sheets	
 ,.	DEPTH	DESCRIPTION OF MATERIALS	FIELD SCREENING RESULTS d	GEOTECH SAMPLE OR CORE BOX NO.	ANALYTICAL SAMPLE NO. f	BLOW COUNTS	REMARKS h	
ŝ			here		,			
ار . محک	<u>ا ا</u>	Shale: A/A						
	111							
							which row whereas characteristics	
			Ó				ad the reasoning TO- (M-S) and HOD galo- adoed ways	
			τ				recourses	
7¢								
							+ prave up	
ويعنون مع معروفة مريع محمد ويتا مريخ		1 100 STONE: PAR YEAR					chall rare	
		Kephility pale yells Line stone : pale yells fine stypic line, mediu Elightly weathereds chart, meist	n hard, ome				Slouzed	
	-	Cheve, Moist	0					
S.								
				-				
Q	74) 722	~						
同事	- مەمىخ، ئىس							
- <b>-</b> 7		Wet @ 75						
		- Wymers						
166	5 76	shole gray (NSI), in	VO - LEXAUTE					
		= platy, soft, strong HC calcocous	L YENGGUNG,					
化酸	( <b>7</b> %)-						NO. 18-017-09122	





INSPECTOR												HTW DRILLING LOG				alsociation and an and a second a						
		DESCRIPTION OF MATERIALS	Darryl	Morgan GEOTECH SAMPLE OR CORE BOX NO.	ANALYTICAL SAMPLE NO.	BLOW	OF 14 SHEETS REMARKS															
LEV. a	DEPTH			8	f	<u>g</u>	<u>h</u>															
12	95 -	blocky, fine texture sott, Glight &CC reaction, wet	hnu																			
		Žon€																				
			0																			
46	95																					
		ч.					DW.															
							-1956-11-P															
ر میں در د د	۲ ۲																					
145	1																					
		Snhroyer Limestone: pale yellow (2.547/4), fine crystalline medium hard, weatberg	1.2mm+1.542.0mm P				+orgue up drill rate															
		hime sione, pare yenous h.sw714). fine crustalline					slowed															
14		medium hards weatbers	ed O																			
-		wet.			-																	
		κ.																				
四码	.   <del>4</del> 93																					
		<b>4</b> (					smooth out															
	40	shale: gray (NS/) fine te	rture																			
1147		subplaty, firm, strong																				
		HCL reaction, calcaeous	0																			
		-																				
114	0 86	Limestone: Light gray (	NI 17 J				torque up drillrate															
		Fine crystalline, hard, de	ense				510wed															
		(1)X2-4																				
, tak	<b>A</b> ,	- ار المتصور با الم																				
网络	認 <i> 10ģ</i>	Limestone gray (WB/) for	)e																			
		abundant chert, Wet																				
113	B 102_	-																				
	- ""																					
1 PE		5-2 PROJECT DB/DD Are				HOLE	<u> </u>															



HTW DRILLING LOG						
ECTOB/01	) Area	Dar (V/ )	I GEOTECH SAMPLE	ANALYTICAL	BLOW	SHEET 14 OF 14 SHEETS
EV. DEPTH	DESCRIPTION OF MATERIALS	RESULTS	OR CORE BOX NO.	SAMPLE NO.	COUNTS 9	REMARKS
29 112 -						
	shale: A/A, dry					SEL S'ID trayolar casing to 114.5
	Share My Mary					Lasing to in the
8 113-						mished remarks
,						rearned hole will 09% bit to 143 Mishai rearing ended drilling 01235 hrs 67-97
						67-97
27 114	TD 114	and a second	مرید مرید میرون میروند و امور در کاره میرون میروند و میرو مرید میروند و میروند			in and have a bit of the same second states and the same states and the
<u> </u>						
		_				
Ì -						
-   -	-					
-						
						and the second sec
-						
-						
						· · ·
	-					÷
-						
	-					
-						
	4			<u> </u>		ю. 8-97-04-РZ

#### WELL SPECIFICATION FORM

CLIENT: U.S. ARMY CORPS OF ENGINEERS - KANSAS CITY DISTRICT
JOB NUMBER: JH-1124 D
WELLOWNER: FORT RILEY - DES
ADDRESS: BUILDING 407 MAIN POST
CITY, STATE, ZIP CODE: FORT RILEY, KANSAS 66442-6016 PHONE: (973) 239-3343
WELL NUMBER OR OTHER IDENTIFICATION: <u>OB97-09PZ</u> [0-5] NEST OF 6 Piezemeters WELL INSTALLATION DATE: <u>START 6/6/97</u> FINISH 6/17/97
GEOLOGIST SUPERVISING INSTALLATION: DANIEL KEOHANE DARRYL MORGAN
GROUND SURFACE ELEVATION (FT): 1242.81 (SURVEYOR'S DISC) TOP OF CASING ELEVATION (FT): 1245.06 (TOP PNC CASING) WELL STICK-UP (FT): 2.89.3.25 FEET
TOTAL BORING DEPTH (FT): $114$ FEET $(b.q.s)$ BORING DIAMETER (IN): $978$ - INCH
TOTAL DEPTH OF OUTER CASING (FT): A 114 FEET (TEMPORARY)
OUTER CASING MATERIAL: <u>SCHEDULE 80 PNC</u>
OUTER CASING DIAMETER (IN): 8- INCH
TOTAL DEPTH OF INNER CASING (FT. EXCLUDING SCREEN): $109 102-098774512602(b.g.s)$
INNER CASING MATERIAL: SCHEDULE 80 PNC
INNER CASING DIAMETER (IN): <u>1</u> INCH
TOTAL LENGTH OF WELL SCREEN (FT):
WELL SCREEN MATERIAL: <u>SCHEDULE 80 PVC</u>
WELL SCREEN DIAMETER (FT): INCH
SCREEN SLOT SIZE (IN):ALI O.OLO INCH

.

LOUIS BERGER AND ASSOCIATES, INC. WELL SPECIFICATION FORM

----

JANUARY 1992

,

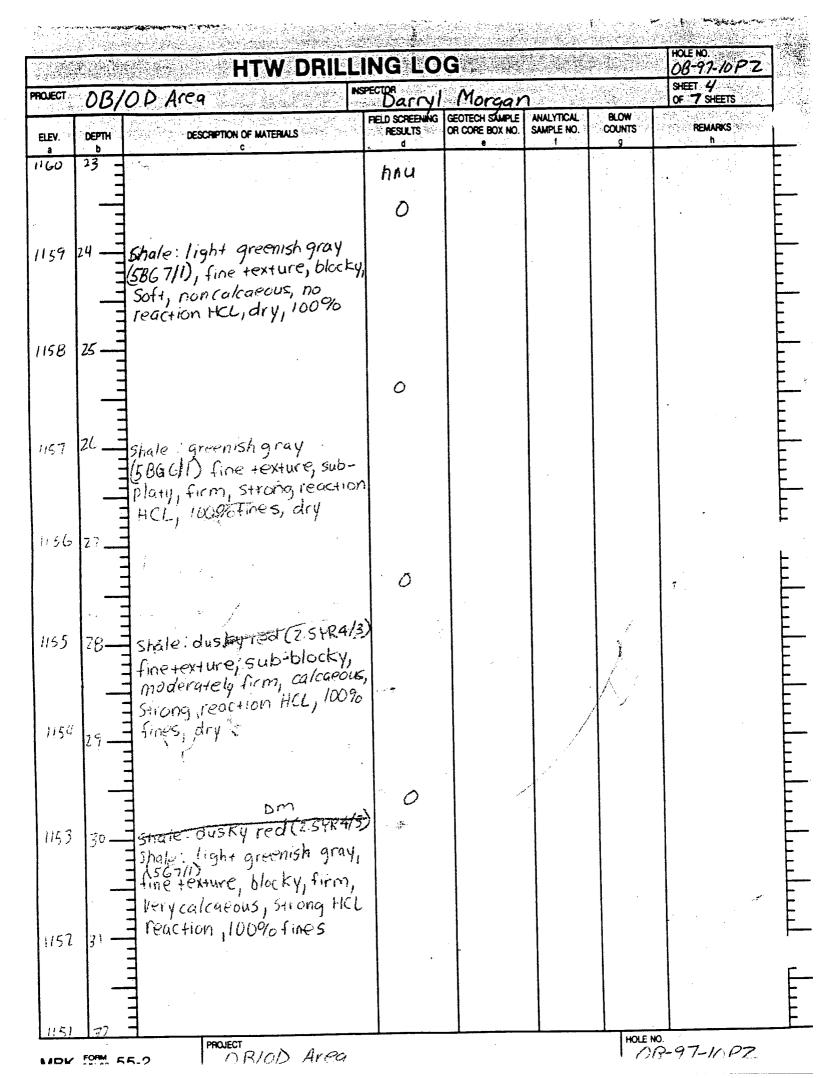
### WELL SPECIFICATION FORM (Cont'd)

WELL NUMBER:OB97-09P2
BACKFILL MATERIAL AROUND SCREEN: COARSE SAND
DEPTH RANGE OF BACKFILL (FT): SEE TABLE BELOW TO
SEAL MATERIAL ABOVE SCREEN:
DEPTH RANGE OF SEAL (FT): SEE TABLE BEWN TO
BACKFILL MATERIAL AROUND CASING: SEE TABLE BELOW BENTONITE
DEPTH RANGE OF BACKFILL (FT): SEE TABLE BELOW.
DESCRIPTION OF TOP SEAL: BENTONITE TO GROUND SURFACE; PLACED AFTER
STEEL PROTECTIVE CASING SET.
DESCRIPTION OF WELL COVER: 10-INCH DIAMETER STEEL PROTECTIVE CASING
OTHER ADDITIONAL INFORMATION: TOP OF PZ'S NOTCHED: THE DEEPEST (HAVENSULLE)
HAS O NOTCHES, THE NUMBER OF NOTCHES INCREASES WITH
DECEASING DEPTH B.G.S.

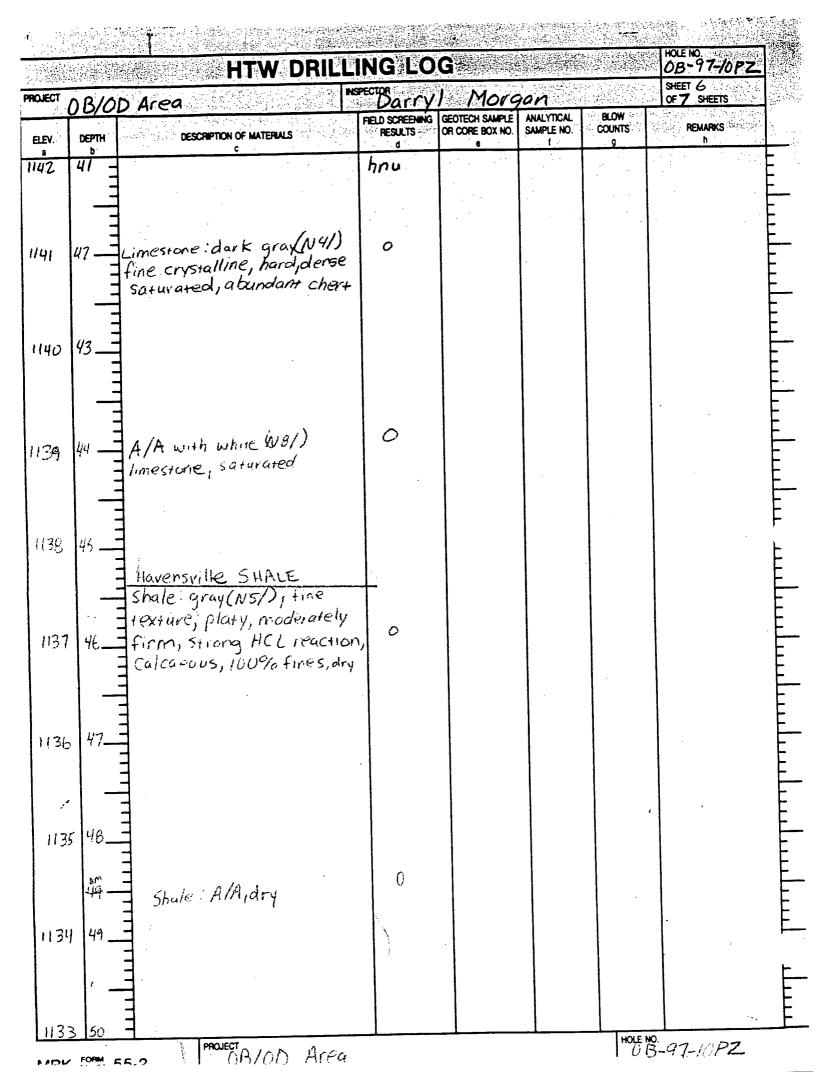
INTERVAL	DEPTH RANGE	DEPTH RANGE	INTERVAL
SCREENED	of BACKFILL (Ft. bg.s)	OF SEAL	SCREENED (Ft. bas) APPROX 109-110
HAVENSYILLE	111-95-108-15	108.15 - 104.1	
SCHROYER	104.1 - 100.93	100-93 - 89-29	102.09 - 103
	89-29 - 85-96	85.96 - 76.10	36-87
WYMORE		72.69 - 53.78	74-75
KINNEY	76.10 - 72.69		
BLUE SPRINGS	53.76 - 49.90	49.90 -29.58	51-52
FLORENCE	29.58 - 25.00	25.00 - 4.01	28.0-26.02

LOUIS BERGER AND ASSOCIATES, INC. WELL SPECIFICATION FORM

.


es <u>5%" bit to</u> from air e with 97e SOIL)	OFHLLING SUI           L (1)/f           4.           6.           9.           11           1           1           1	BCONTRACT	OR URER'S DES O I A ATION ATION CELEVATION CELEVATION CELEVATION CELEVATION CELEVATION CELEVATION CELEVATION CELEVATION CELEVATION CELEVATION CELEVATION CELEVATION CELEVATION CELEVATION CELEVATION CELEVATION CELEVATION CELEVATION CELEVATION CELEVATION CELEVATION CELEVATION CELEVATION CELEVATION CELEVATION CELEVATION CELEVATION CELEVATION CELEVATION CELEVATION CELEVATION CELEVATION CELEVATION CELEVATION CELEVATION CELEVATION CELEVATION CELEVATION CELEVATION CELEVATION CELEVATION CELEVATION CELEVATION CELEVATION CELEVATION CELEVATION CELEVATION CELEVATION CELEVATION CELEVATION CELEVATION CELEVATION CELEVATION CELEVATION CELEVATION CELEVATION CELEVATION CELEVATION CELEVATION CELEVATION CELEVATION CELEVATION CELEVATION CELEVATION CELEVATION CELEVATION CELEVATION CELEVATION CELEVATION CELEVATION CELEVATION CELEVATION CELEVATION CELEVATION CELEVATION CELEVATION CELEVATION CELEVATION CELEVATION CELEVATION CELEVATION CELEVATION CELEVATION CELEVATION CELEVATION CELEVATION CELEVATION CELEVATION CELEVATION CELEVATION CELEVATION CELEVATION CELEVATION CELEVATION CELEVATION CELEVATION CELEVATION CELEVATION CELEVATION CELEVATION CELEVATION CELEVATION CELEVATION CELEVATION CELEVATION CELEVATION CELEVATION CELEVATION CELEVATION CELEVATION CELEVATION CELEVATION CELEVATION CELEVATION CELEVATION CELEVATION CELEVATION CELEVATION CELEVATION CELEVATION CELEVATION CELEVATION CELEVATION CELEVATION CELEVATION CELEVATION CELEVATION CELEVATION CELEVATION CELEVATION CELEVATION CELEVATION CELEVATION CELEVATION CELEVATION CELEVATION CELEVATION CELEVATION CELEVATION CELEVATION CELEVATION CELEVATION CELEVATION CELEVATION CELEVATION CELEVATION CELEVATION CELEVATION CELEVATION CELEVATION CELEVATION CELEVATION CELEVATION CELEVATION CELEVATION CELEVATION CELEVATION CELEVATION CELEVATION CELEVATION CELEVATION CELEVATION CELEVATION CELEVATION CELEVATION CELEVATION CELEVATION CELEVATION CELEVATION CELEVATION CELEVATION CELEVATION CELEVATION CELEVATION CELEVATION CELEVATION CELEVATION CELEVATION CELEVATION CELEVATION CELEVATION CELEVATION CELEVATION C	IVEQ R IGERSOL VGERSOL OFT ME FEET P FRENCOUNTERE	<u>2-200</u> 57 <u>0</u> 11. D/ 0	F 089	<u>S-0</u> leve	SHEETS RILEY IG
5%" bitt from air e with 978 SOIL)	4. 6. 9. 11 11 1	LOCATION OB MANUFACT TH - G H - G H - G H - G H - G H - G A	0 2.4 ATION 2 X 10 2 0 X 4 4 7 3 0 1 3 0 1 3 7 7 ROUNDWATE 5 6 6 0 WATER AN	<u>NGERSUL</u> 20 Ft Mil Feet t	<u>2-200</u> 57 <u>0</u> 11. D/ 0	F_0 <u>8</u> 9: <u>582</u>	-Ft <u>R R</u> 3-0- 1eve	Riley Ig
5%" bitt from air e with 978 SOIL)	9. 11 1 1	$\begin{array}{c} \hline H - G \\ \hline HOLE LOC/ \\ \hline A A CA \\ \hline SURFACE I \\ \hline I & SURF$	0 2.4 ATION 2 X 10 2 0 X 4 4 7 3 0 1 3 0 1 3 7 7 ROUNDWATE 5 6 6 0 WATER AN	<u>NGERSUL</u> 20 Ft Mil Feet t	<u>2-200</u> 57 <u>0</u> 11. D/ 0	F_0 <u>8</u> 9: <u>582</u>	<u>S-0</u> leve	
from air e with 978 SOIL)	9. 11 1 1	$\begin{array}{c} \hline H - G \\ \hline HOLE LOC/ \\ \hline A A CA \\ \hline SURFACE I \\ \hline I & SURF$	0 2.4 ATION 2 X 10 2 0 X 4 4 7 3 0 1 3 0 1 3 7 7 ROUNDWATE 5 6 6 0 WATER AN	<u>NGERSUL</u> 20 Ft Mil Feet t	<u>2-200</u> 57 <u>0</u> 11. D/ 0	F_0 <u>8</u> 9: <u>582</u>	<u>S-0</u> leve	
from air e with 978 SOIL)	9. 11 1 1	$\begin{array}{c} \hline H - G \\ \hline HOLE LOC/ \\ \hline A A CA \\ \hline SURFACE I \\ \hline I & SURF$	0 2.4 ATION 2 X 10 2 0 X 4 4 7 3 0 1 3 0 1 3 7 7 ROUNDWATE 5 6 6 0 WATER AN	<u>NGERSUL</u> 20 Ft Mil Feet t	<u>2-200</u> 57 <u>0</u> 11. D/ 0	F_0 <u>8</u> 9: <u>582</u>	<u>S-0</u> leve	
from air e with 978 SOIL)	8. 9. 11 11	HOLE LOC/ ARMA SURFACE I 1 1 8 0. DATE ST/ 6 - 6 5. DEPTH G 1 G. 16. DEPTH T 2 7	ATION 2014 10 ELEVATION 73,01 ARTED 3-97 ROUNDWATE 5 62 0 WATER AN	POFT WE	<u>11. D/</u> 0	F_ <u>089</u> <u>584</u>	<u>3-0</u> ieve	
from air e with 978 SOIL)	9.	A APA SURFACE I 1 1 8 0. DATE STA 6. DEPTH G 1 G. 16. DEPTH T 2 7	2012 10 ELEVATION 73,01 ARTED 3-97 ROUNDWATE 5 68 0 WATER AN	Feet y	<u>nean</u> 11. D/ 0		<u>leve</u> FTFD	
e <u>with</u> 978 5012)		. SURFACE I / 18 0. DATE ST/ 6-8 5. DEPTH G 19 16. DEPTH T 2. 7	ELEVATION 3301 ARTED 3-97 ROUNDWATE 560 0 WATER AN	Feet y	<u>nean</u> 11. D/ 0		<u>leve</u> FTFD	
50iL)		118 0. DATE ST/ 6. DEPTH G 19. 16. DEPTH T 2.7	93.01 ARTED 9-97 ROUNDWATE 5 Fee 0 WATER AN		D	ATE COMPLE	FIFU	> <b>/</b>
50iL)	1( 1 1	0. DATE STA <u>6</u> 5. DEPTH G <u>1</u> 16. DEPTH T <u>2</u> <del>7</del>	ARTED <u>3-97</u> ROUNDWATE <u>5 624</u> 0 WATER AN		D	ATE COMPLE	FIFU	<u></u>
	1	5. DEPTH G [9. [6. DEPTH T 2.7.	B-97 ROUNDWATE	2	D	<u>-8-9</u>	1	
	1	5. DEPTH G <i>[ C]</i> . 16. DEPTH T 2. 7.		2				
	1	19. 16. DEPTH T 2.7.	<u>5 /20</u> O WATER AN	2				
		16. DEPTH T	O WATER AN	A ALL ADOLD THE				
		27.		ND ELAPSED TIME	AFTER DRI		<b>YLETED</b>	
	1		94/6	-10-47				
		17. OTHER W	NATER LEVE	L MEASUREMENT	S (SPECIFY)	1		
ED UND	1	29.9	11/6-1	1-97				
	ISTURBED			ER OF CORE BOX	KES .			
					<u>U/A</u>			
META	LS	OTHER (S	PECIFY)	OTHER (SPEC	ilFY)	OTHER (SPE	ECIFY)	21. TOTAL CORE RECOVERY
	†							A/A %
								1.2.2.1
D MONITORIN			-	23. SIGNATURE	OF INSPEC	юн <i>ал</i> -	· • •2· •	
		5 NE	STED	Dar	White 1	Wort	90%	1
					1.9	T		
			OR CORE BO				1	REMARKS
LUNALO		1	е	t		g		h
1048212)							feor	15
And the second second	nn:	4					dril	ling commen
1100 - 500					ł			
10 Crosto4.6	×						3	3-97 With
NOT SINCE						1	070	1 Salaria
110	1						58	" bit, air
ie sprinks					1		101	ary
¥							0	1 107624
							Ken	unw 978"
							1 n. +	CHE TOWNY
	1	-					01	420 6-9-9
							triat	sh reamin
	1	~					60	1640 6-94
		ure of T						1 585
	l						52.	-25-51
			ļ				FRN	yportury 8"
							D. H	Casing.
			ļ				1.07	~
	.							
111 1 1 E W 4/1	).		1				1	
Upin 251 //	í		1		ļ			
, medium		0					1	•
1,me 4012				·				
fines 5%	1		1					3
,	ļ		· ·					
			<u> </u>				_ <b></b>	
ABIAN I	Iran					I AT	2_01	1-10 PZ
	D MONITORIN TERIALS 104 R 2/2) 1 medium tone and (0.5cm to 4.0 9% fines, 1e Springs ine Springs ine Springs ine Springs ine Springs	repials FIELD SC RES (04 R 2/2) (medium tone and (0.5cm to 40 0) % fines, i.e. Sprimas (0.5cm to 40 0) % fines, i.e. Sprimas (0.5cm to 40 0) % fines, i.e. Sprimas	D MONITORING WELL OTHER (S MONITORING WELL OTHER (S MEDICAL FIELD SCREENING ( PICZA FIELD SCREENING ( PICZA FIELD SCREENING ( PICZA FIELD SCREENING ( PICZA FIELD SCREENING ( PICZA TOYR Z/2) I MP dium tone and ( O Screening ( O Sc	D MONITORING WELL OTHER (SPECIFY) 5 NIESTED DICZOMETLIKS FIELID SCREENING RESULTS 0 COTECH SA OR CORE BO 0 e 10YR 2/2) 1 MP dium 100 c and (0.5 cm to 40 (0.5 cm to 40) (0.5 cm to 40 (0.5 cm to 40 (0.5 c	METALS     OTHER (SPECIFY)     OTHER (SPECIFY)       D     MONITORING WELL     OTHER (SPECIFY)     23. SIGNATURE       D     MONITORING WELL     OTHER (SPECIFY)     23. SIGNATURE       D     MONITORING WELL     OTHER (SPECIFY)     23. SIGNATURE       TERIALS     FIELD SCREENING     GEOTECH SAMPLE     DAM       TERIALS     FIELD SCREENING     GEOTECH SAMPLE     ANALYTI       MMEDIUM     d     e     1       MORDIUM     d     e     1       MMEDIUM     d     e     1       MORDIUM     hn M     e     1       MMEDIUM     hn M     e     1       MONTORS, I.e.     Spendes     0     1       MONTORS, I.e.     Spendes     0     1       MONTORS, I.e.     Spendes     0     1       MMEDIUM     0     0     1       MONTORS, I.e.     Spendes     0     1       MMEDIUM     0     0     1       MONTORS, I.e.     Spendes     0     1       MOUN(2554/12)     0     0     1       MMEDIUM     0     0     1       MMEDIUM     0     0     1	METALS     OTHER (SPECIFY)     OTHER (SPECIFY)       D     MONITORING WELL     OTHER (SPECIFY)     23. SIGNATURE OF INSPECTING STELL       D     MONITORING WELL     OTHER (SPECIFY)     23. SIGNATURE OF INSPECTING STELL       TERIALS     FIELD SCREENING     GEOTECH SAMPLE     ANALYTICAL       TERIALS     FIELD SCREENING     GEOTECH SAMPLE     ANALYTICAL       TERIALS     FIELD SCREENING     GEOTECH SAMPLE     ANALYTICAL       1     METALS     N.     A       1     METALS     ANALYTICAL     I       1     METALS     I     I       1     METALS <td>METALS     OTHER (SPECIFY)     OTHER (SPECIFY)     OTHER (SPECIFY)       D     MONITORING WELL     OTHER (SPECIFY)     23. SIGNATURE OF INSPECTOR       5     NLESTED     Dawy     Man       7     5     NLESTED     Dawy     Man       7     7     6000000000000000000000000000000000000</td> <td>METALS     OTHER (SPECIFY)     OTHER (SPECIFY)     OTHER (SPECIFY)       D     MONITORING WELL     OTHER (SPECIFY)     23. SIGNATURE OF INSPECTOR       D     MONITORING WELL     OTHER (SPECIFY)     23. SIGNATURE OF INSPECTOR       D     MONITORING WELL     OTHER (SPECIFY)     23. SIGNATURE OF INSPECTOR       D     MONITORING WELL     OTHER (SPECIFY)     23. SIGNATURE OF INSPECTOR       D     MOLESCHART     DAWAY     MANAGAM       FEELD SCREENING GEOTECH BAMPLE     ANALYTICAL     BLOW       COURT     G     e     1     9       IOV R 2/2)     h D M     e     1     9       IOV R 2/2)     h D M     G     6     6       IOV R 2/2)     h D M     G     G     6       IOV R 2/2)     h D M     G     G     6       IOV R 2/2)     h D M     G     G     6       IOV R 2/2)     h D M     G     G     6       IOV R 2/2)     h D M     G     G     G       IOV R 2/2)     G     G     G     G    <t< td=""></t<></td>	METALS     OTHER (SPECIFY)     OTHER (SPECIFY)     OTHER (SPECIFY)       D     MONITORING WELL     OTHER (SPECIFY)     23. SIGNATURE OF INSPECTOR       5     NLESTED     Dawy     Man       7     5     NLESTED     Dawy     Man       7     7     6000000000000000000000000000000000000	METALS     OTHER (SPECIFY)     OTHER (SPECIFY)     OTHER (SPECIFY)       D     MONITORING WELL     OTHER (SPECIFY)     23. SIGNATURE OF INSPECTOR       D     MONITORING WELL     OTHER (SPECIFY)     23. SIGNATURE OF INSPECTOR       D     MONITORING WELL     OTHER (SPECIFY)     23. SIGNATURE OF INSPECTOR       D     MONITORING WELL     OTHER (SPECIFY)     23. SIGNATURE OF INSPECTOR       D     MOLESCHART     DAWAY     MANAGAM       FEELD SCREENING GEOTECH BAMPLE     ANALYTICAL     BLOW       COURT     G     e     1     9       IOV R 2/2)     h D M     e     1     9       IOV R 2/2)     h D M     G     6     6       IOV R 2/2)     h D M     G     G     6       IOV R 2/2)     h D M     G     G     6       IOV R 2/2)     h D M     G     G     6       IOV R 2/2)     h D M     G     G     6       IOV R 2/2)     h D M     G     G     G       IOV R 2/2)     G     G     G     G <t< td=""></t<>

HTW DRILLING LOG							
OJECT	OB/C	D Area	Darryl	Morgan			Sheet Of Z Sheets 7
elev.	DEPTH	DESCRIPTION OF MATERIALS	FIELD SCREENING RESULTS d	GEOTECH SAMPLE OR CORE BOX NO. e	ANALYTICAL SAMPLE NO. f	BLOW COUNTS g	REMARKS
a 178	<b>,</b>		<i>∦</i> ∩u				
			0				
<i>a</i> : <i>A</i>		1 1 mart Bar I am					
177		Brown LOYR 4757 medium distancy					
		Brown (104R4/P) medium plasificity, medium dibtancy 100% fines; non calcapous no reaction HCL, CL, muist					
		no reaction incly composition					
176	7 -						
			O,				
							· ·
1175	8 -	dark reddish brown					
-		medium dilatoney, loofines					
		dark reddish brown (54R3/3) medium plasylicity medium dilatancy, 100fines non colcaeous, no reachion 11(L, CL, moist					
1174	9						
			0				
		4					
1173	i(;	dusky red (2.5983/4) medium plasticity, anedium dilatancy, 100% times, non Calcapous, no reaction					
		medium plasticity, meanum d. lavancu INP% times non					
		calcaeous, no reaction	-				Å
1172		HCL, CL, Moisi	4				
			0				
1171	12						
	-		:				
1170	13 _	-					
		1					
	-						
1160	14	A/A with limestone and cher	÷				0. 3-97-10PZ


		HTW DRILI					HOLE NO OB-97-10PZ
IQUECT	B/OL	) Area	Darry	1 Morga	n		SHEET 3 OF 3 SHEETS 7
V.	DEPTH	DESCRIPTION OF MATERIALS	FIELD SCREENING RESULTS d	GEOTECH SAMPLE OR CORE BOX NO.	ANALYTICAL SAMPLE NO. f	BLOW COUNTS 9	REMARKS h
169	14"	fragments 90% fines, 10%	hnu				
		fragments, moist	0				
1 68	15						
_		un que a lui)					
167	16	dusky red (2.542.314) medium dilatancy, medium plasticity, 75% fines, 20% Limestone and chert flagmen	1				
		plasticity, 75% fines, 20%	24-4				
		Limestone and chert truging					· .
166	/7	S% sand, CL, (Limestone and chert 0.7 to 2cm), mois	+' -				
• .		KINDEY LIMESTONE					
می کرد	1/8						
						· · · · · ·	
	· .						
1164	19						
		Vollan (INVR 8/4) sound, fine	0		· ·		
		Yellow (10YR 8/4) sound, fine unconsail dated, non colcaeous subrounded to founded, wet shale pate yellow (547/3)					
1163	20 <u>-</u>	shale pale yettow(54713)					
·		finetexture, firm, blacky, strong reaction HCL, very	•				
		calcaeous, moist					
1162	21	WIMORE SHALE	0				
1161	22 —	1					
		-					
1100	23	5-2 PROJECT				1401510	3-97-10PZ

MHK JUN 89 55-2

OD



23 		HTW [	DRILLING LO	G			HOLE NO. 010-97-10PZ	
ROJECT	0B/0	D Area	INSPECTOR Darr	VI Mor	gan		Sheet 5 Of 7 Sheets	
≞LÉV.	DEPTH	DESCRIPTION OF MATERIALS	FIELD SCREENING RESULTS d		ANALYTICAL SAMPLE NO. f	BLOW COUNTS 9	REMARKS h	
151	32	Shale: Weak red (10R4 fine texture, block NO reaction HCL, 10 fines, dry	4,50++, 0					
150	33	· · · · · · · · · · · · · · · · · · ·						
149	34	Shale: bluish gray (S fine : exture, sub ple Soft, very strong rea HCL, 100% finesidy	586/1) 0 hty, ction (Y				• •	
148	35	6 js	0					
147 1176								
		Schroyer Lingst Limestone: greenish (SC46/1) fine crystall medium hard, wet t Suturnted, weathered	0			-	torque up	
(44	39 —		ð					
1143	40	Limesione: white(NE fine to microcrystallin hard, dense, wet to Saturdied	3/) ne,					
1142	41	5-2 PROJECT				HOLE NO	-97-10PZ	



		HTW DRILLI					HOLE NO. 08-97-10PZ
ECT	B/OD	Area	Darry	1 Morgan			SHEET 7 OF 7 SHEETS
EV.	DEPTH	DESCRIPTION OF MATERIALS	FIELD SCREENING RESULTS d	GEOTECH SAMPLE OR CORE BOX NO.	ANALYTICAL SAMPLE NO. f		REMARKS
a 33	50 -		hnu				
			0				
00		1 1 A/A 1					torque up
32	91 T	shale: A/A, dry					
31	52	•					
			0				
130	53	shale gray (NS/), fine texture, platy, moderate firm, strong reaction HCL, cakneous, some HCL, cakneous, some					
		texture, platy, moderate					
		HCL, cakneours, some					
129	54	gypsum, 100% fines, dry					
		, ,					
		area (N.5/)					torque up
128	55	Limestone: gray (N 51) fine crystalline, hard, dense, very graillaeous, dry	0				
		very argillaeous, dry					
127	56						
1126	57-						
			2				
		the second second	=				70 58 @ 1600his
1125	58-	Shale: black (WZ.ST) fine texture, platy, Sol+, 100%					6-8-97
		shale. black white 100% texture, platy, Sdt, 100% fines, slight reaction HCL					
		dry					
14 4	159	T PROJECT 5-2 DB/OD Area				HOLE	0. 3-97-10PZ

## WELL SPECIFICATION FORM

CLIENT: U.S. ARMY CORPS OF ENGINEERS-KANSAS CITY DISTRICT
JOB NUMBER:JH-1124D
WELL OWNER: FORT RILEY - DES
ADDRESS: BUILDING 407 MAIN POST
ADDRESS: DUILDING 407 MAIN 1051
CITY, STATE, ZIP CODE: FORT RILEY, KANSAS 66442-6016
PHONE:
WELL NUMBER OR OTHER IDENTIFICATION: 0B97-10PZ [0-4] NEST OF 571ELOMETERS
WELL INSTALLATION DATE:
GEOLOGIST SUPERVISING INSTALLATION: DANIEL KEOHANE / DARRYL MORGAN
GROUND SURFACE ELEVATION (FT): 1183-28 (SURVEYOR'S Disc)
GROUND SURFACE ELEVATION (FT):
GROUND SURFACE ELEVATION (FI):
WELL STICK-UP (FT): 2.24 feet
TOTAL BORING DEPTH (FT): $58 F_{EET}$
TOTAL BORING DEPTH (F1): $978 - inches$
TOTAL DEPTH OF OUTER CASING (FT): 58 FEET (TEMPORARY)
OUTER CASING MATERIAL:
OUTER CASING DIAMETER (IN):
OUTER CASING DIAMETER (IN):
total depth of inner casing (ft. excluding screen): $49.142.035-98^{2}.29-016.01^{2}$
INNER CASING MATERIAL: <u>SCHEDULE 80 PVC</u>
INNER CASING DIAMETER (IN): $1 - iNCH$
TOTAL LENGTH OF WELL SCREEN (FT): $0.91/02 0.91/02$
WELL SCREEN MATERIAL: SCHEDULE 80 PVC
WELL SCREEN DIAMETER (FT):
SCREEN SLOT SIZE (IN):O.OLO - INC.H

.

LOUIS BERGER AND ASSOCIATES, INC. WELL SPECIFICATION FORM

.

### WELL SPECIFICATION FORM (Cont'd)

WELL NUMBER: 0897-10P2					
BACKFILL MATERIAL AROUND SCREEN: COARSE SAND					
DEPTH RANGE OF BACKFILL (FT): <u>SEE TABLE BELOW</u> TO					
B-AUTONIET (P-, Price OR CHIPE)					
SEAL MATERIAL ABOVE SCREEN: <u>BENTONITE (PEL PLUCE OR CHIPS)</u>					
DEPTH RANGE OF SEAL (FT): SEE TABLE BELOW TO					
BACKFILL MATERIAL AROUND CASING: BENTONITE					
DEPTH RANGE OF BACKFILL (FT):					
DESCRIPTION OF TOP SEAL: BENTONITE TO GROUND SURFACE PLACED					
AFTER PROTECTIVE CASING SET					
DESCRIPTION OF WELL COVER: 10-INCH DIAMETER STEET PROTECTIVE					
CASING					
OTHER ADDITIONAL INFORMATION: INTERVAL SCREENED IS IDENTIFIED BY					
NUMBER OF NOTCHES - NUMBER OF NOTCHES INCREASE WITH					
DECREASING DEPTH SCREENED					

FORMATION	DEPTH RANGE	DEPTH RANGE	SCREENED
SCREENED	OF BACKFILL (Ft. b.q.s)	OF SEAL (Ft bigs)	INTERVAL (Ft bas-upprox)
HAVENSYILLE	52.2 - 48.5	48-5-44.5	49.1-50
LOWER SCHROYER	44.15 - 41.0	41.0-38.0	42-43
UPPER	38.8 - 35.01	35.01 - 31.1/30.9	35.98-37
SCHROVER WYMORE	30.9 - 26.9	26.9 - 18.5	29-30
KINNEY	18.5 - 15.0	15.0 - 4.0	16 - 17

LOUIS BERGER AND ASSOCIATES, INC. WELL SPECIFICATION FORM

	<u></u>		HTW D	RILLI	NG	LO	G				HOLE 08	NO. -97-11.82
1. COMPANY	Y NAME	d A.	······································	2. 0		SUBCONTR	ACTOR				SHEE	í 1 Sheets
3. PROJECT		Caller & M.	<u>Ssof (an es</u>		Lay	A LOCAT	ON	6		<u></u>		GREETO
	O8/c	ID Area	· · · · · · · · · · · · · · · · · · ·			<u> </u>	S //) A	RAMAT	DON OF DRILL	<u>† 1 – K</u> u	1. B. M.	
	Bab Knopt					o. manur	ACTUREN 3 DE	NGE	REDUCTS R	<u>аыр Ан</u>	<u>c Rie</u>	
7. SIZES AN	D TYPES OF	DRILLING	CREWARY STR				OCATION		Martel 10			
AND SAM	IPLING EQUIF		and Kinterd Fam hole ant	TOM ONE	(1999) 1999 -	9. SURFA	CE ELEVATION				5	<u> </u>
								·	t mean	<u>580 /</u> 1. DATE COMP		
							-9.97			1. DATE COMP		
12. OVERBU	JRDEN THICK			1			H GROUNDWA					
	DRILLED INT		RESIDUAL SOI	hine \					APSED TIME AFTE	R DRILLING COM	PLETED	. <u></u>
IG. DEFINA		<u> </u>					3-611					,
14. TOTAL [	Depth of H * 2	OLE Frene t							Surements (Spe		12-1-4	
18. GEOTEC	CHNICAL SAM		DISTURBED	UNDIS	STURBED			BER OF	CORE BOXES	ġ.		
		MICAL ANALYSIS	voc	METAL	S	OTHEF	(SPECIFY)		HER (SPECIFY)	OTHER (SI	PECIFY)	21. TOTAL CORE
	N/A											RECOVERY
	TION OF HO	LE	BACKFILLED	MONITORING	WELL	OTHE	(SPECIFY)		SIGNATURE OF INS			
									Devente			g-ring
ELEV.	DEPTH	DES	SCRIPTION OF MATERIALS			CREENING SULTS	GEOTECH S/ OR CORE BC		ANALYTICAĽ SAMPLE NO. f	BLOW COUNTS g		REMARKS h
1131 1130 1179		Modium p dilizione y Linne stern Moist, (L Blue S p gray 1sh D Modium y dilatoney, Linne storie 3.5cm) (1 Fraction	- gray (104R 3) lasticity, med 1, 50% fines e gravel (0.50 1, nd HCC ra Russes SNAN plasticity, med S0% fines, " - gravel (0.50 L, must, no f - hence (104R	50% 50% action .c. ) hum 50% n tu ICL							With A	to colory to colory
177		malium dilatanei Limpsioni 4.6 (m) (	brown (104R plasticity, med y, 80% (102s, b gravel (102 <u>L. marst color</u> PROJECT OB/OD	1) UM 20 ⁹ 76 m 10 n <del>2016</del>						HOLE NO		-1192

		HTW DRILL	ING LO	G	HOLE NO. 019-97-11-PZ		
OUECT	OBIOD Area		NSPECTOR Darry		Sheet 2 OF 7 Sheets		
ELEV. a	DEPTH	DESCRIPTION OF MATERIALS	FIELD SCREENING RESULTS d	GEOTECH SAMPLE OR CORE BOX NO. 8	ANALYTICAL SAMPLE NO. 1	BLOW COUNTS 9	REMARKS
177		light HCL reaction	hnu				
1176	6		5				
		<i></i>					
1175							
; ; <i>; .</i>							
1174	8-1	Yellowish brown (104R 5/6)	0				
		medium plasticity, medium dilatancy, 100% fines, Slight				-	
		HELTERCHION COLORDONS CL.					
1173		Moist					
11,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1							
1172	/0	Pale office (546/4) medium					
		Plasticity, modium ditatane 100% fines Slight HCL	ý,				
		reaction, clearous, CL, dr	, 0				
1171		, , , , , , , , , , , , , , , , , , , ,	7			-	
1		shale Rie Olive, (54614)		• •			
1170	) (2			a de la construcción de la construc			
		Strong HCL reaction, very	0				
		Calcaeous, dry				, L	
1169	13	Don trime546					· · ·
		Limestone: Pale olive (59613)	<del>}-</del>				
		Limestone: par on or stalline.					
1168	Ц	fine to medium crystalline, hard, dense, some chert, a	dry				
	FORM 55	-2 DB/OD Area				HOLE NO	B-97-11PZ

ROJECT	1210	INSPECTOR / AM					
¢LEV. a	DEPTH	D Area Ins Description of materials		GEOTECH SAMPLE OR CORE BOX NO.	ANALYTICAL	BLOW COUNTS q	OF 7 SHEETS
<u>।</u> । ।	14	· · · · · · · · · · · · · · · · · · ·	hnu		,	9	<u>n</u>
167	چ ا	Limesione: A/A, aret	0				
165	ة السالي	Limestone : AllA; wet					
165			0				
		Wymers					
124		Wympre Shale Light office gray(5962, fine texture, subplaty, solt, slight HCL reaction, colcarous some Fe signin, dry	, , , ,				
163							-
1167	20	shale: gray (N5/) fine texture blocky, firm, strong HCL reaction, calcoeous, dry	0				
	2 -	, ,					
60	27	shale: greenish gray (5GY5/1) Fine texture, blocky, firm, Stiong HCL reaction, Calcomus		2.			- 
159	13	-2 PROJECT B/OD Area	2				- 2752

•		HTW DRILL	ING LO	G			HOLE NO. 0 B-97-11-PZ
ROJECT	OB/	OP Area	BRECTOR	VI Mora	ian		Sheet 4 Of 7 Sheets
ELEV. a	DEPTH	DESCRIPTION OF MATERIALS	FIELD SCREENING RESULTS d	GEOTECH SAMPLE OR CORE BOX NO. e	ANALYTICAL SAMPLE NO. 1	BLOW COUNTS g	REMARKS h
59	23		hny			X	
100		a A /A Jay					
15B	24	shale: A/A, dry	0				
المنبوس ا							
1157	25						
د معر		shale AlA, dry					
1156	/6 <u> </u>	· · ·	ò				forque up
•							Leider de
1155	27						
		, , , roddick cray					
11,54		shale: dark reddish gray (2.54R411) fine texture,					
		blocky, firm, ACC reaction	0				
		dry					
1153	29 -						
:							
*		I I I I I I I I I I I I I I I I I I I	in l				
1152	30-	shale: gray ish green (5646) fine texture, blocky,					
		finm, HCL reaction, dry	0				
1151	31-						
	_						
		Shalo Jack madel - mil					· · ·
115.0	50FM 5	5-2 Shale dark geddish gray PROJECT 0B/0D Area	<u> </u>	<u> </u>	1	HOLE N	3-97-11PZ

OUECT	0.0 / n -						HOLE NO. 08-97-11-PZ SHEET 5
(	<u>06700</u> T	Area 💦		OF 7 SHEETS			
FLEV. a	DEPTH b	DESCRIPTION OF MATERIALS	RESULTS	OR CORE BOX NO.	ANALYTICAL SAMPLE NO. f	BLOW COUNTS 9	REMARKS
150	32	(54R 4/2) fine + exture, blocky,	hny			J	
		firm, no HCL reaction, dry"					
			0				
1149	33	·					
1148		CLUS July expands amon					
		Shale darkgreenish gray (564/1) fine texture, platy					
		soft, Strong HCL reaction,	0				
		calconeous, slightly moist					
147	35-						
1144		chale light greenish gray					
		shale light greenish gray (567/1) fine texture, blocky	0				
		moderately firm, weak HCL moderately firm, weak HCL moderien, slightcalcaeous,					
			Schrover	n			
145	37-77	imestorie: pate vertice (2.54		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~			torque up
		1/4), fine crystalline, solt Weathered, Moist					
		WEATHER FILLER					
144	38 _		O				
		limestone: A/A wet					
المعلى وال							:
1103	39						
1142	40 IL	impsions: light gray (2.547/2)	5				
	-	ling to micro crystalling hard,	0				
		dense, abundant chert, Saturated					
141		147 Hr 47 CM					
174 1	ORM 55-2	PROJECT 08/00 Area	L. <u></u>	l	LI	HOLE NO.	97-11-PZ

		HTW DRILL		HOLE NO. 08-977-11-192 SHEET 6				
IOJECT	<u>08/0</u>	D Areia	FIELD SCREENING GEOTECH SAMPLE ANALYTICAL BLOW					
ELEV. a	DEPTH b	DESCRIPTION OF MATERIALS c	RESULTS	OR CORE BOX NO.	SAMPLE NO.	COUNTS	REMARKS h	
11	41		her a					
			0					
140		Linesione: light gray (2.547/2) (inclus micro crystalline,					tague up	
		hand, drinse, with colette,					chriting shure	
		abundant chert, saturated	0					
139	43							
138	4//	Limestorie A/A saturated						
			and the second se					
137	45							
- /								
136		LIANSTONE ALA NO Cheves						
		SAT WARANG	Hoversville Ö	) 17 mmrt 474			5moork out	
		Shale: dark gray(N41) fine derhore, plany, sold,	<i>C</i>					
135	47	weak lice reaction, slightly						
		calearous; moist						
	- مندين ا							
134								
				,				
	11/2		Ç.					
133	- Wi							
		Chalas I/A an LICE CREMION.						
		Shale: A/A, no HCLFPachon, ary						
127	190	-2 PROJECT Areo	1	1	1	HOLE NO	-97-11-72.	

OJECT	hR //	DP Area	-	08-97-11-PZ SHEET 7			
ELEV.	ОСЛА DEPTH b	DESCRIPTION OF MATERIALS	SPECTOR DGVTV FIELD SCREENING RESULTS d	OR CORE BOX NO.	ANALYIICAL	BLOW COUNTS	OF 7 SHEETS REMARKS
137	<u>ه</u> ا		hnu	e		g	<u>h</u>
			0				torque up
131	5/						Smooth out '
			6				
30	52	shale: gray (NG/) fire texture blacky from to					
		texture, blocky, firm to hard, strong HCL reaction,				X	
		Very Calcabous, dry			<i>,</i>		
129	53						
	Í						
28	54 _	shale: gray (161) fine	$\sim \rho$				
	=	Shale: gray (1961) fine textuire, blocky, firm, modiate HCL reaction, carcaeous, moist					torque up for "possible
ł							Limestone Lense
27	<u>55</u>						smodin out
	E	ar					
							torque up
26	56	shale: gray (N61) fine	<u>.</u>				moist
		texture, blocky, firm to hard, strong HCL reaction Very colcaeous					
,		very colcaeous					
25	<i>\$</i> 7		0				
				Î			Set 8"ID temperary casing
		in the second hash					tempyary casing to 58
24	58	Shale: Very dark gray (N3/) She texture, platy, solt, Nery Deak lick reaction, dry					smooth out
- 1		and the second	۲۰۰۳ - ۲۰۰۵ - ۲۰۰۵ - ۲۰۰۵ - ۲۰۰۵ - ۲۰۰۵ - ۲۰۰۵ - ۲۰۰۵ - ۲۰۰۵ - ۲۰۰۵ - ۲۰۰۵ - ۲۰۰۵ - ۲۰۰۵ - ۲۰۰۵ - ۲۰۰۵ - ۲۰۰۵ ۲۰۰۰ - ۲۰۰۰ - ۲۰۰۵ - ۲۰۰۵ - ۲۰۰۵ - ۲۰۰۵ - ۲۰۰۵ - ۲۰۰۵ - ۲۰۰۵ - ۲۰۰۵ - ۲۰۰۵ - ۲۰۰۵ - ۲۰۰۵ - ۲۰۰۵ - ۲۰۰۵ - ۲۰۰۵	ander and Dalland and an an a William and a second second second second second second second second second sec	allesser för att förförand förgar bergen egna av		Total Deph 58'
							finish drilling @08\$\$2 hrs 6-9-97
							( <b>) - 7 - 7</b> - 1
		2 PROJECT OB/OD Area		· ·		HOLE NO.	.97-11-12

# WELL SPECIFICATION FORM

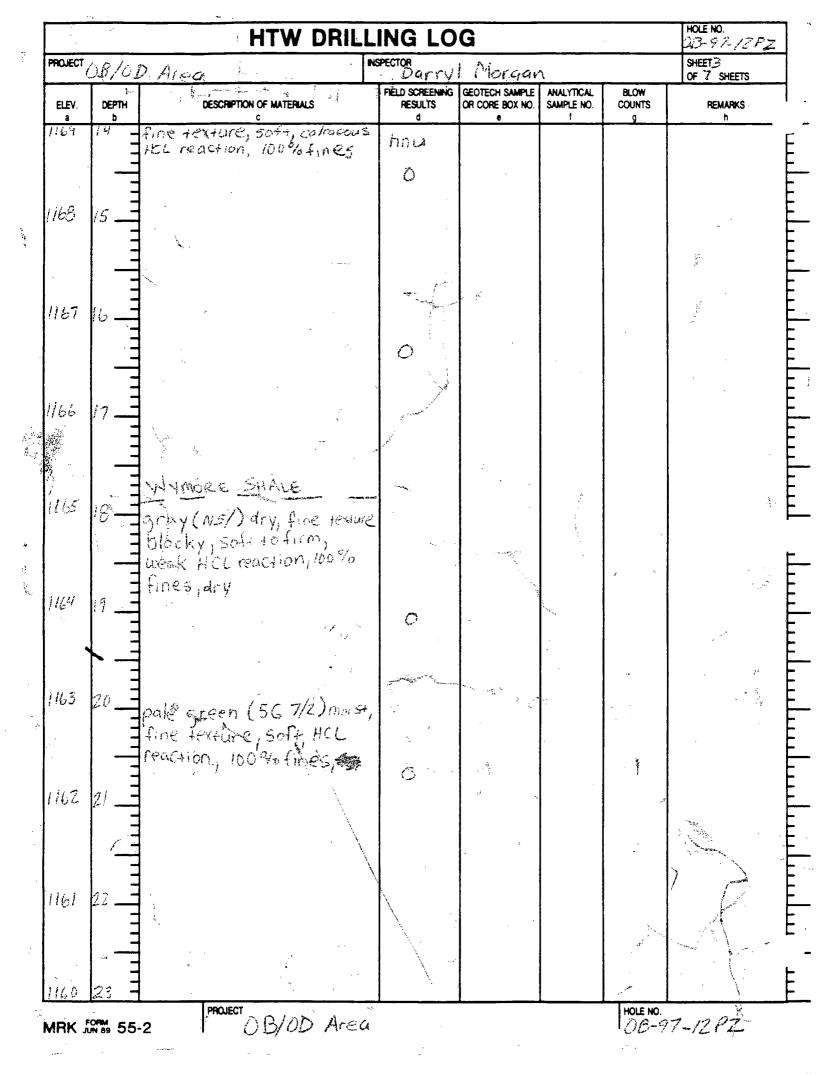
CLIENT: US ARMY CORPS OF ENGINEERS - KANSAS CITY DISTRICT
JOB NUMBER:
WELL OWNER: FORT RILEY - DEE
BUILDING 407 MAIN POST
CITY, STATE, ZIP CODE: FORT RILEY, KANSAS 66442-6016
PHONE: (913) 239-3343
WELL NUMBER OR OTHER IDENTIFICATION: <u>OB97-11PZ [0-4] NEST OF 5 PIEZUMETERS</u>
WELL INSTALLATION DATE:
GEOLOGIST SUPERVISING INSTALLATION: DANIEL KECHANE DARRYL MORGAN
GROUND SURFACE ELEVATION (FT): 1182-21 (SURVENOR'S DISC)
TOP OF CASING ELEVATION (FT):
WELL STICK-UP (FT): $2 \cdot 22$ FEET
TOTAL BORING DEPTH (FT): 58 FEET
BORING DIAMETER (IN): $97/8 - inc/4$
TOTAL DEPTH OF OUTER CASING (FT): <u>5825FEET (TEMPURARY)</u>
OUTER CASING MATERIAL:
OUTER CASING MATERIAL:
OUTER CASING DIAMETER (IN):
TOTAL DEPTH OF INNER CASING (FT. EXCLUDING SCREEN):- bg.s to 1st slot -50.02 44-01 36-0 29-0 13:0
INNER CASING MATERIAL: SCHEDULE 80 PVC
TOTAL LENGTH OF WELL SCREEN (FT): - 15- 10st Slot - 0.88 0.39 0.9 0.9 0.9
WELL SCREEN MATERIAL: SCHEDULE 80 PVC
WELL SCREEN DIAMETER (FT): INC/H
SCREEN SLOT SIZE (IN):O-020 INCH

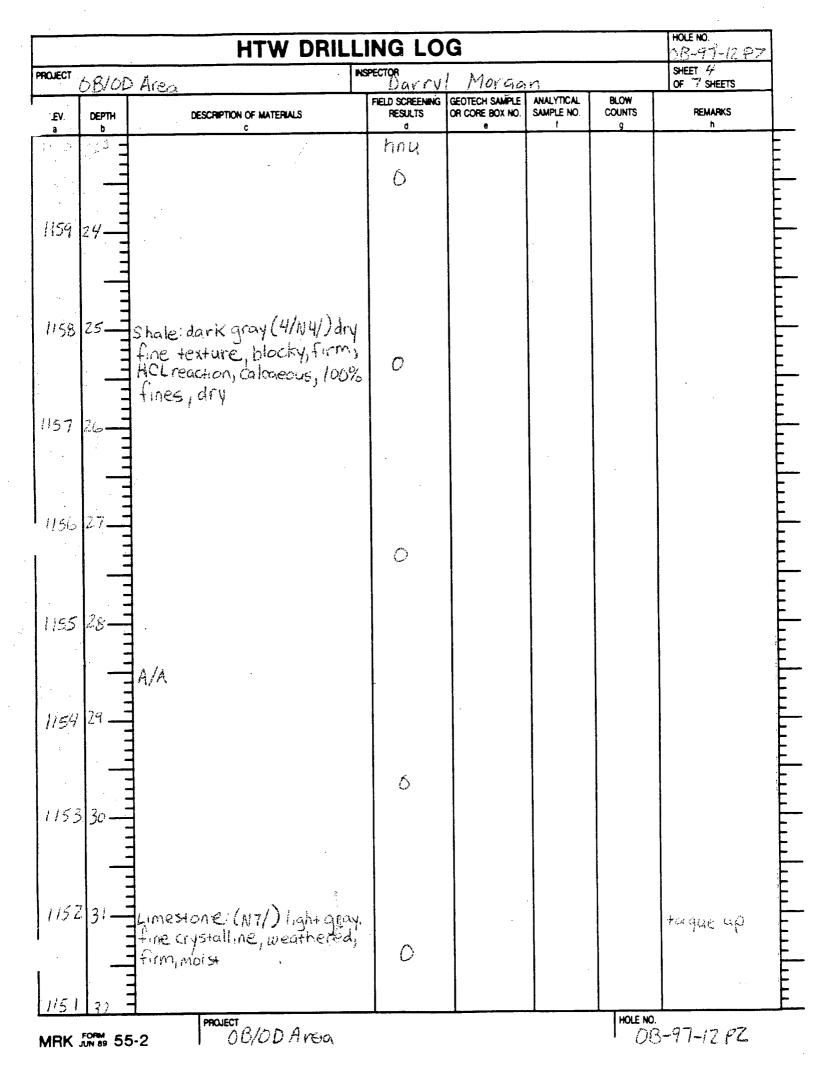
LOUIS BERGER AND ASSOCIATES, INC. WELL SPECIFICATION FORM

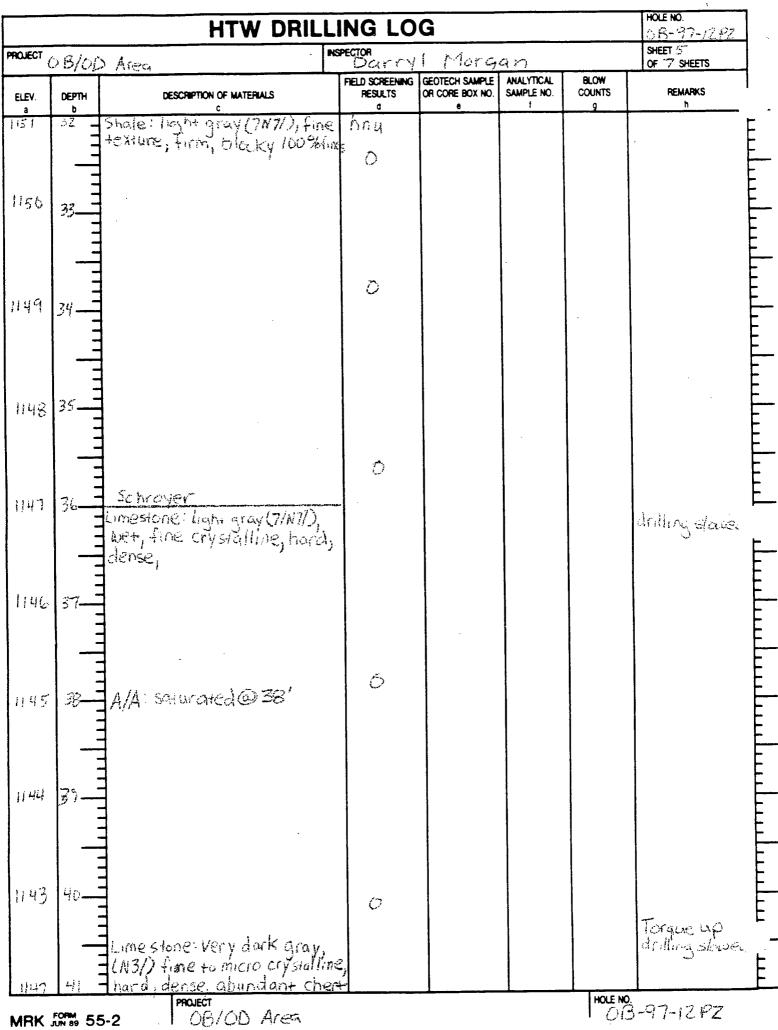
### WELL SPECIFICATION FORM (Cont'd)

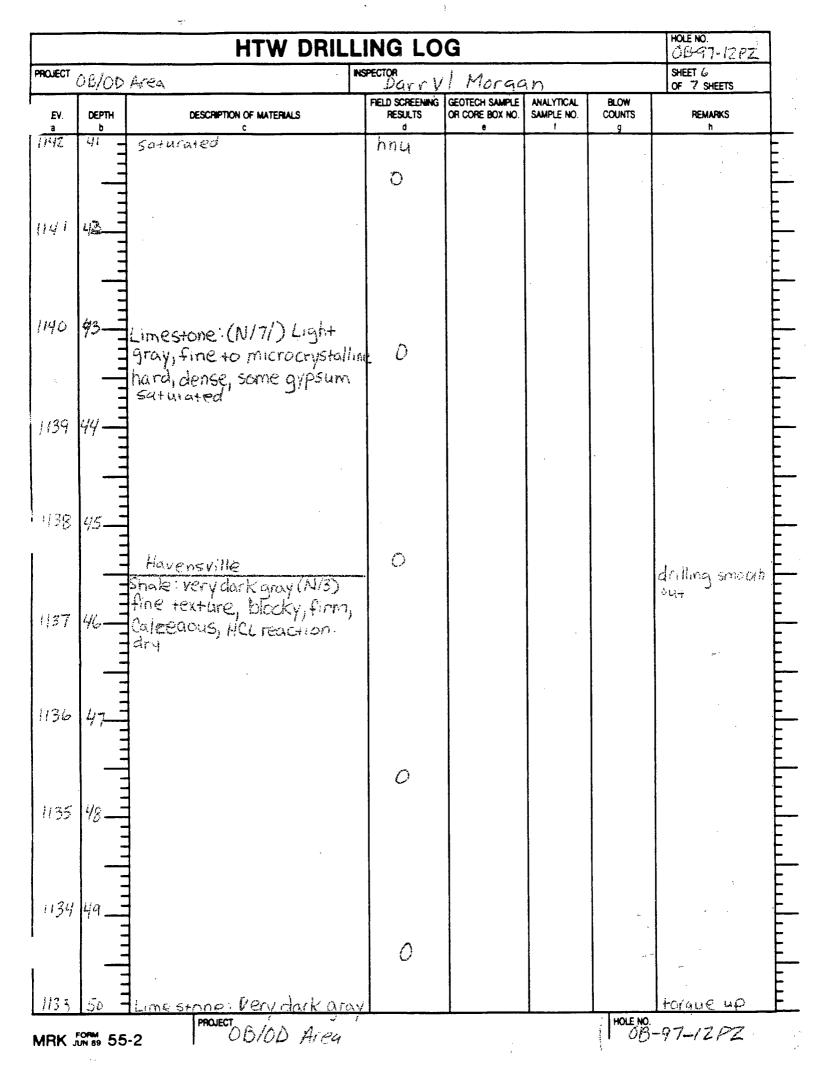
WELL NUMBER:
BACKFILL MATERIAL AROUND SCREEN: COARSE SAND
DEPTH RANGE OF BACKFILL (FT):
SEAL MATERIAL ABOVE SCREEN: BENTONITE (PEL PLUG OR CHIPS)
DEPTH RANGE OF SEAL (FT): SEE TABLE BELOW TO
BACKFILL MATERIAL AROUND CASING: <u>BENTONITE</u>
DEPTH RANGE OF BACKFILL (FT):
DEPTH RANGE OF BACKFILL (FT):
DESCRIPTION OF TOP SEAL: BENTONITE TO GROUND SURFACE; PLACED AFTER
PROTECTIVE CASING SET
DESCRIPTION OF WELL COVER: 10-INCH DIAMETER STEEL PROTECTINE CASING
OTHER ADDITIONAL INFORMATION: INTERVAL SCREENED IS IDENTIFIED BY
NUMBER OF NOTCHES - NUMBER OF NOTCHES INCREASE WITH
DECREASING DEPTH SCREENED

FORMATION SCREENED	DEPTH RANGE OF BACKFILL (Ft. bqs)		ENTERVAL SCREENED (Ft bys)
HAVENSVILLE	53-1-49-0	49.0 - 46.2	50-51
LOWER SCHROYER	46.2 - 42.9	42.9 - 38-3/38-1	44-45
UPPER Schroyer	38-1 - 35-0	35.0 - 31.0/30.9	36 - 37 29-30
WYMORE	30.9 - 27.9	27.9-15-3	29-30
KINNEY	15.3 - 12.0	12.0 - 4.0	13 - 14


LOUIS BERGER AND ASSOCIATES, INC. WELL SPECIFICATION FORM


JANUARY 1992


.


					RILL	NG	LO	G				HOLE	NO. -97-12-12
COMPA	NY NAME	· Rose .	and l	ecariade	2.		SUBCONTR	ACTOR				SHEE	sheets
PROJEC		OD AI		<u>ssocia</u> te			A LOCAT	DB/00	An	ea Rar	ige 16		
NAME C	FDRILLER	(evopt	e.'				6. MANUF	ACTURER'S DE	SIGNA	TION OF DRILL	Zanto	G.o	Sec.
	ND TYPES OF			Hary 5%	?" hit to	581	8. HOLE L	OCATION					
	MPLING EQUI		Logano	thole from	haireu	History				NORTH	<u>of 01</u>	393-	05
			ream	hole with	<u>17 'a' b</u>	y.e		CE ELEVATION					
							10. DATE	STARTED	3	1	11. DATE COMP	PLETED	
OVER	URDEN THIC	KNESS						H GROUNDWAT		COUNTERED		11	
		14-	Fretl	residual	<u>- 5011)</u>		4	20 fe	et				
). Depth	DRILLED INT	O ROCK	Feet	~			16. DEPT	H TO WATER A	nd eu c e t	APSED TIME AFTE		MPLETED	
I. TOTAL	DEPTH OF H						47 0700			CUDEMENTS (SDE		. 22	Fait/611
GEOTE	CHNICAL SA			DISTURBED	UNDI	STURBED		TOTAL NUME	BER OF	CORE BOXES	<u>1 7 4 -</u>	5.20	ANG <u>ATECT</u>
	NI	<u>/}</u>							N,	/ <u>A</u>			21. TOTAL COF
). Sampl		MICAL ANALYS	⁵⁴⁵	VOC	METAL	.5	OTHER	(SPECIFY)		HER (SPECIFY)	OTHER (S		RECOVERY
	Ni				MONITORING			(SPECIFY)	22 6	GNATURE OF IN	SPECTOR		<u>N/A *</u>
2. Dispo	Sition of Ho	)LE	'	BACKFILLED	MONITOHING		NEST	eQ.	20. 0	Dany	-	يترزد فباتق بحيسيك	
								GEOTECH SA	MPLE	ANALYTICAL	BLOW		
ELEV.	DEPTH	- - -	DESCRIPTIC	ON OF MATERIALS			SULTS	OR CORE BO		SAMPLE NO.	COUNTS		REMARKS h
183		Black	2.54	2.571) mo	154	hai	-					Drill	ing with
		medu	m plasi	2.571) mo 1+101+y, m	edium	1417.	***					5%	"Bit
		~	ancy,	CL-lean	7 100%	0	l					6-5- air,	97 12/5hr ⁻ 0tary
		tines											1
182	/	14.						ļ					
-													
	=		<b>S</b>										
181	2	DAME Very d	<u>PYKIN</u>	wish bro									
		(104R31	27 001	syish bro st, mediu	m					•			
		plasit	icity,	mediumo	Waniacy,								
			0% fire		•								
180	3 —	-											
v													
						1							
		]											
	4					~							
179	` =					0							
179	1 –	1				1				1	l	1	
1179													
179													

		HTW DRILL		HOLE NO.				
Roject	Oby	Gir Harren . MS	PECTOR	Margar		Sheet CF Sheets		
די <b>EV</b> .	DEPTH	DESCRIPTION OF MATERIALS	FIELD SCREENING RESULTS d	GEOTECH SAMPLE OR CORE BOX NO. e	ANALYTICAL SAMPLE NO. f	BLOW COUNTS 9	REMARKS h	
с <del>Ср</del> о			Mar Et					
			0					
	- 	Wirkdark gravich brown,						
		Very durk graynen brown, (1448-312) div, mecham Phisincry, mechamodilamane, SL, 90% few s, 10% Lammann Programmis (Osem ic 10m)						
n generge		SL, 10% Finis, 10% Commence Surgences (Astronas (CM)						
		a program de la composición de la compo						
179								
			and a Card					
·								
19		Dalace Kal 2 + 1874) ware ward are also and g						
		Service Heaters and Char						
475		t che hone y 46% fan-dout Novel en en frankrik fan en						
i i ji		e e de la presidente de la presenta de la presenta Na companya de la presenta de la pres						
•	<u> </u>		Ĉ					
ې وې مېرې								
117.								
170								
			0					
		<u>en des las esperan</u>	240 ⁻²					
		-2				HOLENO	en de Trac De Te Zuero	









OJECT	an Inn	A	PECTOR Dawn	<u>56-97-12-PZ</u> SHEET 7 OF 7 SHEETS			
ELEV.	OB/OD	DESCRIPTION OF MATERIALS		y/ Morga GEOTECH SAMPLE OR CORE BOX NO.	ANALYTICAL SAMPLE NO.	BLOW COUNTS	DF / SHEETS
153	30 -fi	rgilledous, moist	hny				
		gulledous, moist	D				
132	51_11	• •					
131	35 25 25 25 25 25 25 25 25 25 25 25 25 25	hale: very dark gray (N/3) ine +exture, blocky, firm, alcaeous, HCL reaction	ð				dalling Smooth out
1/30		iry					
1129	54	i.	- 0				
1128	55 - 1						
1-jim		imestone very dark groy N/3), fine crystalline, hard					Torque up
27	1 -	N/3), fine crystalline, hard dense, argilleadus, moist shale: very dark gray (N/3) ine texture, blocky, firm, calcaeous, HCL reaction					drilling smoot
1120	s7	dry					Feam hole wir 976" bir to 58 Starod/400hrs Ended 69 1620hr set 67 JD PVC
172	58	Total Depth	0				to sg/ Ended 171 to sg/ Ended 171 end drilling @ 1330 hrs 65
							While reaming Sticking in ho 314025'

· · -----

-----

## WELL SPECIFICATION FORM

ч

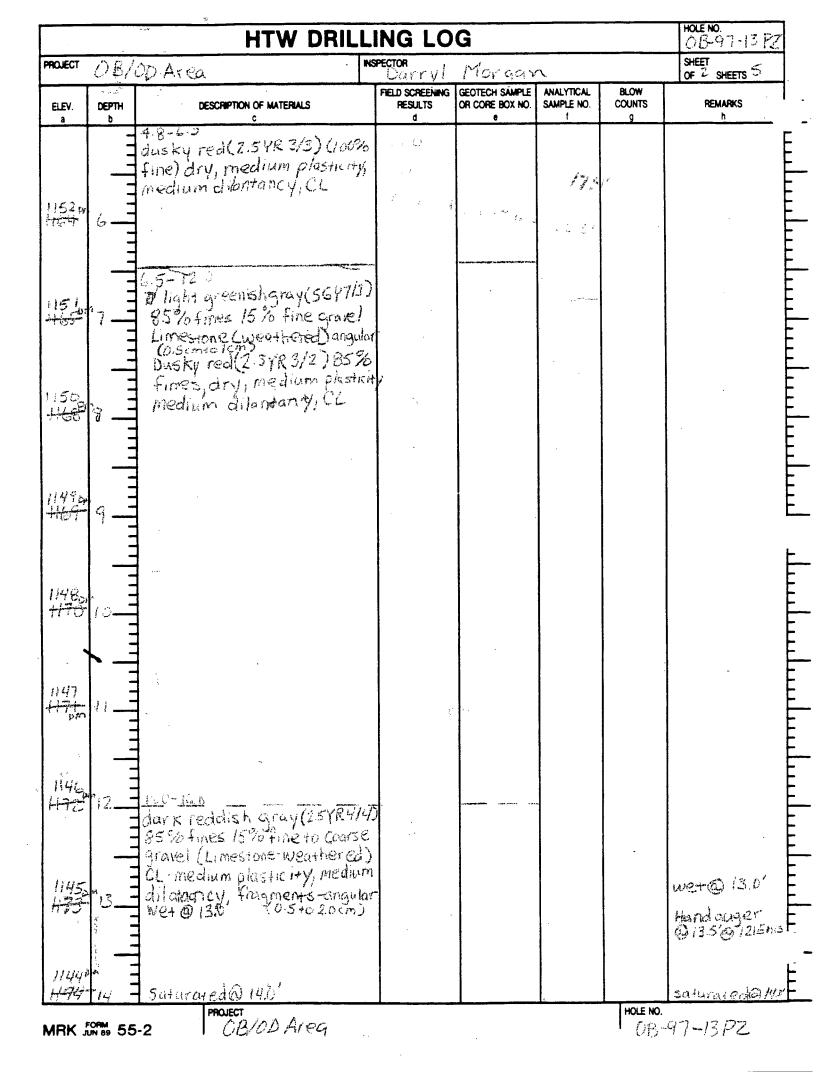
CLIENT: U.S. ARMY CORPS OF ENGINEERS - KANSAS CITY DISTRICT
JOB NUMBER: JH- 1124 D
WELL OWNER: FORT RILEY - DEE
ADDRESS: BUILDING 407 MAIN POST
CITY, STATE, ZIP CODE: FORT RILEY, KANSAS 66442-6016
PHONE: (913) 239-3343
WELL NUMBER OR OTHER IDENTIFICATION: 0897-12PZ (0-4) NEST OF 5 PIEZOMETERS
WELL INSTALLATION DATE:
GEOLOGIST SUPERVISING INSTALLATION: DANIEL KECHANE / DARRYL MORGAN
GROUND SURFACE ELEVATION (FT): 1183-24 (SURVEYORS DISC)
TOP OF CASING ELEVATION (FT): 1185.65 (TOP PVC CASING)
WELL STICK-UP (FT): 2.41 FEET.
TOTAL BORING DEPTH (FT): 58 FEET
BORING DIAMETER (IN): $978 - 1NCH$
TOTAL DEPTH OF OUTER CASING (FT): 58.3 (TEMPORARY)
OUTER CASING MATERIAL: SCHEDULE BO PYC
OUTER CASING DIAMETER (IN): 8-INCH
5.9.5 to 1 ST 510t TOTAL DEPTH OF INNER CASING (FT. EXCLUDING SCREEN): 49.99 44.0 35.99 29.0' 14.0'
INNER CASING MATERIAL: SCHEDULE 80 PVC
INNER CASING DIAMETER (IN): <u>1 INCH</u>
TOTAL LENGTH OF WELL SCREEN (FT): $\begin{bmatrix} 15^{+}   4st   s  ct \end{bmatrix}$ 0.91 0.91 0.91 0.91 0.91
WELL SCREEN MATERIAL: SCHEDULE 80 PVC
WELL SCREEN DIAMETER (FT): I ~ INCH
SCREEN SLOT SIZE (IN):O.020 INCH

LOUIS BERGER AND ASSOCIATES, INC. WELL SPECIFICATION FORM

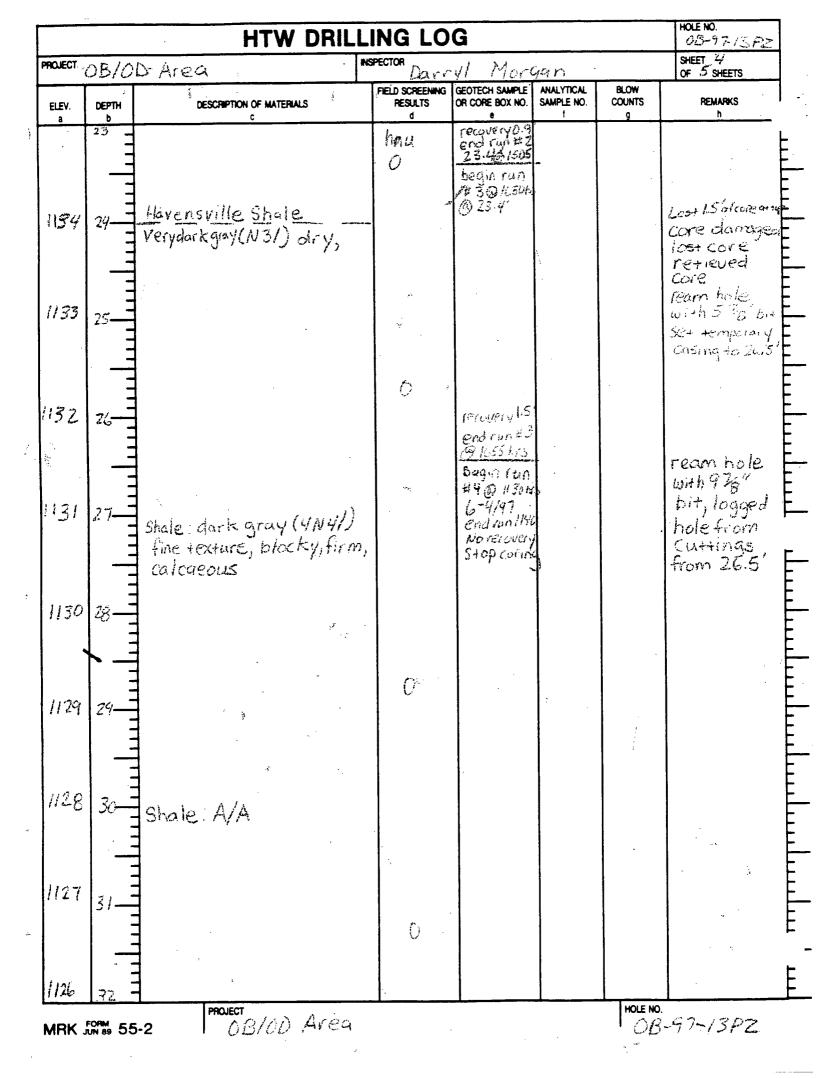
...

JANUARY 1992

### WELL SPECIFICATION FORM (Cont'd)


WELL NUMBER: 0B97-12 PZ
BACKFILL MATERIAL AROUND SCREEN: <u>COARSE SAND (10–20)</u> DEPTH RANGE OF BACKFILL (FT): <u>SEE TABLE BELOW</u> TO
SEAL MATERIAL ABOVE SCREEN: BENTON ITE (PEL PLUG & CHIPS) DEPTH RANGE OF SEAL (FT): SEE TABLE BELOW. TO
BACKFILL MATERIAL AROUND CASING: <u>BENTONITE</u>
DEPTH RANGE OF BACKFILL (FT): <u>SEE TABLE BELOW</u> .
DESCRIPTION OF TOP SEAL: <u>BENTONITE TO GROUND SURFACE; PLACED AFTER</u> PROTECTIVE CASING SET
DESCRIPTION OF WELL COVER: 10-MCH DIAMETER STEEL PROTECTIVE CASING.
OTHER ADDITIONAL INFORMATION: <u>INTERVAL SCREENED IS IDENTIFIED BY</u>
NUMBER OF NOTCHES - NUMBER OF NOTCHES INCREASE WITH
DECREASING DEPTH SCREENED.
ATION DEPTH RANGE DEPTH RANGE INTERVAL

FORMATION	DEPTH RANGE	DEPTH RANGE IN OF SEAL (Ft 195) Sci	NTERVAL
SCREENED	OF BACKFILL (Ft b.g.s)	OF SEAL (Ft ) gis) Sch	2EENED (FL b.g.s)-APPLOX
HAVENSVILLE	53.5 - 49.0	49.0 - 46.41/46.3	50-51
LOWER SCHROVER	46.3 - 43.0	43.0 -38.5 //38.45' 4	+4-45
UPPER SCHROYER	38-45 — 35.0	35.0 - 31.3 /31.2	36-37
WYMORE	31-2' - 27-9	27.9-16.5/16.3"	29-30
KINNEY	16.3' - 12.8'	12.8 - 4.0	14-15


LOUIS BERGER AND ASSOCIATES, INC. WELL SPECIFICATION FORM JANUARY 1992

.

			HTW	DRILL	ING	LO	G				HOLE 015	<b>nu.</b> 1-97-13PZ
. COMPA	NY NAME			2.	DRILLING		RACTOR				SHEE	Τ 1
Loi	<u>uis 136</u>	raer 4 /	Associotes	<u>.                                     </u>		Nrip						SHEETS
. Projec	n Rime	Area				4. LOCAT	XN ີກ_⊴‴ີ	_17	PZ:08	INTO Acer	F.	T KILEN
	F DRILLER	JANELL_	·····				FACTURER'S D			مری ۱۹۹ <u>۰ ۲ مرکار (</u> )	<u>ng</u> arn	-987 - 1 N/3
		Knoof				-1-24-	-60 7	NIGE	RSOL-R	AND A	VIR. A	216
	ND TYPES OF		her reford 53	"bi+ to	12 1	8. HOLE	LOCATION					
AND SA	MPLING EQUI		oscend from			AD	JACEN	- -	0 0 60	8-04	X OBS	7-07
	•	Í	ream bole wi	45 至海"	101-	9. SURFA	CE ELEVATION	1				
			Core from 17.					<u>7 te</u>	set me	in Sea	1640	
			a sha ta an a the star a st	egulingia, Dista		10. DATE	STARTED	· ·		11. DATE COMP		2
	URDEN THIC	KNESS					H GROUNDWA	and the second se		677	11	
2. UYEND		MNEDD	(ResiDUAL S	se N		IS. DEPI	H GHOUNDWA		JOUNTERED			
3. DEPTH	DRILLED INT	O ROCK	•	1.21 <b>1.</b>		16. DEPT			PSED TIME AFTE	R DRILLING COI	MPLETED	
		20-5	Feet						16-7-			
4. TOTAL	DEPTH OF H		· · · · · · · · · · · · · · · · · · ·			17. OTHE	R WATER LEV	EL MEA	SUREMENTS (SPE	ECIFY)	<u></u>	
		<u>18</u>							7 37	51/10-1	0-47	<u>.</u>
B. GEOTE		MPLES	DISTURBED	UND	ISTURBED	19	. TOTAL NUM	BEROF	CORE BOXES	Υ.		
	N/A				T							
J. SAMPL		MICAL ANALYSIS	VOC	META	LS	OTHER	R (SPECIFY)		IER (SPECIFY)	OTHER (SI	-EUIFY)	21. TOTAL COF RECOVERY
	A, A	L										<u>ි</u> ු %
DISPOS	SITION OF HO	ILE	BACKFILLED	MONITORING	G WELL	OTHER	R (SPECIFY)	23. S	GNATURE OF IN	SPECTOR		<u></u>
				1			ene-er	-	Danny		، وتعلق معمم معلم • وتعلق معلم معلم	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
	<b>T</b>				1-			┶──┯			يويد فرسه	
ELEV.	DEPTH	n	ESCRIPTION OF MATERIALS			REENING	GEOTECH SA		ANALYTICAL SAMPLE NO.	BLOW COUNTS		REMARKS
a	b		C C			d	e e		f	g		h
56		0.0 - 4.9			hai	Å					1730	hrs C/3内
		very do	irkgrayish bi 1/2) [100%fine	own		-1						ndeilling
		110483	12) 11009/14/10	$\langle \rangle$	0							78 6.7
		(moist)	medium plas	3+1(1+4)							air	rotary
Dm			diletency. C				i					··· · · · ·
537		erns quary i	i dereserención c	اقتي								
10. j	-				1							
	1											
-	_							[				
ا ښرې	2											
54	_									•		
	7									÷		
												i i
					1							
Dfa	3 - 1											
55	$\sim$ $-$											
س ت	E											
	_				· ·							
DM	· 1											
167-	4											<b>2</b> . '
154	<u> </u>											
	Ē											÷
		NYM	ore Shale									<del>с</del> э.
	ㅋ	for any formation	and the second second second	ર્ ૦૫								
	~ _	and a construction of the second s	,	فيون مراسط بإريا الروايين الارتبار ومعرود ومعر	1		The second se				1	
1530	<u>ं</u> द –	4.8-6.5	Considued on	newson				1	1			



ECT ,	AR77	D Area	INSPECTOR	08-77-1572 SHEET			
V.	DEPTH	DESCRIPTION OF MATERIALS	FIELD SCREENING RESULTS	Morgan Geotech Sample Or Core Box NO.	ANALYTICAL SAMPLE NO.	BLOW COUNTS	OF SHEETS
	b —	C	tin G	e	f	g	<u> </u>
			0				
			14				
Sir	15 _						
	-						
2							
2 ,6a 7	16-	Not and the man of a stall phy.					
		Dark reddish gray(2.54R4/4) 75% fines 15% (fine to coarse					
		gravel-Limestone) medium d-lumancy, medium plasticity-( fragments-origular ().scmtoll	2				Recently to with
Da 7-		fragments.ongular (0.5cm to2.1	5 0				5 % 6 Set temporoly FPKCosmile 17
·							Hand pager
		Schroyer Limestone	565×	begin current		4	21-50/00/7.9" 1/2-45 nrs
2 _{Dr}		light gray (2.5 17/2) fine crystalline, hard,		3746 Mrs 317.4			
$\overline{\mathcal{B}}$	過—	dense arailleacus, cherry Very fossiliferous @151	1 . 1	арт А. А. Та			cor.ng begin (2)/4856-497 (5) (7.47; 1 %
		Very fossiliferous @15'					Cue barrely
		(shell flogments)					Fubble Zone Encounter @1215
n Ten T	14	A/A		RQD=8%			Communication Detween 08-97-
'		Vuggy Zone@18.5' to 19.0'					13PZana 02-11
4		10 1 M U					07 air farcing Water out of
5	111			- 1949 - 11			68-47-07 cases
	20-1			CALL-MARTE			
	111	4 -		A CONTRACTOR			
		λ.		201750ms			
pr-		•					
'							
E a				۴. بر			
1	2	, we be de No		recovery 2.4' endrug 11425 hrs			
		54713(pale yellow) fine	in (i	begin run			
		crystalline, hard, dense, gypsum nodules	92 92 Al 22 Children and American State of State	120 1955 12 10 1955 12 22.2 RGD: 42%	arreador a ser da organização de est	ا بر میکرد. میلاد این میکرد میکر وقت کرد این این میکرد. میلاد این میکرد میکرد میکرد میکرد این میکرد این میکرد.	an a
501	1 7.3	φ <u>.</u>		RQD=42%			
, FC	XRM 55-	2 B/OD Area				HOLE NO.	97-13PZ



NECT	nain	D Area		Morgar	· · ·		A R LONG PROPERTY SHEET O OF ST SHEETS
LEV.	Дертн в	DESCRIPTION OF MATERIALS	FIELD SCREENING RESULTS	GEOTECH SAMPLE OR CORE BOX NO.	ANALYTICAL SAMPLE NO.	BLOW COUNTS 9	REMARKS
<u> </u>			hnu				
			0				
25	3						
			de la companya de la comp				
24 :		· · · ·	Q				
	<u> 1</u> П	nate: dark gray (41/N4/)					:
73		nale:darkgray(4/114/) ne texture, blacky, ift-firm, stightly lcaeous					
المحود المراقع		Icapous					
la des							
			Ô				
21	57						
				Ŧ			Contemporary
-	18	Total Decth	0				20 cusing 28 states
20		LOYAL US MID	1927 - Marine Down Amer (Marine Down - 197 Fill Marine Down - 1977 - 1977 - 1977 - 1977 - 1977 - 1977 - 1977 - 1977 - 1977 - 1977 - 1977 - 1977 - 1977 - 1 I San David - Jane - Jane - 1977 - 1977 - 1977 - 1977 - 1977 - 1977 - 1977 - 1977 - 1977 - 1977 - 1977 - 1977 -	4 der Lähren (MBBARRLach – Gelichting) all schlagen Gene Lähren von Statisticher Berlacher ander Anzeige	1. V	9- 3.2029-52-989 76-494273 - 14.81996-07-80 9	145408 6-4-97
		N					
							,
	FORM 55	5-2 PROJECT	:	- <b></b>	1	HOLE NO	\$-97.5PZ

## WELL SPECIFICATION FORM

CLIENT: US ARMY CORPS OF ENGINEERS- KANSAS CITY DISTRICT
JOB NUMBER:
WELL OWNER: FORT RILEY - DEH
ADDRESS: BUILDING 407 MAIN POST
CITY, STATE, ZIP CODE: FORT RILEY, KANSAS 66442-6016
PHONE: (913) 239-3343
Well NUMBER OR OTHER IDENTIFICATION: $0897 - 13P2 (0 - 4) NEST OF 5 PIEZOMETERS$
WELL INSTALLATION DATE:
GEOLOGIST SUPERVISING INSTALLATION: DANIEL KECHANE / DARRYL MORGAN
GROUND SURFACE ELEVATION (FD): 1157-92 (SURVENORS DISC)
TOP OF CASING ELEVATION (FT):
WELL STICK-UP (FT): 2-23 FEET
TOTAL BORING DEPTH (FT): <u>37-8 FEET (FEMPORARY)</u> 38 FEET BORING DIAMETER (IN): <u>97/8</u> INICH
TOTAL DEPTH OF OUTER CASING (FT): 37-8 Feet (TEMPOKARY).
OUTER CASING MATERIAL: <u>SCHEDULE 80 PVC</u>
OUTER CASING DIAMETER (IN):
TOTAL DEPTH OF INNER CASING (FT. EXCLUDING SCREEN): $b.g.s.tc. 1^{st} Slot - 30'25.99'20.99'16.5'10.99'$
INNER CASING MATERIAL: SCHEDULE 80 PVC
INNER CASING DIAMETER (IN): $(- inch)$
TOTAL LENGTH OF WELL SCREEN (FT): $\frac{ st-last s _c t : 0.91' 0.91' 0.91' 0.91' 0.91'}{5} = 0.91'$
WELL SCREEN MATERIAL: SCHEDULE 80 PVC
WELL SCREEN DIAMETER (FT):
SCREEN SLOT SIZE (IN): 0-220 INCH

LOUIS BERGER AND ASSOCIATES, INC. WELL SPECIFICATION FORM

----

JANUARY 1992

.

### WELL SPECIFICATION FORM (Cont'd)

WELL NUMBER:
BACKFILL MATERIAL AROUND SCREEN: <u>COARSE SAND (10-20)</u> DEPTH RANGE OF BACKFILL (FT): <u>SEE TABLE BELOW</u> TO
SEAL MATERIAL ABOVE SCREEN: <u>BENTONITE</u> ( <u>FEL PLUG OR (HIPS</u> )
DEPTH RANGE OF SEAL (FT): <u>SEE TABLE BELOW</u> TO
DEPTH RANGE OF BACKFILL (FT): <u>SEE TABLE BELOW</u> DESCRIPTION OF TOP SEAL: <u>BENTONITE TO GROUND SURFACE: PLACED AFTER</u>
PROTECTIVE CASING SET DESCRIPTION OF WELL COVER: 10-INCH DIAMETER STEEL PROTECTIVE
CASING
OTHER ADDITIONAL INFORMATION: <u>INTERVAL SCREENED IS IDENTIFIED BY</u> <u>NUMBER OF NOTCHES - NUMBER OF NOTCHES INCREASE WITH</u> DECREMENCE DERTH SCREENED
DECREASING DEPTH SCREENED FORMATION DEPTH RANGE DEPTH RANGE INTERVAL SCREENED OF BACKFILL (Ft bgs) OF SEAL (Ft bgs) SCREENED (Ft bgs) APPRO
Lower 32.0 - 29.5 29.5 - 27.7 30-31 HAVENSVILLE
UPPER HAVENSVILLE 27.7 - 25.0 25.0-23-2/23.1 26-27
LOWER 23.1 - 20.0 20.0 - 18.1/17.9 21-22
UPPER SCHROYER 17.9 - 15.5 15.5 - 13.3/13.1 16.5-17.5
OVERBURDEN 13.1 - 9.8 9.8 - 4.0 11 - 12

LOUIS BERGER AND ASSOCIATES, INC. WELL SPECIFICATION FORM JANUARY 1992

		WE	ELL- <del>DEVE</del>	LOPMENT	(PURGE LO	DG			
Project Name OB/OD	AREA 1	Ft RILE	ł	Project Num	iber JiH-1	124 D	DATE	9-4-97	
Sampler(s) DAN KEO	HANE Da	RRY/ Marc	ion Tim	Date Well In:	stalled				
Elapsed Time since grou	ting N//	tp ?	Berry	-Developmen	Purge Metho	od Blad	Ider Pa	np	
VOLUME OF CASING				VOLUME OF	ANNULUS				
1. Depth of Well:		42.14	ft	Hole Diamete		10	_in 		
2. Depth to Top of Water		33-01	ft	Casing Diam	•	<u> </u>	. ⁱⁿ 9-13	4	
3. Height of Water		9.13	ft	1. Height of V				_ft	
Casing Diam	neter:	2	in.		asing & hole		4.06	gai	
4. Vol/Lin Ft. of Casing		0.17	gal	(see 1) 3. Porosity @	able 2) ) ~ <b>30</b> %	x	0 <b>2</b> 0	% porosity	
(see Table 1) 5. One Casing Volume		1.6	gal	4. One Annu	lus Volume	·	7.3	gal	
	ONE TOTAL	WELL VOLU	ME	8.9	gal				
PARAMETER	INITIAL	1 VOL.	2 VOL.	3 VOL.	4 VOL.	5VOL.	FINAL		
Gallons		4	18				27	4	
Time (24 hr)	0841	0855	0910				0926		
Conductivity (MS/cm) ssolved Oxygen (ppm)	610	600	600	<u> </u>	<b> </b>		6/0		
n (mV)				1				1	
pH (S.U.)	6.83	7.00	7-02			<del></del>	7.01	1	
Temperature (°	13.2	/3·C	12.4	1			12.9		
Turbidity (NTU)	34.8	7.42	3.14	+			2.76		
Photo Taken	YES	NO	- 11	Photo No.	N/A	p.			
Water Level After Develop	ment	N/Ap			oth After Devel	opment	_N/Ap_	-	
Water Level After Purging		_33-03	laFter so	ampling)			·		
NOTES:	Sumple	collect eserved	ed O	0926	FOR	VOA a	nalysis	-	
<i>...</i>		-O ppm						-	
		<u> </u>						-	

WELL NUMBER OB93-DI

DIAMETER	O.D. (in)	I.D. (in)	Volume (gal / lin ft.)
1.25"	1.66	1.38	0.08
2"	2.37	2.06	0.17
3"	3.50	3.06	0.38
4"	4.50	4.02	0.66
6"	6.62	6.06	1.50
8"	8.62	7.98	2.60
12"	12.75	11.93	5.81

Hole	Volume per	Linear Foot	Casing	Volume per	Linear Foot
Diameter	Gal.	Cu.Ft.	Diameter	Gal.	Cu.Ft.
7.25 in	2.14	0.29	1.25	2.03	0.27
7.25 in	2.14	0.29	2	1.91	0.26
7.75 in	2.45	0.33	2	2.22	0.3
8.25 in	2.78	0.37	2	2.55	0.34
10.25 in	4.29	0.57	2	4.06	0.54
8.25 in	2.78	0.37	. 3	2.28	0.30
10.25 in	4.29	0.57	3	3.79	0.51
12.25 in	_ 6.13	0.82	.**3	5.62	0.75
8.25 in	2.78	0.37	4	1.95	0.26
10.25 in	4.29	0.57	4	3.46	0.46
12.25 in	6.13	0.82	. 4	5.30	0.71
12.25 in	6.13	0.82	6	4.33	0.58

	WELL- <del>DE</del> V	ELOPMENT (PURGE LOG	
Project Name OBOD ARE	A Ft RILEY	Project Number JH - 1124	D DATE <u>9-4-97</u>
Sampler(S) DAN KECHAN	E Darry Morgan	Date Well Installed	
Sampler(s) DAN KECHAN TIM BERRY Elapsed Time since grouting	NIAP	- Development Furge Method B	adder Pump
VOLUME OF CASING	····	VOLUME OF ANNULUS	
1. Depth of Well:	7 <u>3 88</u> ft	Hole Diameter //	<u>)</u> in in
2. Depth to Top of Water	<u>59-41</u> ft	1. Height of Water	<u>14.47</u> ft
3. Height of Water Casing Diameter:	<u>14.47</u> ft <u>2</u> in.	2. Vol/Lin. Ft. of Annulus between casing & hole (see Table 2)	<u>4-06</u> gal
4. Vol/Lin Ft. of Casing	<u>_</u> 0 • / <del>7</del> gal	3. Porosity @ -20%	x0 <b>_30</b> % porosity
(see Table 1) 5. One Casing Volume	<u>2.5</u> gal	4. One Annulus Volume	<u>11.5</u> gal
ONE	TOTAL WELL VOLUME	<u> </u> 4gal	

PARAMETER	INITIAL	1 VOL.	2 VOL.	3 VOL.	4 VOL.	5VOL.	FINAL
Gailons	S. A. S. S. S. S.	14	28				1022
Time (24 hr)	0847	0416	0944				1022
Conductivity (MS/cm)	710	740	710				700
Dissolved Oxygen (ppm)							
Eh (m) DTW (Ft)	59.41	60.25	60.30				60.25
pH (S.U.)	6.34	7.03	7.06				7.05
Temperature (° 🗗	15.0	14.0	14-1				14.1
Turbidity (NTU)	7200	60-25	5.45				4-54
Photo Taken		<u> </u>	]	Photo No.	NA	Λ	
	YES	NO					
Water Level After Develop	ment -	NAP		Sounded Dep	oth After Devel	opment	NA
		60.251	aFter Sam	pling)			
Water Level After Purging	-			7 1			
Water Level After Develop Water Level After Purging NOTES: <u>Samp</u>	و نندې د	cllecter	@ 10	22 For	2 VOA	analysi	S-HCL P

WELL NUMBER 0393-02

### O.D. 1.D. Volume (gal / lin ft.) (in) (in) 0.08 0.17 1.66 1.38 2.37 2.06 3.50 3.06 0.38 4.50 4.02 0.66 6.06 1.50 6.62 8.62 7.98 2.60 12.75 11.93 5.81

Hole	Volume per	Linear Foot	Casing	Volume per	Linear Foot
Diameter	Gal.	Cu.Ft.	Diameter	Gal.	Cu.Ft.
7.25 in	2.14	0.29	1.25	2.03	0.27
7.25 in	2.14	0.29	2	1.91	0.26
7.75 in	2.45	0.33	2	2.22	0.3
8.25 in	2.78	0.37	2	2.55	0.34
10.25 in	4.29	0.57	2	4.06	0.54
8.25 in	2.78	0.37	3	2.28	0.30
10.25 in	4.29	0.57	3	3.79	0.51
12.25 in	_ 6.13	0.82	.*3	5.62	0.75
8.25 in	2.78	0.37	4	1.95	0.26
10.25 in	4.29	0.57	4	3.46	0.46
12.25 in	6.13	0.82	4	5.30	0.71
12.25 in	6.13	0.82	6	4.33	0.58

### TABLE 1. Volume of Schedule 40 PVC Pipe

DIAMETER

1.25"

2" 3"

4"

6"

8"

12"

		WE	ELL-DEVE	-OPMENT	PURGELO	G		
Project Name OB OD	AREA T	Ft. RILE	۲.,	-	ber []] - 11	24D	DATE	9-3-97
Sampler(s) Dan KE Tim Be	OHANE	[Darry]	Morgan	Date Well In	stalled			
Elapsed Time since grout	ing N	Ap		-Developmer	tPurge Metho	d Bladd	rer Pump	?
VOLUME OF CASING				VOLUME OF	ANNULUS			
1. Depth of Well:		79.30	ft	Hole Diamete Casing Diam	_	10 2	in in	
2. Depth to Top of Water		53-53	ft	1. Height of V	-		. 17	th (is' screen t Z' sand pack)
3. Height of Water		25.77	ft	2, Vol/Lin. Ft	. of Annulus		4.06	gal Sand pack)
Casing Diame	eter:	_2	in.	between c	asing & hole able 2)		<u> </u>	• -
4. Vol/Lin Ft. of Casing (see Table 1)		0.17	gal	3. Porosity @	•	x	0.20	% porosity
5. One Casing Volume		4.4	gal	4. One Annu	ılus Volume		13.6	gal
	ONE TOTAL	WELL VOLU	ME	18	gal			
PARAMETER	INITIAL	1 VOL.	2 VOL.	3 VOL.	4 VOL.	5VOL.	FINAL	1
Gallons	1000 C 253 D		36				54	
Time (24 hr)	0919	1004	1118	1			1154	
Conductivity (dS/cm)	·			1			·	
issolved Oxygen (ppm)	4200	930	910	1			900	
Et (MV) DTW(Ft) PH (S.U.)	53.53	53.65	53.65	1			53.60	
OH (SU)	7.09	7.04	7.02		1		7.01	
Temperature (°C	15.0	150	150				150	
Turbidity (NTU)	7200	39.5	33-0				26.2	
Photo Taken	YES	NO	]	Photo No.	NIA	P		- · ·
Water Level After Developr	nent	NIA	-		pth After Develo	opment	N/Ap_	-
Water Level After Purging		53.60 (				,	_	;
NOTES: <u>Collect</u>	Sample	<u> </u>	54	FOR (	JoA anal	455 -He	CL Preser	<u>u</u> ect. -
	<i>.</i>							-

WELL NUMBER OB93-03

DIAMETER	O.D.	1.D.	Volume
	(in)	(in)	(gal / lin ft.)
1.25"	1.66	1.38	0.08
2"	2.37	2.06	0.17
3"	3.50	3.06	0.38
4"	4.50	4.02	0.66
6"	6.62	6.06	1.50
8"	8.62	7.98	2.60
12"	12.75	11.93	5.81

Hole	Volume per	Linear Foot	Casing	Volume per	Linear Foot
Diameter	Gal.	Cu.Ft.	Diameter	Gal.	Cu.Ft.
7.25 in	2.14	0.29	1.25	2.03	0.27
7.25 in	2.14	0.29	2	1.91	0.26
7.75 in	2.45	0.33	2	2.22	0.3
8.25 in	2.78	0.37	2	2.55	0.34
10.25 in	4.29	0.57	2	4.06	0.54
8.25 in	2.78	0.37	3	2.28	0.30
10.25 in	4.29	0.57	3	3.79	0.51
12.25 in	6.13	0.82	.*3	5.62	0.75
8.25 in	2.78	0.37	4	1.95	0.26
10.25 in	4.29	0.57	4	3.46	0.46
12.25 in	6.13	0.82	4	5.30	0.71
12.25 in	6.13	0.82	6	4.33	0.58

		WELL NUMBER OB 93-OUT
	WELL DEVE	ELOPMENT PURGELOG
Project Name OBIOD AREA	Ft RILEY	Project Number JH-1124D DATE 93-97
Sampler(s) Dan Kechane Tim Berry	Darryl Moggan	Date Well Installed
	VIAe	-Developmen Purge Method Bladder Pump
VOLUME OF CASING		VOLUME OF ANNULUS
1. Depth of Well:	<u>58.27</u> tt	Hole Diameter <u>LO</u> in Casing Diameter <u>2</u> in
2. Depth to Top of Water	<u>38-73</u> #	
3. Height of Water	<u>19.54</u> tt	1. Height of Water $\frac{17}{4.06} \text{ ft} (15^{\prime} \text{ screen } + 2^{\prime})$ 2. Vol/Lin. Ft. of Annulus $\frac{H \cdot 06}{9} \text{ gal}$
Casing Diameter:	in.	between casing & hole (see Table 2)
4. Vol/Lin Ft. of Casing (see Table 1)	<u>C+17</u> gal	3. Porosity @ ~ <b>3</b> 0% x <u>0.30</u> % porosity
5. One Casing Volume	<u>3.3</u> gal	4. One Annulus Volume <u>13.6</u> gal
ONE TO	TAL WELL VOLUME	<u>16.9</u> gal

PARAMETER	INITIAL	1 VOL.	2 VOL.	3 VOL.	4 VOL.	5VOL.	FINAL
Gallons	REAL CONSTRUCTION	17	34				SI
Time (24 hr)	1253	1323	1410				144(
Conductivity (tdS/cm)	2100	910	900				870
Dissolved Oxygen (ppm)			)				
Eh(m) DTW(Ft)	38.76	38.76	38.85				38.79
pH (S.U.)	6.76	6.82	6.31				679
Temperature (° 🕰	14	14	14				14
Turbidity (NTU)	7200	29.9	7.37				5.23
Photo Taken	YES	NO		Photo No.	N/Af	)	
Water Level After Develop	•	N/Ap		• • • •	oth After Devel	•	N/Ap_
Water Level After Purging <u>38.79 (after sampling)</u> NOTES: <u>PID-0.0</u> <u>Collect Sample</u> <u>1441</u> For UCA analysis - HCL							
NOTES: <u>PID-C-O</u> <u>Collect Sample</u> @ 1441 For UCA analysis - HCL Preserved.							

### Casing Volume per Linear Foot Hole Volume per Linear Foot Diameter Gal. Cu.Ft. Cu.Ft. Diameter Gal. 0.27 0.29 1.25 2.03 2.14 7.25 in 0.26 0.29 2 1.91 7.25 in 2.14 2.45 0.33 2 2,22 0.3 7.75 in 0.34 2.78 0.37 2 2.55 8.25 in 0.54 2 4.06 10.25 in 4.29 0.57 0.30 2.28 8.25 in 2.78 0.37 3 3.79 0.51 3 10.25 in 4.29 0.57 **x**3 5.62 0.75 0.82 6.13 12.25 in 0.26 2.78 0.37 4 1.95 8.25 in 0.46 3.46 4.29 0.57 4 10.25 in 5.30 0.71 4 12.25 in 6.13 0.82 4.33 0.58 6 6.13 0.82 12.25 in

DIAMETER	O.D. (in)	I.D. (in)	Volume (gal / lin ft.)
1.25"	1.66	1.38	0.08
2"	2.37	2.06	0.17
3"	3.50	3.06	0.38
4*	4.50	4.02	0.66
6"	6.62	6.06	1.50
8"	8.62	7.98	2.60
12"	12.75	11.93	5.81

		WELL NUMBER $0\beta 97 - 05$
	WELL DEVE	LOPMENT-(PURGE LOG
Project Name OBIOD AREA	Ft RILEY	Project Number JH- 1124 D DATE 9-3-97
Project Name OBIOD AREA Sampler(s) Dan Kechane / Tim Berry	Darry Morgan	Date Well Installed MARCH 97
Elapsed Time since grouting $\Lambda'/\mu$	P	DevelopmentPurge Method Bladder Pump
VOLUME OF CASING		VOLUME OF ANNULUS
1. Depth of Well:	71.94 ft	Hole Diameter <u>IO</u> in Casing Diameter 2 in
2. Depth to Top of Water	<u>58.84</u> ft	1. Height of Water 12 th (10 Ft screen + 2 Ft Sarch pack)
3. Height of Water Casing Diameter:	<u>13 · 10 ft</u> <u>2</u> in.	2. Vol/Lin. Ft. of Annulus between casing & hole (see Table 2)
4. Vol/Lin Ft. of Casing	<u>0.17</u> gal	3. Porosity @ ~20% x 0.20 % porosity
(see Table 1) 5. One Casing Volume	gal	4. One Annulus Volume 9.6 gal
ONE TOTA	L WELL VOLUME	gal

PARAMETER	INITIAL	1 VOL.	2 VOL.	3 VOL.	4 VOL.	5VOL.	FINAL
Gallons	Contraction State	12	24				36
Time (24 hr)	1543	1617	1640				1705
Conductivity (pgS/cm)	970	750	770				750
issolved Oxygen (ppm)		·	· <u></u>				
Eh (mV) DTW (Ft)	58.84	58.85	58.35				58.85
pH (S.U.)	7.16	7.02	7.04				7.04
Temperature (° 🖏	15	15	15				15
Turbidity (NTU)	181.7	17.2	6.07				4.34
Photo Taken YES NO Photo No. N/Ap							
Water Level After Development <u>NIA</u> Sounded Depth After Development <u>NIA</u>							
Water Level After Purging $58.85(aFter sumpling)$							
Water Level After Purging <u>58-85(a</u> Fter sumpling) NOTES: <u>Collect Sample</u> (2) 1706 For UOA analysis <del>BED</del> -HCL- <u>Preserved</u> - PID-0.0 ppm							

DIAMETER	O.D. (in)	l.D. (in)	Volume (gal / lin ft.)
1.25"	1.66	1.38	0.08
2"	2.37	2.06	0.17
3"	3.50	3.06	0.38
4"	4.50	4.02	0.66
6"	6.62	6.06	1.50
8"	8.62	7.98	2.60
12"	12.75	11.93	5.81

Hole	Volume per	Linear Foot	Casing	Volume per	Linear Foot
Diameter	Gal.	Cu.Ft.	Diameter	Gal.	Cu.Ft.
7.25 in	2.14	0.29	1.25	2.03	0.27
7.25 in	2.14	0.29	2	1.91	0.26
7.75 in	2.45	0.33	2	2.22	0.3
8.25 in	2.78	0.37	2	2.55	0.34
10.25 in	4.29	0.57	2	4.06	0.54
8.25 in	2.78	0.37	3	2.28	0.30
10.25 in	4.29	0.57	3	3.79	0.51
12.25 in	_ 6.13	0.82	.*3	5.62	0.75
8.25 in	2.78	0.37	4	1.95	0.26
10.25 in	4.29	0.57	4	3.46	0.46
12.25 in	6.13	0.82	4	5.30	0.71
12.25 in	6.13	0.82	6	4.33	0.58

		ELOPMENT (PURGE LOG
Project Name OB/OD AREA	Ft RILEY	Project Number JH-1124D DATE 9-3-97
Sampler(s) Dan Kechane	Darryl Morgan	Project Number JH-1124D DATE <u>9-3-97</u> 1 Date Well Installed MARCH 97
Elapsed Time since grouting N	IAP	Bevelopmen (Furge Method Blackder Pump
VOLUME OF CASING		VOLUME OF ANNULUS
1. Depth of Well:	<u>38.53</u> ft	Hole Diameter $lO$ in Casing Diameter $d$ in
2. Depth to Top of Water	24.75 ft	1. Height of Water 13.78 ft
3. Height of Water Casing Diameter:	<u>13-78</u> ft in.	2. Vol/Lin. Ft. of Annulus <u>4.06</u> gal between casing & hole (see Table 2)
4. Vol/Lin Ft. of Casing (see Table 1)	<u>Cui7</u> gal	3. Porosity @ ~20% x 0.30 % porosity
5. One Casing Volume	gal	4. One Annulus Volume gal
ONE TO	TAL WELL VOLUME	<u>13-3</u> gal

PARAMETER	INITIAL	1 VOL.	2 VOL.	3 VOL.	4 VOL.	5VOL.	FINAL
Gallons	的秘密的影响	14	28				42
Time (24 hr)	1000	1036	1136				1204
Conductivity (#S/cm)	1260	610	620				620
Dissolved Oxygen (ppm)							
Et (MV) DTW (Ft)	24.75	24.79	24.79				2477
pH (S.U.)	11.02	7.01	7.00				7.01
Temperature (° C)	15	15	15				is
Turbidity (NTU)	(30.9	15.60	7.46				6-52
Photo Taken	YES	NO	l	Photo No.	<b>N</b> ∫Ap		
Water Level After Developr	-	NAP			oth After Devel	lopment	N/Ap
Water Level After Purging		2477	aFter so	impling) tecl @			
NOTES: <u>PID</u>	<u>O-Oppin</u> preserved	Samp	le collec	tect @	120	FOR	VOA anal

### Hole Volume per Linear Foot Casing Volume per Linear Foot Cu.Ft. Diameter Gal. Diameter Gal. Cu.Ft. 0.27 7.25 in 2.14 0.29 1.25 2.03 0.26 1.91 7.25 in 2.14 0.29 2 2 2.22 0.3 7.75 in 2.45 0.33 0.34 0.37 2 2.55 8.25 in 2.78 4.06 2 0.54 4.29 0.57 10.25 in 2.78 0.37 3 2.28 0.30 8.25 in 0.57 3 3.79 0.51 10.25 in 4.29 0.75 12.25 in 6.13 0.82 .**x**3 5.62 4 1.95 0.26 2.78 0.37 8.25 in 0.57 3.46 0.46 10.25 in 4.29 4 12.25 in 6.13 4 5.30 0.71 0.82 0.58 12.25 in 6.13 0.82 6 4.33

### TABLE 1. Volume of Schedule 40 PVC Pipe

DIAMETER	O.D. (in)	l.D. (in)	Volume (gal / lin ft.)	
1.25"	1.66	1.38	0.08	
2"	2.37	2.06	0.17	
3"	3.50	3.06	0.38	
4"	4.50	4.02	0.66	
6"	6.62	6.06	1.50	
8"	8.62	7.98	2.60	
12"	12.75	11.93	5.81	

WELL NUMBER OB97-06

						WELL NUMBE	R	7-9507
		WE	ELL <del>. DEVE</del>	LOPMENT (	PURGEL	DG		
Project Name ()B/() Sampler(s) Tim Be Elapsed Time since grout	a Rea chane	Ft Ril Darry	-EY 1 Morgan	Project Num	stalled Man	1124D ch 97 ⁰⁰ Bladde		<u>9-3-97</u>
	ting N/A	<u>f</u>		-Develophich	- dige mour	a Diacide	<u>r Pum</u>	P
VOLUME OF CASING	·			VOLUME OF	ANNULUS			·
1. Depth of Well:		31.99		Hole Diamete		<u> </u>		
2. Depth to Top of Water		15.57	ft	1 Unight of V	Mator		12	+ Cin Et stime t
3. Height of Water		16.42	ft	<ol> <li>Height of V</li> <li>Vol/Lin. Ft.</li> </ol>			4.06	ft (10 Ft scient) 2 Ft scind park) gal
Casing Diam	eter:	_2	in.		asing & hole	-		
4. Vol/Lin Ft. of Casing (see Table 1)			gal	(see Ta 3. Porosity @		×_		% porosity
5. One Casing Volume		2.8	gal	4. One Annu	lus Volume	_	9:6	gal
	ONE TOTAL	WELL VOLU	ME	12.4	gal			
PARAMETER	INITIAL	1 VOL.	2 VOL.	3 VOL.	4 VOL.	5VOL.	FINAL	
Gailons	1.2.01.0.2.0.3	13	26				39	
Time (24 hr)	1243	1306	1345				1415	
Conductivity (mS/cm)	690	860	840				840	
ssolved Oxygen (ppm)	~							
	15:58	15-60	15.7.2	ļ			15.63	

Temperature (° 🖸	14	14	14			14
Turbidity (NTU)	7200	104.2	30.44			22.6
Photo Taken	YES	I V NO	]	Photo No.	N/Ag	
Water Level After Develo	•	N/AP			pth After Development	N/AP_
Water Level After Purgin	g	15.63(	after sci	mpling)	alysis - HCL Pres	·
NOTES: Collect	f sample	@ 14	15 FOR	JOA and	alysis - HCL Pres	erved also
collect	MSIMSI	, MRD	and li	clicate	'labelled OB97	- H time
	<u> 'PID -</u>	- 0.0 ff	М.	/		

6.80

## TABLE 2. Volume of Open Borehole and Annulus between Casing and Hole

6.5

### TABLE 1. Volume of Schedule 40 PVC Pipe

pH (S.U.)

DIAMETER	O.D. (in)	l.D. (in)	Volume (gal / lin ft.)
1.25"	1.66	1.38	0.08
2"	2.37	2.06	0.17
3"	3.50	3.06	0.38
4"	4.50	4.02	0.66
6"	6.62	6.06	1.50
8"	8.62	7.98	2.60
12"	12.75	11.93	5.81

6.86

6.

Hole	Volume per	Linear Foot	Casing	Volume per	Linear Foot
Diameter	Gal.	Cu.Ft.	Diameter	Gal.	Cu.Ft.
7.25 in	2.14	0.29	1.25	2.03	0.27
7.25 in	2.14	0.29	2	1.91	0.26
7.75 in	2.45	0.33	2	2.22	0.3
8.25 in	2.78	0.37	2	2.55	0.34
10.25 in	4.29	0.57	2	4.06	0.54
8.25 in	2.78	0.37	3	2.28	0.30
10.25 in	4.29	0.57	3	3.79	0.51
12.25 in	6.13	0.82	.#3	5.62	0.75
8.25 in	2.78	0.37	4	1.95	0.26
10.25 in	4.29	0.57	4	3.46	0.46
12.25 in	6.13	0.82	4	5.30	0.71
12.25 in	6.13	0.82	6	4.33	0.58

.

WELL-DEVELOPMENT (PURGE)LOG						
Project Name OB(OD AREA	Ft RILEY	Project Number 3H-1124D	DATE 9-3-97			
Project Name OB/OD AREA Sampler(s) Dan Keohane / Tim Beny	Darry Morgan	Date Well Installed MARCH 9	7			
TIM DEMY Elapsed Time since grouting N/A	ſ	Development Purge Method Bla	dder Pump			
VOLUME OF CASING		VOLUME OF ANNULUS	•			
1. Depth of Well:	20-40 ft	Hole Diameter <u>(O</u> Casing Diameter <u>2</u>	in in			
2. Depth to Top of Water	<u>17.61</u> ft	1. Height of Water	<u>2.79</u> ft			
3. Height of Water Casing Diameter:	<u>2.79</u> ft <u>4</u> 2_in.	2. Vol/Lin. Ft. of Annulus between casing & hole (see Table 2)	<u>4.06</u> gal			
4. Vol/Lin Ft. of Casing	<u>C·17</u> gal	3. Porosity @ -20%	x0.30 % porosity			
(see Table 1) 5. One Casing Volume	<u> </u>	4. One Annulus Volume	gal			
ONE TOTA	L WELL VOLUME	<u>2.7</u> gal				

PARAMETER	INITIAL	1 VOL.	2 VOL.	3 VOL.	4 VOL.	5VOL.	FINAL
Gallons	ALCONTRACTOR	3	6				9
Time (24 hr)	1558	1645	1720				1749
Conductivity (mS/cm)	1400	530	670				670
Dissolved Oxygen (ppm)							
Etron DTW (FH)	17.61	<b>_</b>					<u> </u>
pH (S.U.)	7.04	7.04	6.97				6.99
Temperature (° 🗗	15.7	16.0	16-0				16.0
Turbidity (NTU)	137.5	7.56	4.40				2.38
Photo Taken	YES	NO	]	Photo No.	N/	<u>Ap</u>	
Water Level After Develop	-	NIAP	-	•	oth After Deve	•	N/Ap
Water Level After Purging	-	NM	(after :	sampling).	-below f	sump.	
	oppm.: 1		to mea	sure wate	er level	ducing	pumping
	level ua			I Reserve	<u>Colleg</u>		imple-1
@ 1750	FOR UD	- yay			<u></u>		

WELL NUMBER 0.697-08

# TABLE 1. Volume of Schedule 40 PVC Pipe

DIAMETER	O.D. (in)	l.D. (in)	Volume (gal / lin ft.)
1.25"	1.66	1.38	0.08
2"	2.37	2.06	0.17
3*	3.50	3.06	0.38
4"	4.50	4.02	0.66
6"	6.62	6.06	1.50
8"	8.62	7.98	2.60
12"	12.75	11.93	5.81

Hole	Volume per Linear Foot		Casing	Volume per	Linear Foot
Diameter	Gal.	Cu.Ft.	Diameter	Gal.	Cu.Ft.
7.25 in	2.14	0.29	1.25	2.03	0.27
7.25 in	2.14	0.29	2	1.91	0.26
7.75 in	2.45	0.33	2	2.22	0.3
8.25 in	2.78	0.37	2	2.55	0.34
10.25 in	4.29	0.57	2	4.06	0.54
8.25 in	2.78	0.37	3	2.28	0.30
10.25 in	4.29	0.57	3	3.79	0.51
12.25 in	6.13	0.82	.*3	5.62	0.75
8.25 in	2.78	0.37	4	1.95	0.26
10.25 in	4.29	0.57	4	3.46	0.46
12.25 in	6.13	0.82	4	5.30	0.71
12.25 in	6.13	0.82	6	4.33	0.58

- ---

### WELL DEVELOPMENT (PURGELOG Project Name OBJOD AREA, Ft RILEY Project Number JH-1124D DATE 9-5-97 Sampler(s) DAN KEOHANE DONY MORGAN Date Well Installed JUNE 47 TIM BERRY Elapsed Time since grouting NA, Development Purge Method Dis Development Purge Method Disposuble bailer **VOLUME OF ANNULUS** VOLUME OF CASING 113-10 ft Hole Diameter iО 1. Depth of Well: in in **Casing Diameter** 91.24 tt 2. Depth to Top of Water 1. Height of Water 2 ft 21.86 ft 3. Height of Water 4.1 2. Vol/Lin. Ft. of Annulus gal 1 Casing Diameter: in. between casing & hole (see Table 2) 0-04 gal 4. Vol/Lin Ft. of Casing 3. Porosity @ ~20% 0.20 % porosity (see Table 1) 0.9 4. One Annulus Volume 1.6 5. One Casing Volume gal gal ONE TOTAL WELL VOLUME 2.5 gal

PARAMETER	INITIAL	1-VOL.	- <del>2 VO</del> L.	3 VOL.	AVOL-	∮VOL.	FINAL
Gallons		0.25	0.75	1.25	۱۰5	Z	2.1
Time (24 hr)	0910	0425	0955	1045	1107	1145	1205
Conductivity (#CS/cm)	1160			_		-	1980
Dissolved Oxygen (ppm)	91-24	95.40	99.28	104.51	107.05	110.09	110.88
Eh (MV) (DTW (FT)	4+24			_			-
pH (S.U.)	6.62		~ <u> </u>				7.16
Temperature (° 🖏	15.1			-	<b>—</b>		16.2
Turbidity (NTU)	13.06		_				7200
	YES	NO			······		. 4
Water Level After Developm		NAF	-	•	oth After Devel	opment	NAP
Water Level After Purging	110.	<u>88 (a Fh</u>	er Sum	ple			
NOTES: <u>Sample</u>	Collec	ted (	0) 1/5	50 - Ve	OA and	Lysis -	Unpreserv
<u>PID 0.</u> Well was	Oppm		;	<u> </u>	e after		

TABLE 2. Volume of Open Borehole and Annulus between Casing and Hole

WELL NUMBER OB97-0912(0)

DIAMETER	O.D. (in)	1.D. (in)	Volume (gal / lin ft.)
1.25"	1.66	1.38	0.08
2"	2.37	2.06	0.17
3"	3.50	3.06	0.38
4"	4.50	4.02	0.66
6"	6.62	6.06	1.50
8"	8.62	7.98	2.60
12"	12.75	11.93	5.81

Hole	Volume per	Linear Foot	Casing	Volume per	Linear Foot
Diameter	Gal.	Cu.Ft.	Diameter	Gal.	Cu.Ft.
7.25 in	2.14	0.29	1.25	2.03	0.27
7.25 in	2.14	0.29	2	1.91	0.26
7.75 in	2.45	0.33	2	2.22	0.3
8.25 in	2.78	0.37	2	2.55	0.34
10.25 in	4.29	0.57	2	4.06	0.54
8.25 in	2.78	0.37	3	2.28	0.30
10.25 in	4.29	0.57	3	3.79	0.51
12.25 in	6.13	0.82	3	5.62	0.75
8.25 in	2.78	0.37	4	1.95	0.26
10.25 in	4.29	0.57	4	3.46	0.46
12.25 in	6.13	0.82	4	5.30	0.71
12.25 in	6.13	0.82	6	4.33	0.58

		WELL NUMBER 0 B9 7-09 PZ(1)
		LOPMENT PURGE LOG
Project Name OB OD	Area Ft Riley Echane Daryl Morgan	Project Number JH-1124D DATE 9-5-97
Sampler(s) Dan Kr	echane Darry Morgan	Date Well Installed June 97
Elapsed Time since grout	ting NIAp	Developmen (Purge Method Jiggle tube
VOLUME OF CASING		VOLUME OF ANNULUS
1. Depth of Well:	107:30 tt	Hole Diameter <u>IO</u> in Casing Diameter I in
2. Depth to Top of Water	100.40th	1. Height of Water Z ft
3. Height of Water	<u>6.9</u> ft	2. Vol/Lin, Ft. of Annulus $\sim 44$ gal
Casing Diam	eter: in.	between casing & hole (see Table 2)
4. Vol/Lin Ft. of Casing	<u> </u>	3. Porosity @ -20% x 0720 % porosity
(see Table 1) 5. One Casing Volume	<u>0-3</u> gal	4. One Annulus Volume <u>1.6</u> gal
	ONE TOTAL WELL VOLUME	<u> -9</u> gal

PARAMETER	INITIAL	1 VOL.	2 VOL.	3 VOL.	4 VOL.	5VOL.	FINAL
Gallons		Z	4				6
Time (24 hr)	0955	1032	1110				12.10
Conductivity (#S/cm)	1170	1590	1330				(180
Dissolved Oxygen (ppm)		·					
Et (mV) DTW (Ft)	10004	·				ļ	
pH (S.U.)	7.09	7.01	7.04				7.18
Temperature (°C)	17.9	16:3	16-8				16.2
Turbidity (NTU)	86.3	7200	116-8				101.9
Photo Taken	YES	NO	]	Photo No.	<u> </u>	IAP	
Water Level After Develop	ment	NIAP	-	Sounded Dep	oth After Deve	lopment	NAY
Water Level After Purging	10	0.40 (	after s	sampk			
NOTES: <u>Collec</u>	100 <u>100 - É San</u> 0 - O ppm	<u>ple é</u>	<u>0 12</u>	12 - V	oA and	lyis -t	HCL Pre
PID -	O.O ppn	<u>(.</u>				/	
	· · ·					<u></u>	

TABLE 1. Volume of Schedule 40	PVC Pipe

DIAMETER	O.D.	I.D.	Volume
	(in)	(in)	(gal / lin ft.)
1.25"	1.66	1.38	0.08
2"	2.37	2.06	0.17
3"	3.50	3.06	0.38
4"	4.50	4.02	0.66
6"	6.62	6.06	1.50
8"	8.62	7.98	2.60
12"	12.75	11.93	5.81

Hole	Volume per	Linear Foot	Casing	Volume per	Linear Foot
Diameter	Gal.	Cu.Ft.	Diameter	Gal.	Cu.Ft.
7.25 in	2.14	0.29	1.25	2.03	0.27
7.25 in	2.14	0.29	2	1.91	0.26
7.75 in	2.45	0.33	2	2.22	0.3
8.25 in	2.78	0.37	2	2.55	0.34
10.25 in	4.29	0.57	2	4.06	0.54
8.25 in	2.78	0.37	3	2.28	0.30
10.25 in	4.29	0.57	3	3.79	0.51
12.25 in	6.13	0.82	3	5.62	0.75
8.25 in	2.78	0.37	4	1.95	0.26
10.25 in	4.29	0.57	4	3.46	0.46
12.25 in	6.13	0.82	4	5.30	0.71
12.25 in	6.13	0.82	6	4.33	0.58

						WELL NUMB	er <i>OB</i> 97:	<u>-09PZ (3</u>	;)
				LOPMENT	PURGELO	G		L.	
Project Name $OBOD_{j}$	Area F	Ft Riler	1	Project Num	ber JH-11.	24D	DATE	9-5-97	•
Sampler(s) DCn K	echine	Dany	Morgan	Date Well Ins	italled Jur	e 97			•
Project Name OB/OD Sampler(s) DCA Ko Time B Elapsed Time since grout	ting N/A	ſ		-Developmen	Purge Metho	d Disposa	hle Bail	ler	
VOLUME OF CASING	,	V		VOLUME OF					
1. Depth of Well:		78.13	ft	Hole Diamete	-		in in		
2. Depth to Top of Water		77.29	ft	1. Height of W		<b>ļ</b>	0.84	ft	
3. Height of Water		0.84	ft	2. Vol/Lin. Ft.		-	: ( )	gal	
Casing Diam	eter:		.in.		ising & hole	-		0	
4. Vol/Lin Ft. of Casing (see Table 1)		0.04	gal	3. Porosity @	-	×.	0.30	% porosity	
5. One Casing Volume		0.03	gal	4. One Annu	us Volume		0.69	gal	
	ONE TOTAL	WELL VOLU	ME	0.72	gal				
PARAMETER	INITIAL	1 VOL.	2 VOL.	3 VOL.	4 VOL.	5VOL.	FINAL		
Gallons	NO REAL								
Time (24 hr)	1250								
Conductivity (nS/cm)	1270								
Dissolved Oxygen (ppm)		<u> </u>	·				·····		
Eh (mV) DTW(FF)	77.29								
pH (S.U.)	7.12								
Temperature (*				4					
	15.5								
Turbidity (NTU)	7200								
Photo Taken		NO	]	Photo No.	N/A	f			
	YES	N/Ap	]	Sounded Dep	th After Devel	ppment	N/Ap		
Photo Taken	YES	NO N//Pp 77.63 (0	] after s	Sounded Dep	th After Devel	ppment	N/Ap	ſ	
Photo Taken Water Level After Developr	YES	N/AP 77.63 (0	<b>`</b>	Sounded Dep	0	•	N/Ap Unpreser	vect	
Photo Taken Water Level After Developr Water Level After Purging NOTES: <u>Sample</u>	$\frac{2200}{\text{YES}}$ nent $\frac{1}{200}$	N/Ap 77.63 (c ct C	) 130	Sounded Dep Scimple) 20 - UO	<u>A cina</u>	lysis		vect	
Photo Taken Water Level After Developr Water Level After Purging	YES nent e colle	N/Ap 77.63 (c ct C	) 130	Sounded Dep Scimple) 20 - UO a Eter p	0	lysis s take,	n as fiez	cmeter	g and Hole
Photo Taken Water Level After Developr Water Level After Purging NOTES: <u>Sample</u>	YES nent e colle	N/Ap 77.63 (c ct C	) 130	Sounded Dep Scimple) 20 - UO a Eter p TABLE 2. Vo	A ana anatra lume of Oper	<u>lysis</u> s take, Borehole an	n <u>as <i>fiez</i></u> d Annulus be	Cmeter etween Casin	_
Photo Taken Water Level After Developr Water Level After Purging NOTES: <u>Sample</u>	YES nent e colle	N/Ap 77.63 (c ct C	) 130	Sounded Dep Scimple) 20 - UO a Eter p	A ana	<u>lysis</u> s take, Borehole an	n as fiez	Cmeter etween Casin	g and Hole Linear Foot Cu.Ft.

DIAMETER	0.D.	I.D.	Volume
	(in)	(in)	(gal / lin ft.)
1.25"	1.66	1.38	0.08
2"	2.37	2.06	0.17
3"	3.50	3.06	0.38
4"	4.50	4.02	0.66
6"	6.62	6.06	1.50
8"	8.62	7.98	2.60
12"	12.75	11.93	5.81

Hole	Volume per	Linear Foot	Casing	Volume per	Linear Foot
Diameter	Gal.	Cu.Ft.	Diameter	Gal.	Cu.Ft.
7.25 in	2.14	0.29	1.25	2.03	0.27
7.25 in	2.14	0.29	2	1.91	0.26
7.75 in	2.45	0.33	2	2.22	0.3
8.25 in	2.78	0.37	2	2.55	0.34
10.25 in	4.29	0.57	2	4.06	0.54
8.25 in	2.78	0.37	3	2.28	0.30
10.25 in	4.29	0.57	, 3	3.79	0.51
12.25 in	6.13	0.82	3	5.62	0.75
8.25 in	2.78	0.37	4	1.95	0.26
10.25 in	4.29	0.57	4	3.46	0.46
12.25 in	6.13	0.82	4	5.30	0.71
12.25 in	6.13	0.82	6	4.33	0.58

							BER OB9=	7 <u>-09 pz(</u> 4)
		W	EL <del>E DEVE</del>	LOPMENT	PURGELO	OG		
Project Name OB OD	Area F	7 Riby	í na					9-5-97
Sampler(s) Dan K	echane	. Dany	1 Morgan	Date Well Ins	talled Ju	ne 97		
Elapsed Time since grout	RRY			-Development				ailer
VOLUME OF CASING		f		VOLUME OF				
VOLUME OF CASING						_		
1. Depth of Well:		55-10	.ft	Hole Diamete Casing Diame		01	in in	
2. Depth to Top of Water		54.01	ft	1. Height of W	/ater		1.09	ft
3. Height of Water		1.09	ft	2. Vol/Lin. Ft.		-	~ 4-1	 gal
Casing Diame	eter:	<u> </u>	in.	between ca (see Ta	asing & hole able 2)		<u></u>	_
4. Vol/Lin Ft. of Casing		0.04	gal	3. Porosity @		×	. 0.3	0 % porosity
(see Table 1) 5. One Casing Volume		0.04	gal	4. One Annul	lus Volume		0.89	_gal
	ONE TOTAL	WELL VOLU	ME	0.93	gal			
PARAMETER	INITIAL	1 VOL.	2 VOL.	3 VOL.	4 VOL.	5VOL.	FINAL	-{
Gallons			<b> </b>					
Time (24 hr)	1330			+				-
Conductivity (pS/cm)	1180							
Dissolved Oxygen (ppm)		<u> </u>						-1
EA (MV) DTW (FY)	54.01	<u></u>						-
pH (S.U.)	7.09		<u> </u>				<u> </u>	-
Temperature (° 💪	15.8		<u> </u>	+				-
	7200	L	<u> </u>		L			
Photo Taken	YES	NO	]	Photo No.	<u> </u>	IAp		_
Water Level After Developr	nent	NAP	-	Sounded Dep	oth After Deve	lopment	NAP	_
Water Level After Purging	5	4.71 (0	after s	campling)		<i></i>	, ,	
NOTES: <u>Same</u>		llected		1335- U		<u>alysis</u> .	. Unprese	rvect.
PID-04	<u>Spein.</u>	Sample_	Collecte		dia tely	arter	parame	Non
taken	as pl	ezometer	runni	ng (ry.				_
	,		(	TABLE 2. Vo	olume of Ope	n Borehole a	nd Annulus	between Casing and Hole

DIAMETER	O.D. (in)	l.D. (in)	Volume (gal / lin ft.)
1.25"	1.66	1.38	0.08
2"	2.37	2.06	0.17
3"	3.50	3.06	0.38
4"	4.50	4.02	0.66
6"	6.62	6.06	1.50
8"	8.62	7.98	2.60
12"	12.75	11.93	5.81

Hole	Volume per	Linear Foot	Casing	Volume per	Linear Foot
Diameter	Gal.	Cu.Ft.	Diameter	Gal.	Cu.Ft.
7.25 in	2.14	0.29	1.25	2.03	0.27
7.25 in	2.14	0.29	2	1.91	0.26
7.75 in	2.45	0.33	2	2.22	0.3
8.25 in	2.78	0.37	2	2.55	0.34
10.25 in	4.29	0.57	2	4.06	0.54
8.25 in	2.78	0.37	3	2.28	0.30
10.25 in	4.29	0.57	3	3.79	0.51
12.25 in	6.13	0.82	3	5.62	0.75
8.25 in	2.78	0.37	4	1.95	0.26
10.25 in	4.29	0.57	4	3.46	0.46
12.25 in	6.13	0.82	4	5.30	0.71
12.25 in	6.13	0.82	6	4.33	0.58

						WELL NUM	ber $OB9$	7-1092 (0)
		w	ell <del>deve</del>		PURGEL			
	> AREA	Ft RIL	ΞY				DAT	<u> 9-4-97</u>
Sampler(s) Dan K	echane.	Durry	Morgan	Date Well In	stalled May	97		
Elapsed Time since grou	erry ^{iting} N/Ac	)	v	- <del>Developmer</del>	Purge Meth	od Jiggle	tube.	
VOLUME OF CASING				VOLUME OF				
1. Depth of Well:		53.40	ft	Hole Diamete		10	_in in	
2. Depth to Top of Water		36.71	ft	Casing Diam		1	-	alist cores +
3. Height of Water		16.69	ft	1. Height of V			~4.1	- th (Iff screen + - (sand pack)
Casing Diam	ieter:		_in.	2. Vol/Lin. Ft between c (see T	asing & hole			_gai
4. Vol/Lin Ft. of Casing (see Table 1)		0.04	gal	3. Porosity @		×	. 0 <b>.2</b>	0_% porosity
5. One Casing Volume		0.7	gal	4. One Annu	llus Volume		1.6	_gal
	ONE TOTAL	WELL VOLU	ME	2.3	gal			
PARAMETER			2.101			51/01	<b>EINIA</b> I	7
Gallons	INITIAL	1 VOL.	2 VOL.	3 VOL.	4 VOL.	5VOL.	FINAL	-
Time (24 hr)	1005							4
Conductivity (#2S/cm)	4100							4
issolved Oxygen (ppm)	1100						· · · ·	4
ch (mV) DTW (Ft)	11.10	+						-1
	16.69						· ·	-4
pH (S.U.)	6.64							-4
Temperature (° 🖏	14.8	<u> </u>						4
Turbidity (NTU)	220C							_
Photo Taken	YES	L J. NO	]	Photo No.	<i>N</i> '#	P		_
Water Level After Develops	ment	NAP		Sounded Dep	oth After Devel	opment	N/Ap	_
Water Level After Purging		<u>51.39 (al</u>	fter Sur	np ling)		·		
water -	H went	dry aft	$e_1 \sim 0.2$	5 gal. 5	trong H. Leadspace, alysis - U	Water	container	zad.
Collect	sample.	@ 124	O FOR	UUM an	111/515 - (1	MINE SALVEC	٦.	
					<i>r</i>			– between Casing and Hole

DIAMETER	O.D.	I.D.	Volume
	(in)	(in)	(gal / lin ft.)
1.25"	1.66	1.38	0.08
2"	2.37	2.06	0.17
3"	3.50	3.06	0.38
4"	4.50	4.02	0.66
6"	6.62	6.06	1.50
. 8"	8.62	7.98	2.60
12"	12.75	11.93	5.81

Hole	Volume per	Linear Foot	Casing	Volume per	Linear Foot
Diameter	Gal.	Cu.Ft.	Diameter	Gal.	Cu.Ft.
7.25 in	2.14	0.29	1.25	2.03	0.27
7.25 in	2.14	0.29	2	1.91	0.26
7.75 in	2.45	0.33	2	2.22	0.3
8.25 in	2.78	0.37	2	2.55	0.34
10.25 in	4.29	0.57	2	4.06	0.54
8.25 in	2.78	0.37	3	2.28	0.30
10.25 in	4.29	0.57	3	3.79	0.51
12.25 in	6.13	0.82	. <b>x</b> =3	5.62	0.75
8.25 in	2.78	0.37	4	1.95	0.26
10.25 in	4.29	0.57	4	3.46	0.46
12.25 in	6.13	0.82	4	5.30	0.71
12.25 in	6.13	0.82	6	4.33	0.58

		WE	LLIDEVE	LOPMENT	PURGELO	)G		
Project Name OGOD Sampler(s) Dan K	AREA	Ft RILE	Magan	Project Numt	ber Jil-11	24 D	DATE	9-4-97
Sampler(s)	eohare	1 URRY	minigun	- Date Well Ins	talled -	1 47		
Fin Dek Elapsed Time since grouti	εκγ ^{ing} λ'A	0		-Development	Purge Metho	od Jrggle	tube.	
VOLUME OF CASING				VOLUME OF	ANNULUS			
1. Depth of Well:		45.63	ft	Hole Diamete Casing Diame		10	in in	
2. Depth to Top of Water		36.20		1. Height of W			2	At (IFt screen + sand rack)
3. Height of Water Casing Diame	ater.	9.43	ft in.	2. Vol/Lin. Ft. between ca	of Annulus sing & hole	~	4.1	gal
4. Vol/Lin Ft. of Casing (see Table 1)		0.04	gal	(see Ta 3. Porosity @	-	x	1 1	% porosity
5. One Casing Volume		0.4	gal	4. One Annul	us Volume		1.6	gal
	ONE TOTAL	WELL VOLU	ME	2.0	gal			
		1 VOL.	2 VOL.	3 VOL.	4 VOL.	5VOL.	FINAL	1
PARAMETER		TVOL.	2 VOL.	5 402.				
Gallons Time (24 hr)	1117							1
Conductivity (#S/cm)	1150							
Dissolved Oxygen (ppm)								
Eh (mV)-DTW (Ft)	36.20						·	
pH (S.U.)	6.62							1
Temperature (° E)	15.8							4
Turbidity (NTU)	7200						<u></u>	
Photo Taken	YES	NO	]	Photo No.	N	Ά <u>ρ</u>		-
Water Level After Developr	nent	N/Ap_	-	Sounded Dep	oth After Deve	lopment	N/Ap	-
Water Level After Purging		38.55				1		,
NOTES: <u>Well gos</u>	es dry a	For the la	. gullon . CUOA	Strong H anatysis -	2504 00 UNFreser	loc Wai	ter is bla	<u>-</u>

TABLE 2. Volume of Open Borehole and Annulus between Casing and Hole

WELL NUMBER OB97-10PZ(1)

## TABLE 1. Volume of Schedule 40 PVC Pipe

PiD

DIAMETER	O.D. (in)	l.D. (in)	Volume (gal / lin ft.)
1.25"	1.66	1.38	0.08
2"	2.37	2.06	0.17
3"	3.50	3.06	0.38
4"	4.50	4.02	0.66
6"	6.62	6.06	1.50
8"	8.62	7.98	2.60
12"	12.75	11.93	5.81

-OppM

Hole	Volume per	Linear Foot	Casing	Volume per	Linear Foot
Diameter	Gal.	Cu.Ft.	Diameter	Gal.	Cu.Ft.
7.25 in	2.14	0.29	1.25	2.03	0.27
7.25 in	2.14	0.29	2	1.91	0.26
7.75 in	2.45	0.33	2	2.22	0.3
8.25 in	2.78	0.37	2	2.55	0.34
10.25 in	4.29	0.57	2	4.06	0.54
8.25 in	2.78	0.37	3	2.28	0.30
10.25 in	4.29	0.57	3	3.79	0.51
12.25 in	6.13	0.82	.*3	5.62	0.75
8.25 in	2.78	0.37	4	1.95	0.26
10.25 in	4.29	0.57	4	3.46	0.46
12.25 in	6.13	0.82	4	5.30	0.71
12.25 in	6.13	0.82	6	4.33	0.58

						WELL NUM	BER OB97	-1072(2)
· · ·		WE	ELL <del>·DEVE</del>	LOPMENT				
Project Name $OB/OD$	AREA	Ft RIL	εy	Project Num	ber JH-11	24D	DATE	9-4-97
Project Name OB/OD Sampler(s) Dan Ke Tim B	chane J	Darryl 1	Morgan	Date Well In:	stalled That	97		
Elapsed Time since grout	ting NAA			- <del>Developmen</del>	Purge Metho	od Jigg le	tube	
VOLUME OF CASING				VOLUME OF		1		
1. Depth of Well:		39.70	ft	Hole Diamete Casing Diame	-	10	_in in	
2. Depth to Top of Water		-34.66	ft	1. Height of V	•		-	+ (IFt screen +
3. Height of Water		5.04	ft	2. Vol/Lin. Ft.		~		ft (1 Ft screen t sand pack)
Casing Diam	eter:	<u> </u>	in.		asing & hole		<u>-7</u> ;]	gai
4. Vol/Lin Ft. of Casing (see Table 1)		0.04	gal	3. Porosity @	•	x	. 0.330	% porosity
5. One Casing Volume		0.2	gal	4. One Annu	lus Volume		1.6	gal
	ONE TOTAL	WELL VOLU	ME	1.8	gal			
PARAMETER	INITIAL	1 VOL.	2 VOL.	3 VOL.	4 VOL.	5VOL.	FINAL	
Gailons		2	4				6	
Time (24 hr)	1/20	1(35	1145				1155	
Conductivity (#S/cm)	2100	960	960				940	
ssolved Oxygen (ppm)			• • • • • • • • • • • • • • • • • • •					
-m(mV) DTW (Ft)	, , , , ,	1 00		ļ				
pH (S.U.)	6.68	6.99	7.04				7.00	
Temperature (° 5	170	15.5	15.2				15.2	
Turbidity (NTU)	7200	7200	7,200		LI		>200	
Photo Taken	YES	NO		Photo No.	V jA	<b>/</b>	<u></u>	
Water Level After Developr	nent	NAA		Sounded Dep	oth After Devel	opment	NA	

### TABLE 2. Volume of Open Borehole and Annulus between Casing and Hole

### Hole Volume per Linear Foot Volume per Linear Foot Casing Diameter Cu.Ft. Diameter Gal. Cu.Ft. Gal. 7.25 in 0.29 1.25 2.03 0.27 2.14 7.25 in 2.14 0.29 2 1.91 0.26 2.45 0.33 2 2.22 0.3 7.75 in 8.25 in 2.78 0.37 2 2.55 0.34 10.25 in 4.29 0.57 2 4.06 0.54 8.25 in 2.78 0.37 3 2.28 0.30 0.51 10.25 in 4.29 0.57 3 3.79 5.62 0.75 12.25 in 6.13 0.82 .₩3 2.78 0.26 0.37 4 1.95 8.25 in 0.46 10.25 in 4.29 4 3.46 0.57 12.25 in 6.13 0.82 4 5.30 0.71 12.25 in 6.13 0.82 6 4.33 0.58

### TABLE 1. Volume of Schedule 40 PVC Pipe

Water Level After Purging

NOTES:

DIAMETER	O.D. (in)	1.D. (in)	Volume (gal / lin ft.)
1.25"	1.66	1.38	0.08
2"	2.37	2.06	0.17
3"	3.50	3.06	0.38
4"	4.50	4.02	0.66
6"	6.62	6.06	1.50
8"	8.62	7.98	2.60
12"	12.75	11.93	5.81

						WELL NUME	ier OB9	$\frac{7-1072(3)}{2}$
		w	ELL <del>DEVE</del>	LOPMENT (	PURGELO	DG		
Project Name CB( CD	AREA	Ft Ru	-EY	Project Num			DATE	9-4-97
Sampler(s) Davi KE	CHANE	Durry	1 Morgan	Date Well Ins	stalled for	1997		
Elapsed Time since grout	ERRY ting N/A	2		Developmen			tube	
VOLUME OF CASING	,	1		VOLUME OF		( 1-1		
1. Depth of Well:		32.43	_ ^{ft}	Hole Diamete Casing Diame		10	in in	
2. Depth to Top of Water		21.81	_ft	1. Height of W			- · · · ·	#(1 Ft siren 1
3. Height of Water		10.62	_ft	2. Vol/Lin. Ft.			4.1	th(1 ft screen 7 scincl pack)
Casing Diam	eter:		_in.		asing & hole			_ 3~
4. Vol/Lin Ft. of Casing (see Table 1)		0.04	gal	3. Porosity @	•	x	0.20	% porosity
5. One Casing Volume		0.4	gal	4. One Annu	ius Volume		1.6	gal
	ONE TOTA	L WELL VOLU	IME	2	gal			
				1 2 1/01	4 VOL.	5VOL.	FINAL	7
PARAMETER Gallons	INITIAL	1 VOL.	2 VOL.	3 VOL.	4 VUL.	5VUL.	FINAL	4
Time (24 hr)	1/2-	31						4
Conductivity (#S/cm)	$\frac{1}{9}$							1
Dissolved Oxygen (ppm)	770		1					1
	2. 21							1
Et (m) DTW (F+)	21.81		+				· · · · · · · · · · · · · · · · · · ·	-
pH (S.U.)								-
Temperature (° C)	15:4							-
Turbidity (NTU)	7200	<u> </u>	1					4
Photo Taken	YES	NO	]	Photo No.	N,	íAp	<u></u>	_
Water Level After Developr	nent	NjAp	_	<b>`</b>	oth After Devel	opment	N/Ar	-
Water Level After Purging	,	31.18(0)	Etei samp					
NOTES: Well goo	<u>es dry g</u>	Fter 1/4	gal.	Sample (	2/ 1232	FOR UCH	A analysis-	. Unpreserved
• • • • •	f							

### Volume per Linear Foot Hole Volume per Linear Foot Casing Cu.Ft. Cu.Ft. Diameter Gal. Diameter Gal. 0.27 2.03 0.29 1.25 7.25 in 2.14 1.91 0.26 2.14 0.29 2 7.25 in 0.3 2 2.22 2.45 0.33 7.75 in 0.34 2.78 0.37 2 2.55 8.25 in 0.54 2 4.06 10.25 in 4.29 0.57 0.30 3 2.28 2.78 8.25 in 0.37 3 3.79 0.51 10.25 in 4.29 0.57 12.25 in 6.13 0.82 .*3 5.62 0.75 0.26 4 1.95 8.25 in 2.78 0.37 0.46 4 3.46 4.29 0.57 10.25 in 6.13 0.82 4 5.30 0.71 12.25 in 12.25 in 6.13 0.82 6 4.33 0.58

DIAMETER	O.D.	I.D.	Volume
	(in)	(in)	(gai / lin ft.)
1.25"	1.66	1.38	0.08
2"	2.37	2.06	0.17
3"	3.50	3.06	0.38
4"	4.50	4.02	0.66
6"	6.62	6.06	1.50
8"	8.62	7.98	2.60
12"	12.75	11.93	5.81

- Anno		. <del>DEVE</del> L	<del>.OPMENT</del> (	PURGELO	DG		
Project Name CB OD TKEH	Ft. Riley		Project Numi		-	DATE	9-4-97
Project Name OB/OD AREA Sampler(s) Davi Kechane	Dany More	gan	Date Well Ins	talled	1997		
Elapsed Time since grouting N/A	0		Development	Purge Meth	od Jracile	tube	
VOLUME OF CASING	,		VOLUME OF		147		
1. Depth of Well:	<u>53.47</u> ft		Hole Diamete Casing Diame		<u>10</u>	in in	
2. Depth to Top of Water	<u>36.04</u> #		1. Height of W	/ater		2	th (1 Ft screen t
3. Height of Water	<u>17.43</u> ft		2. Vol/Lin. Ft.				tt (1 Ft screen t sand pack) gal
Casing Diameter:	in.			ising & hole			
4. Vol/Lin Ft. of Casing	0.04 gal		3. Porosity @		×	0.30	% porosity
(see Table 1) 5. One Casing Volume	<u>0.7</u> gal		4. One Annu	us Volume		1.6	gal
ONE TOTA	L WELL VOLUME		2.3	gal			
PARAMETER INITIAL	1 VOL.	2 VOL.	3 VOL.	4 VOL.	5VOL.	FINAL	<u> </u>
PARAMETER INITIAL Gallons		2 VOL.	3 VOL.	4 VOL.	5VOL.	FINAL	
Gallons Time (24 hr) 1314		2 VOL.	3 VOL.	4 VOL.	5VOL.	FINAL	
GallonsConductivity (fpS/cm)Conductivity (fpS/cm)1040		2 VOL.	3 VOL.	4 VOL.	5VOL.	FINAL	
Gallons     Conductivity (ApS/cm)       Time (24 hr)     1314       Conductivity (ApS/cm)     1040       issolved Oxygen (ppm)     Conductivity		2 VOL.	3 VOL.	4 VOL.	5VOL.	FINAL	
Gallons     Conservation       Time (24 hr)     1314       Conductivity (ADS/cm)     1040       issolved Oxygen (ppm)     Conservation       Ch (mA) DTW (Ft)     36.04		2 VOL.	3 VOL.	4 VOL.	5VOL.	FINAL	
GallonsConstructionTime (24 hr)1314Conductivity (ADS/cm)1040issolved Oxygen (ppm)ConstructionCh (mA) DTW (Ft)36.04pH (S.U.)7.21		2 VOL.	3 VOL.	4 VOL.	5VOL.	FINAL	
Gallons         Conductivity (fpS/cm)         1.314           Conductivity (fpS/cm)         i0.40           issolved Oxygen (ppm)		2 VOL.	3 VOL.	4 VOL.	5VOL.	FINAL	
Gallons         Conductivity (ADS/cm)         1314           Conductivity (ADS/cm)         1040           issolved Oxygen (ppm)         Conductivity           Ch (mA)         DYW (Ft)           PH (S.U.)         7 - 21		2 VOL.	3 VOL.	4 VOL.	5VOL.	FINAL	
Gallons         Conductivity (fpS/cm)         1.314           Conductivity (fpS/cm)         i0.40           issolved Oxygen (ppm)		2 VOL.	3 VOL.	4 VOL.	5VOL.	FINAL	
Gallons     Conductivity (fpS/cm)       Time (24 hr)     1314       Conductivity (fpS/cm)     i040       issolved Oxygen (ppm)     Conductivity (fpS/cm)       Eh (mV)     DY W (Ft)       PH (S.U.)     7.2j       Temperature (° F)     17.4       Turbidity (NTU)     7.200		2 VOL.		N /	 Ар	NIAr	
GallonsISIUTime (24 hr)1314Conductivity (fpS/cm)i040issolved Oxygen (ppm)ISIUEh (mQ, D) W (Ft)31.04pH (S.U.)7.21Temperature (° F)17.4Turbidity (NTU)7200Photo TakenYES			Photo No. Sounded Dep	N /	Ap	NIAP	

.

## TABLE 2. Volume of Open Borehole and Annulus between Casing and Hole

WELL NUMBER 0697-11P2(0)

### Volume per Linear Foot Hole Volume per Linear Foot Casing Cu.Ft. Gal. Cu.Ft. Diameter Diameter Gal. 1.25 2.03 0.27 0.29 7.25 in 2.14 0.29 1.91 0.26 2.14 2 7.25 in 2.45 0.33 2 2.22 0.3 7.75 in 2.78 0.37 2 2.55 0.34 8.25 in 2 4.06 0.54 10.25 in 4.29 0.57 0.30 2.28 8.25 in 2.78 0.37 3 3.79 0.51 3 10.25 in 4.29 0.57 5.62 0.75 ж3 12.25 in 6.13 0.82 4 1.95 0.26 2.78 0.37 8.25 in 4 3.46 0.46 10.25 in 4.29 0.57 0.71 0.82 4 5.30 6.13 12.25 in 0.58 12.25 in 4.33 6.13 0.82 6

DIAMETER	O.D. (in)	l.D. (in)	Volume (gal / lin ft.)
1.25"	1.66	1.38	0.08
2"	2.37	2.06	0.17
3"	3.50	3.06	0.38
4"	4.50	4.02	0.66
6"	6.62	6.06	1.50
8"	8.62	7.98	2.60
12"	12.75	11.93	5.81

						WELL NUM	ber 0.89	7 - 11PZ(1)
		W	ELL <del>DEVE</del>		PURGEL	OG		,
Project Name $OB/OD$	Aroa	Ft Rile	Y	Project Nun	nber Ji+-1	124D	DATE	9-3-97
Project Name () B/OD Sampler(s) Dan K Tim Be	echane	Derry	'Morgan	Date Well In		June C	17-	
Elapsed Time since grout	ting N/A	P		- <del>Developmo</del>	Nether Meth	ind Juggie	e tube	
VOLUME OF CASING	,	1				C&1		
1. Depth of Well:		47.60	ft	Hole Diamet		10	in in	
2. Depth to Top of Water		39.44	ft	Casing Diam		(	-"" 7	alict score + and
3. Height of Water		8.16	ft	1. Height of V			<u></u>	_ft (1Ft screen + soud fuck)
Casing Diam	eter:	<u> </u>	in.		asing & hole			_gai
4. Vol/Lin Ft. of Casing		0.04	gal	3. Porosity @	able 2) D ~ <b>3</b> 0%	2	x0.80	)_% porosity
(see Table 1) 5. One Casing Volume		0.3	gal	4. One Annı	ulus Volume		1.6	gal
	ONE TOTAL	WELL VOLU	ME	1.9	gal			
PARAMETER				1 2 1/01		5101		7
Gallons	INITIAL	1 VOL.	2 VOL.	3 VOL.	4 VOL.	5VOL.	FINAL	
Time (24 hr)	1.318	1328	1335		+	<u>+</u>	1.342	4
Conductivity (tdS/cm)	750	690	900		+	<u>}</u>	810	-
Dissolved Oxygen (ppm)			700		<u>+</u>	1		
Eh (MV) DTW (FH)	39.44				+			1
pH (S.U.)	7.24	7.48	7-34	1	+		7.29	4
Temperature (° F)	22.4	22.1	21.9	1	<u>+</u>	i	21.8	1
Turbidity (NTU)	7200	7200	7200	1	1	1	7200	1
Photo Taken	YES			Photo No.	k	1/Ap	1	• 
Water Level After Developr		_N/Ap		Sounded De	pth After Deve	lopment	N/Ap	-
Water Level After Purging	. J	<u>9.45 (a</u>	Fler sam	,			•	
NOTES: <u>PID-10</u> <u>QLC (01</u> C-1315,		ted sam s/MSD, was can	2 MRD.	1350 plus Du or analy	For Va plate Kis	) A analy labelled	615- (Inp. 0897-111	(Served) 22(5)
	/			/ TABLE 2. Vo	olume of Ope	n Borehole a	nd Annulus b	etween Casing and Hole

DIAMETER	0.D.	I.D.	Volume
	<u>(in)</u>	(in)	(gal / lin ft.)
1.25"	1.66	1.38	0.08
2"	2.37	2.06	0.17
3"	3.50	3.06	0.38
4"	4.50	4.02	0.66
6"	6.62	6.06	1.50
8"	8.62	7.98	2.60
12"	12.75	11.93	5.81

.

Hole	Volume per	Linear Foot	Casing	Volume per	Linear Foot
Diameter	Gal.	Cu.Ft.	Diameter	Gal.	Cu.Ft.
7.25 in	2.14	0.29	1.25	2.03	0.27
7.25 in	2.14	0.29	2	1.91	0.26
7.75 in	2.45	0.33	2	2.22	0.3
8.25 in	2.78	0.37	2	2.55	0.34
10.25 in	4.29	0.57	2	4.06	0.54
8.25 in	2.78	0.37	3	2.28	0.30
10.25 in	4.29	0.57	3	3.79	0.51
12.25 in	6.13	0.82	. 1 3	5.62	0.75
8.25 in	2.78	0.37	4	1.95	0.26
10.25 in	4.29	0.57	4	3.46	0.46
12.25 in	6.13	0.82	4	5.30	0.71
12.25 in	6.13	0.82	6	4.33	0.58

			•			WELL NUMB	er OB97	<u>-12P2(0)</u>
		W	ELL <del>DEVE</del>	LOPMENT	PURGELO	DG		
Project Name OB 00	Area	Ft Rile	zy	Project Num			DATE	9-4-97
Sampler(s) Dan Ke Tim Bei	ohane	Durryl	Moreyar	L Date Well In:	stalled Jin	e 97		
Elapsed Time since grout	ing N/A	· .		-Developmen	Purge Metho	Diggle be	e tube	-
VOLUME OF CASING			•	VOLUME OF	ANNULUS			
1. Depth of Well:		53-68	ft	Hole Diamete Casing Diam		10	in in	
2. Depth to Top of Water		41.50	-	1. Height of V			z	ft
3. Height of Water		12.18	ft	2. Vol/Lin. Ft.		~	4·1	gal
Casing Diam	eter:		in.	between ca (see Ta	asing & hole able 2)			
4. Vol/Lin Ft. of Casing (see Table 1)		0.04	gal	3. Porosity @	2-20%	×		% porosity
5. One Casing Volume		0.5	gal	4. One Annu	lus Volume		1.6	gal
	ONE TOTAL	WELL VOLU	ME	21	gai			
		4.1/01	1 1/01	2 1/01		EVOL	EINIAL E	
PARAMETER	INITIAL	1 VOL.	2 VOL.	3 VOL.	4 VOL.	5VOL.	FINAL	
Gallons	March 1975	1 VOL.	2 VOL.	3 VOL.	4 VOL.	5VOL.	FINAL	
Gallons Time (24 hr)	150C	1 VOL.	2 VOL.	3 VOL.	4 VOL.	5VOL.	FINAL	
Gallons Time (24 hr) Conductivity ( <b>/d</b> S/cm)	March 1975	1 VOL.	2 VOL.	3 VOL.	4 VOL.	5VOL.	FINAL	
Gallons Time (24 hr) Conductivity (MS/cm) Dissolved Oxygen (ppm)	1500 1710	1 VOL.	2 VOL.	3 VOL.	4 VOL.	5VOL.	FINAL	
Gallons Time (24 hr) Conductivity ( <b>M</b> S/cm) Dissolved Oxygen (ppm) <del>Eh (mV</del> ) DTW (Ft)	15CC 171C 	1 VOL.	2 VOL.	3 VOL.	4 VOL.	5VOL.	FINAL	
Gallons Time (24 hr) Conductivity ( <b>M</b> S/cm) Dissolved Oxygen (ppm) <del>Eh (mV) アてい (Ft)</del> pH (S.U.)	1500 1710 5363 7.27	1 VOL.	2 VOL.	3 VOL.	4 VOL.	5VOL.		
Gallons Time (24 hr) Conductivity ( <b>M</b> S/cm) Dissolved Oxygen (ppm) <del>Eh (mV) DTW (Ft)</del> pH (S.U.) Temperature ( ^o E)	1500 1710 1710 5363 707	1 VOL.		3 VOL.	4 VOL.	5VOL.		
Gallons Time (24 hr) Conductivity ( <b>M</b> S/cm) Dissolved Oxygen (ppm) <del>Eh (mV) アてい (Ft)</del> pH (S.U.)	1500 1710 5363 7.27	1 VOL.	2 VOL.	3 VOL.	4 VOL.		FINAL	
Gallons Time (24 hr) Conductivity (加S/cm) Dissolved Oxygen (ppm) Eh (mV) フてい (Ft) pH (S.U.) Temperature ( ^o ど) Turbidity (NTU)	1500 1710 5363 7.27 207 7200 YES		2 VOL.	Photo No.		ρ	- FINAL	
Gallons Time (24 hr) Conductivity ( <b>M</b> S/cm) Dissolved Oxygen (ppm) Eh (mV) Trvi (Ft) pH (S.U.) Temperature (°E) Turbidity (NTU) Photo Taken	1500 1710 1710 5363 7.27 207 7200 YES	NO NJAP 52.73 (c	I I I I I I I I I I I I I I I I I I I	Photo No. Sounded Dep	 NJA	ρ	NA	
Gallons Time (24 hr) Conductivity (MS/cm) Dissolved Oxygen (ppm) Eh (mV) DTVI (Ft) pH (S.U.) Temperature (°E) Turbidity (NTU) Photo Taken Water Level After Developr Water Level After Purging NOTES:	1500 1710 1710 5363 7.27 207 7200 YES	NO NJAP 2.73 (c	I I I I I I I I I I I I I I I I I I I	Photo No. Sounded Dep ampling) 34 ##	NIA nijA	р ортепt	N/Ay alwesis	

Casing

Diameter

Volume per Linear Foot

Gal.

Cu.Ft.

Volume per Linear Foot

Gal.

Cu.Ft.

0.27

0.3

0.34

0.54

0.30

0.51

0.75

0.26

0.46

0.71 0.58

### 7.25 in 2.14 0.29 1.25 2.03 7.25 in 2.14 0.29 2 1.91 2.22 2.45 2 7.75 in 0.33 2 2.55 8.25 in 2.78 0.37 2 4.06 4.29 0.57 10.25 in 2.28 8.25 in 2.78 0.37 3 3.79 4.29 0.57 3 10.25 in 3 5.62 12.25 in 6.13 0.82 0.37 4 1.95 8.25 in 2.78 10.25 in 4.29 0.57 4 3.46 12.25 in 6.13 0.82 4 5.30 6 4.33 12.25 in 6.13 0.82

Hole

Diameter

DIAMETER	O.D.	I.D.	Volume
	(in)	(in)	(gal / lin ft.)
1.25"	1.66	1.38	0.08
2"	2.37	2.06	0.17
3"	3.50	3.06	0.38
4"	4.50	4.02	0.66
6"	6.62	6.06	1.50
8"	8.62	7.98	2.60
12"	12.75	11.93	5.81

# WELL NUMBER 0897-12 PZ(1)

PINAL

Project Name OB/CD AREA F Sampler(s) Dan Kechine Tim Beny Elapsed Time since grouting N/A		Project Number JH-1124D DATE <u>9-4-97</u> Date Well Installed June 97 Development Purge Method Jiggle tube	
VOLUME OF CASING		VOLUME OF ANNULUS	
1. Depth of Well:	<u>47-63</u> ft	Hole Diameter <u>IO</u> in Casing Diameter <u>I</u> in	
2. Depth to Top of Water	<u>40.51</u> # 7.12 ft	1. Height of Waterft	
3. Height of Water Casing Diameter:	in.	2. Vol/Lin. Ft. of Annulus <u>~ 4 · 1</u> gal between casing & hole (see Table 2)	
4. Vol/Lin Ft. of Casing	0.04 gal	3. Porosity @ ~20% x 0720 % porosity	
(see Table 1) 5. One Casing Volume	<u>0.28</u> gai	4. One Annulus Volume	
ONE TOTAL	WELL VOLUME	<u>/-9</u> gal	

57/01

PARAMETER	I INITIAL	1 VOL.	2 VOL.	3 VOL.	4 VUL.	5VUL.	FINAL
Gallons	Markan Late	2	4				6
Time (24 hr)	1453	1507	1519				1525
Conductivity (#S/cm)	1220	830	830				830
Dissolved Oxygen (ppm)			-				
Eh (mV) DTW (FH)							
pH (S.U.)	6.73	7.15	7.18				7.15
Temperature (° 🗗	19.5	15.5	15.3				15.3
Turbidity (NTU)	7200	·7200	7200				7200
Photo Taken	YES	NO	1	Photo No.	N/A	£	
Water Level After Develop		NAP		Sounded De	pth After Devel	opment	NIAp
Water Level After Purging		40.55/0	Fter sa <u>sgmple</u>	mpling)			/ '
			-		).	a' (	in a
NOTES: <u>PID-C</u>	·Broin (	ollect	Sample	$\odot$	530 VOP	7 analyrs	-HCL Prese
	has H.Say	OROR -	very tu	hid .	s Sedimon	* allow	d to
suffle		Nimole	2 enable	ing same	e to he	HEL Pre	eservect.

### WELL DEVELOPMENT / PURGE LOG

TABLE 2. Volume of Open Borehole and Annulus between Casing and Hole

#### TABLE 1. Volume of Schedule 40 PVC Pipe

DIAMETER	0.D.	I.D.	Volume
	(in)	(in)	(gal / lin ft.)
1.25"	1.66	1.38	0.08
2"	2.37	2.06	0.17
3"	3.50	3.06	0.38
4"	4.50	4.02	0.66
6"	6.62	6.06	1.50
8"	8.62	7.98	2.60
12"	12.75	11.93	5.81

Hole	Volume per	Linear Foot	Casing	Volume per	Linear Foot
Diameter	Gai.	Cu.Ft.	Diameter	Gal.	Cu.Ft.
7.25 in	2.14	0.29	1.25	2.03	0.27
7.25 in	2.14	0.29	2	1.91	0.26
7.75 in	2.45	0.33	2	2.22	0.3
8.25 in	2.78	0.37	2	2.55	0.34
10.25 in	4.29	0.57	2	4.06	0.54
8.25 in	2.78	0.37	3	2.28	0.30
10.25 in	4.29	0.57	3	3.79	0.51
12.25 in	6.13	0.82	3	5.62	0.75
8.25 in	2.78	0.37	4	1.95	0.26
10.25 in	4.29	0.57	4	3.46	0.46
12.25 in	6.13	0.82	4	5.30	0.71
12.25 in	6.13	0.82	6	4.33	0.58

			WELL NUMBER 0897 -12 P2(3)
	WELL <del>DE</del>		OG
Project Name OB/OD Area Sampler(s) Dan Kechane	Ft Riley	Project Number 5H-	1240 DATE 9-4-97
Sampler(s) Dan Kechane Tim Berry	Darry Morg	an Date Well Installed	ne 97
Elapsed Time since grouting N/	4ρ	-Development Purge Meth	nod Jiergle tube
VOLUME OF CASING		VOLUME OF ANNULUS	
1. Depth of Well:	<u>32.65</u> tt	Hole Diameter Casing Diameter	$\frac{iO}{in}$ in
2. Depth to Top of Water	<u>2922</u> ft 2	1. Height of Water	ft
3. Height of Water Casing Diameter:	<u>3 - 43</u> ft in.	2. Vol/Lin. Ft. of Annulus between casing & hole (see Table 2)	<u>∼ 4 - 1</u> gal
4. Vol/Lin Ft. of Casing (see Table 1)	gal	3. Porosity @ -20%	x 020 % porosity
5. One Casing Volume	<b>⊘ · 1</b> 4gal	4. One Annulus Volume	<u>/·(</u> gal
ONE TOT	AL WELL VOLUME	<u>1.75</u> _gal	
PARAMETER	1 VOL. 2 VOL		5VOL. FINAL
Gallons	88		
Time (24 hr) 1445			
Conductivity (#S/cm) 620			
Dissolved Oxygen (ppm)			
$\frac{Eh(mV)}{Eh(mV)} D^{2} W(ft) = 24.22$	·		
pH (S.U.) 7.33			
Temperature (° <b>E</b> ) <i>i</i> (4			
Turbidity (NTU)			
Photo Taken YES	NO	Photo No. N/	Ap
Water Level After Development	N/Ap	Sounded Depth After Deve	lopment <u>N/A</u>
Water Level After Purging	3 <u>0.94 (a</u> Fter s		
NOTES: <u>PID-C: (oll</u> <u>(water had c</u> Well went dry	leanor().	1545 FOR VCA	Onclubis - HCL Preserved
wen word or			

#### TABLE 1. Volume of Schedule 40 PVC Pipe

DIAMETER	0.D.	I.D.	Volume
	(in)	(in)	(gal / lin ft.)
1.25"	1.66	1.38	0.08
2"	2.37	2.06	0.17
3"	3.50	3.06	0.38
4"	4.50	4.02	0.66
6"	6.62	6.06	1.50
8"	8.62	7.98	2.60
12"	12.75	11.93	5.81

Hole	Volume per	Linear Foot	Casing	Volume per	Linear Foot
Diameter	Gal.	Cu.Ft.	Diameter	Gal.	Cu.Ft.
7.25 in	2.14	0.29	1.25	2.03	0.27
7.25 in	2.14	0.29	2	1.91	0.26
7.75 in	2.45	0.33	2	2.22	0.3
8.25 in	2.78	0.37	2	2.55	0.34
10.25 in	4.29	0.57	2	4.06	0.54
8.25 in	2.78	0.37	3	2.28	0.30
10.25 in	4.29	0.57	3	3.79	0.51
12.25 in	6.13	0.82	3	5.62	0.75
8.25 in	2.78	0.37	4	1.95	0.26
10.25 in	4.29	0.57	4	3.46	0.46
12.25 in	6.13	0.82	4	5.30	0.71
12.25 in	6.13	0.82	6	4.33	0.58

# WELL NUMBER OB97 - 13 PZ(c)

Project Name OD/CD	RReck, F	t RILE	Ý		ber JH-11		DATE_	9-3-97	
Sampler(s) Dan Ke	chane -	Danyl 1	no squin	Date Well Ins	stalled	1 97			
Tim Ber Elapsed Time since grou	ting N/A	(		- Developmen	terge Meth	od Friggle	tube		
VOLUME OF CASING				VOLUME OF	ANNULUS	CW			
1. Depth of Well:		33.38	ft	Hole Diamete Casing Diame		<u> </u>	in in		
2. Depth to Top of Water	c	28.58	ft	1. Height of V		2	-4-80 DK ft	t	
3. Height of Water		4.80	ft	2. Vol/Lin. Ft.		<u> </u>	~ 4./ g	al	
Casing Diam	eter:		in.		asing & hole		^y	-	
4. Vol/Lin Ft. of Casing (see Table 1)		0.04	gal	3. Porosity @	•	x	0,30 %	6 porosity	
5. One Casing Volume		0.2	gal	4. One Annu	lus Volume		<u>/.6</u> _9	al	
	ONE TOTAL	WELL VOLU	ME	1-8	gal				
				<u> </u>	<u></u>	····			
PARAMETER	INITIAL	1 VOL.	2 VOL.	3 VOL.	4 VOL.	5VOL.	FINAL		
Gallons	A CARLEN								
Time (24 hr)	1052								
Conductivity (hS/cm)	1200								
Dissolved Oxygen (ppm)									
EH (MV) DTW (Ft	28.53			<u> </u>			<u> </u>		
pH (S.U.)	6.72		<u> </u>				ļ		
Temperature (° 🗗	21.2								
Turbidity (NTU)	7200			1					
Photo Taken	YES		]	Photo No.	N//-	P			
Water Level After Develop	ment	NIAP	-	Sounded Dep	oth After Deve	lopment	NAP		
Material avail After Durating		22 1	EL C-	1N			•		
Water Level After Purging		32.47(	v	•					
			v	mp (ing) 25 gals: reserved	<u> Collect</u>	sample (	<u>e</u> 1130		

## WELL DEVELOPMENT / URGELOG

## TABLE 2. Volume of Open Borehole and Annulus between Casing and Hole

#### TABLE 1. Volume of Schedule 40 PVC Pipe

DIAMETER	O.D. (in)	l.D. (in)	Volume (gal / lin ft.)
1.25"	1.66	1.38	0.08
2"	2.37	2.06	0.17
3"	3.50	3.06	0.38
4"	4.50	4.02	0.66
6"	6.62	6.06	1.50
8"	8.62	7.98	2.60
12"	12.75	11.93	5.81

Hole	Volume per	Linear Foot	Casing	Volume per	Linear Foot
Diameter	Gal.	Cu.Ft.	Diameter	Gal.	Cu.Ft.
7.25 in	2.14	0.29	1.25	2.03	0.27
7.25 in	2.14	0.29	2	1.91	0.26
7.75 in	2.45	0.33	2	2.22	0.3
8.25 in	2.78	0.37	2	2.55	0.34
10.25 in	4.29	0.57	2	4.06	0.54
8.25 in	2.78	0.37	3	2.28	0.30
10.25 in	4.29	0.57	3	3.79	0.51
12.25 in	_ 6.13	0.82	. 🛪 3	5.62	0.75
8.25 in	2.78	0.37	4	1.95	0.26
10.25 in	4.29	0.57	4	3.46	0.46
12.25 in	6.13	0.82	4	5.30	0.71
12.25 in	6.13	0.82	6	4.33	0.58

# WELL NUMBER OB 97 - 13 PZ(i)

## WELL-DEVELOPMENT (PURGE)LOG

Project Name OBIOD	AREA Ft	RILEY			ber JH-1		DATE	9-3-97
Sampler(s) Dan Ker Tim Ber	CHANE J	Darryim	organ	Date Well Ins	stalled 44	97		
Elapsed Time since grout	ting N/A			-Development	Purge Meth	od Jiggk	tube	
VOLUME OF CASING				VOLUME OF	ANNULUS			
1. Depth of Well:		29.33	ft	Hole Diamete Casing Diame			n n	
2. Depth to Top of Water		<u>15.52</u>	ft	~ 1. Height of W			2	ft
3. Height of Water		13-81	ft	2. Vol/Lin. Ft.		-	- 4.1	gal
Casing Diam	eter:	/	in.	between ca (see Ta	asing & hole able 2)			
4. Vol/Lin Ft. of Casing (see Table 1)		0.04	gal	3. Porosity @	-20%	×_	0.30	% porosity
5. One Casing Volume		0.5	gal	4. One Annul	lus Volume	-	1.6	gal
	ONE TOTAL	WELL VOLU	ME	2.1	gal			
PARAMETER	INITIAL	1 VOL.	2 VOL.	3 VOL.	4 VOL.	5VOL.	FINAL	
Gallons	Service and						itizati 2	
Time (24 hr)	1027						1044	
Conductivity (#S/cm)	950						750	
issolved Oxygen (ppm)								
ah (mV) DTYN (Ft)	15.52							
pH (S.U.)	7.51						7.78	
Temperature (° 🗲	20.9						20.8	
Turbidity (NTU)	7200						7200	
Photo Taken	YES	NO		Photo No.	NAP			
Water Level After Developr	nent	NIAP		Sounded Dep	oth After Devel	opment -	NIAP	
Water Level After Purging	c	28.72 (a	Fter sum	(pling)		_		
NOTES: Piezometer analysis -	goes di	ry aFter	~ 2 gal	s Collect	t sample	$\frac{2}{2}$	2 FOR L	νoA
di lice ha	Unpres	erveci. IT	00 . 00	Let Mrs	msp.	MAKP U	<u></u>	
Auplicate.	upperes uppered	0.697	<u>-13fz (</u>	5)@ 1145	5 Odor	of HESO	4004 <u> </u>	

#### TABLE 1. Volume of Schedule 40 PVC Pipe

DIAMETER	O.D. (in)	l.D. (in)	Volume (gal / lin ft.)
1.25"	1.66	1.38	0.08
2"	2.37	2.06	0.17
3"	3.50	3.06	0.38
4"	4.50	4.02	0.66
6"	6.62	6.06	1.50
8"	8.62	7.98	2.60
12"	12.75	11.93	5.81

Hole	Volume per	Linear Foot	Casing	Volume per	Linear Foot
Diameter	Gal.	Cu.Ft.	Diameter	Gal.	Cu.Ft.
7.25 in	2.14	0.29	1.25	2.03	0.27
7.25 in	2.14	0.29	2	1.91	0.26
7.75 in	2.45	0.33	2	2.22	0.3
8.25 in	2.78	0.37	2	2.55	0.34
10.25 in	4.29	0.57	2	4.06	0.54
8.25 in	2.78	0.37	3	2.28	0.30
10.25 in	4.29	0.57	3	3.79	0.51
12.25 in	_ 6.13	0.82	.**3	5.62	0.75
8.25 in	2.78	0.37	4	1.95	0.26
10.25 in	4.29	0.57	4	3.46	0.46
12.25 in	6.13	0.82	4	5.30	0.71
12.25 in	6.13	0.82	6	4.33	0.58

# WELL NUMBER OB97 - 13PZ(z)

		WE	ELL <del>DEVE</del>	LOPMENT	PURGELO	DG		
Project Name CBOD	AREA, F	=t RILE	Y	Project Num	ber JH-1	1247	DATE	9-3-97
Sampler(s) DAN KE	OHANE			Date Well Ins	ber JH-11 Dv stalled Max	197		• •
Elapsed Time since grout	ing N/Ao			-Developmen	Purge Metho	od Figgle	tube	
VOLUME OF CASING				VOLUME OF	ANNULUS			
1. Depth of Well:	•	24.45		Hole Diamete Casing Diame		Ю I	in in	
2. Depth to Top of Water		15.32	ft	1 Hoight of V	Votor		7	#/Scen Section phere
3. Height of Water		9.13	ft	<ol> <li>Height of V</li> <li>Vol/Lin. Ft.</li> </ol>			~ H•	A Screen Section place. ift scind prick gal check stream)
Casing Diame	eter:	<u> </u>	in.		asing & hole			. ,
4. Vol/Lin Ft. of Casing (see Table 1)		0.04	gal	(see Ta 3. Porosity @		x	0,30	% porosity
5. One Casing Volume		0.4	gal	4. One Annu	lus Volume		1.6	gal
	ONE TOTAL	WELL VOLU	ME	_2	gal			<u></u>
PARAMETER	INITIAL	1 VOL.	2 VOL.	3 VOL.	4 VOL.	5VOL.	FINAL	
Gallons	N. 862 5.552	2	4				6	
Time (24 hr)	1149	1201	1210				1218	
Conductivity (#S/cm)	560	1100	960				losc	
Dissolved Oxygen (ppm)								
EH (MV) DTW (FF)	15.32	7.47	7.50				7.75	
Temperature (° €)	219	20.6	19.5				20.8	
Turbidity (NTU)	7200	7200	7200				7200	

Photo Taken YES	NO	Photo No. N/A	
Water Level After Development	NIAC	Sounded Depth After Development	N/AP_
Water Level After Purging	15.41	(AFter Simpling)	•
NOTES: <u>Collect Sumple</u> - Unpreserved.	From	0697-13P2(a) @ 1228 For JOA	analysis

## TABLE 2. Volume of Open Borehole and Annulus between Casing and Hole

#### TABLE 1. Volume of Schedule 40 PVC Pipe

DIAMETER	O.D.	I.D.	Volume
	(in)	(in)	(gal / lin ft.)
1.25"	1.66	1.38	0.08
2*	2.37	2.06	0.17
3"	3.50	3.06	0.38
4"	4.50	4.02	0.66
6"	6.62	6.06	1.50
8"	8.62	7.98	2.60
12"	12.75	11.93	5.81

Hole	Volume per	Linear Foot	Casing	Volume per	Linear Foot
Diameter	Gal.	Cu.Ft.	Diameter	Gal.	Cu.Ft.
7.25 in	2.14	0.29	1.25	2.03	0.27
7.25 in	2.14	0.29	2	1.91	0.26
7.75 in	2.45	0.33	2	2.22	0.3
8.25 in	2.78	0.37	2	2.55	0.34
10.25 in	4.29	0.57	2	4.06	0.54
8.25 in	2.78	0.37	3	2.28	0.30
10.25 in	4.29	0.57	3	3.79	0.51
12.25 in	_ 6.13	0.82	.*3	5.62	0.75
8.25 in	2.78	0.37	4	1.95	0.26
10.25 in	4.29	0.57	4	3.46	0.46
12.25 in	6.13	0.82	4	5.30	0.71
12.25 in	6.13	0.82	6	4.33	0.58

### WELL DEVELOPMENT / PURGE LOG

Project Name OB OD	Area	FL RIL	-EY		ber JH-11	24D	DATE	9-3-97
Sampler(s) DAN KE	OHANE	Darryl	Morgan	Date Well Ins	stalled A	197		
Elapsed Time since grout	ing N/A			-Developmen	Purge Metho	d. Jiggle	- tube	
VOLUME OF CASING				VOLUME OF	ANNULUS			
1. Depth of Well:		19.94	ft	Hole Diamete Casing Diame	-	10	_in _in	
2. Depth to Top of Water	· ,	16.51		1. Height of V	-		- 2	ft
3. Height of Water		<u>3.43</u>	ft	2. Vol/Lin. Ft.	of Annulus		~ 4.1	gal
Casing Diam	eter:	·	in.	between ca (see Ta	asing & hole able 2)			
4. Vol/Lin Ft. of Casing (see Table 1)		004	gal	3. Porosity @	- <b>ia</b> 0%	x		% porosity
5. One Casing Volume		0.14	gal	4. One Annu			1.6	gal
	ONE TOTAL	WELL VOLU	ME	/ • 8	gal			
PARAMETER	INITIAL	1 VOL.	2 VOL.	3 VOL.	4 VOL.	5VOL.	FINAL	1
Gallons	South State						1	
Time (24 hr)	1158						1206	
Conductivity (IdS/cm)	1950						1800	
ssolved Oxygen (ppm)								
-tr (mV) DTW (Ft	16.51							· ·
pH (S.U.)	7.39						7.64	
Temperature (° E)	19.4						17.8	
Turbidity (NTU)	200				ll		7200	
Photo Taken	YES	NO NO		Photo No.	<u> </u>	f		<b>.</b> .
Water Level After Developr	nent	N/Ap		_	oth After Devel	opment	_N/Ap	-
Water Level After Purging		~	(aFter s		,		, <u>-</u>	
NOTES: <u>Collect</u> alect w	sample.	@ 123 / aFter	1 gall	VOA an	alysis - (	Un preser	vecl.	-
	<u> </u>		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~					-

TABLE 2. Volume of Open Borehole and Annulus between Casing and Hole

#### TABLE 1. Volume of Schedule 40 PVC Pipe

DIAMETER	O.D. (in)	I.D. (in)	Volume (gal / lin ft.)
1.25"	1.66	1.38	0.08
2"	2.37	2.06	0.17
3"	3.50	3.06	0.38
4"	4.50	4.02	0.66
6"	6.62	6.06	1.50
8"	8.62	7.98	2.60
12"	12.75	11.93	5.81

Hole	Volume per	Linear Foot	Casing	Volume per	Linear Foot
Diameter	Gal.	Cu.Ft.	Diameter	Gal.	Cu.Ft.
7.25 in	2.14	0.29	1.25	2.03	0.27
7.25 in	2.14	0.29	2	1.91	0.26
7.75 in	2.45	0.33	2	2.22	0.3
8.25 in	2.78	0.37	2	2.55	0.34
10.25 in	4.29	0.57	2	4.06	0.54
8.25 in	2.78	0.37	3	2.28	0.30
10.25 in	4.29	0.57	3	3.79	0.51
12.25 in	6.13	0.82	.*3	5.62	0.75
8.25 in	2.78	0.37	4	1.95	0.26
10.25 in	4.29	0.57	4	3.46	0.46
12.25 in	6.13	0.82	4	5.30	0.71
12.25 in	6.13	0.82	6	4.33	0.58

		WELL NUMBER OB97-1	<u>3 PZ(4)</u>
	WELL-DEVE	LOPMENT / PURGE LOG	
Project Name OB/OD AC	EA Ft RILEY	Project Number , JH-1124 D DATE 9-	4-97
Sampler(s) Dan Kechar	e Darryl Morgan	Date Well Installed	
TIM BERRY Elapsed Time since grouting	VIAc	Development/Purge Method Dispoxble Dailer	
VOLUME OF CASING	· · · · · · · · · · · · · · · · · · ·	VOLUME OF ANNULUS	
1. Depth of Well:	14.70 ft	Hole Diameter <u>10</u> in Casing Diameter in	
2. Depth to Top of Water	<u> 4-11</u> ft	1. Height of Water $0.59$ ft	
3. Height of Water	<u>0.59</u> ft	2. Vol/Lin, Ft. of Annulus ~ イ・/ gal	
Casing Diameter:	in.	between casing & hole (see Table 2)	
4. Vol/Lin Ft. of Casing	O.O.H gal	3. Porosity @ ~20% x 020 % po	prosity
(see Table 1) 5. One Casing Volume	<u> </u>	4. One Annulus Volume <u>O:48</u> gal	
ONE	TOTAL WELL VOLUME	gal	

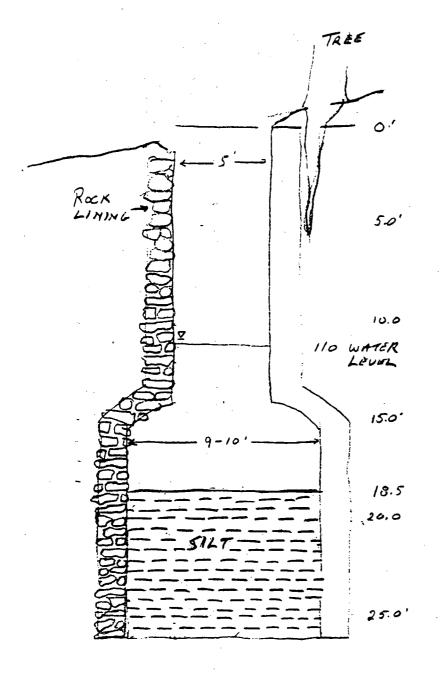
PARAMETER	INITIAL	1 VOL.	2 VOL.	3 VOL.	4 VOL.	5VOL.	FINAL
Gallons	STATISTICS STATISTICS						0.1
Time (24 hr)	1605						1635
Conductivity (MS/cm)							990
Dissolved Oxygen (ppm)							
Eh (mV) DTW (FL)	14.11						14.19
pH (S.U.)							7.01
Temperature (° 🗗							18.6
Turbidity (NTU)							7200
Photo Taken	YES	NO	J	Photo No.		f	
Water Level After Developr	ment -	NIAP	-		oth After Devel	opment	NIAP
Water Level After Purging		14.33 (	Cafter Si	ampling)			•
NOTES: Sample	@ 162	O FOR	VOA a	malysis -	- this 5	ample 5 aFter	
<u>recorded</u>	, Piezom	ater u	uns res	ximp'led (			~ ruding
<u>0.1 gall</u>	0/12						

## TABLE 2. Volume of Open Borehole and Annulus between Casing and Hole

#### TABLE 1. Volume of Schedule 40 PVC Pipe

------

DIAMETER	O.D.	1.D.	Volume
	(in)	(in)	(gal / lin ft.)
1.25"	1.66	1.38	0.08
2*	2.37	2.06	0.17
3"	3.50	3.06	0.38
4"	4.50	4.02	0.66
6"	6.62	6.06	1.50
- 8"	8.62	7.98	2.60
12"	12.75	11.93	5.81


Hole	Volume per Linear Foot		Casing	Volume pe	r Linear Foot
Diameter	Gal.	Cu.Ft.	Diameter	Gal.	Cu.Ft.
7.25 in	2.14	0.29	1.25	2.03	0.27
7.25 in	2.14	0.29	2	1.91	0.26
7.75 in	2.45	0.33	2	2.22	0.3
8.25 in	2.78	0.37	2	2.55	0.34
10.25 in	4.29	0.57	2	4.06	0.54
8.25 in	2.78	0.37	3	2.28	0.30
10.25 in	4.29	0.57	3	3.79	0.51
12.25 in	6.13	0.82	. <b>**3</b>	5.62	0.75
8.25 in	2.78	0.37	4	1.95	0.26
10.25 in	4.29	0.57	4	3.46	0.46
12.25 in	6.13	0.82	4	5.30	0.71
12.25 in	6.13	0.82	6	4.33	0.58

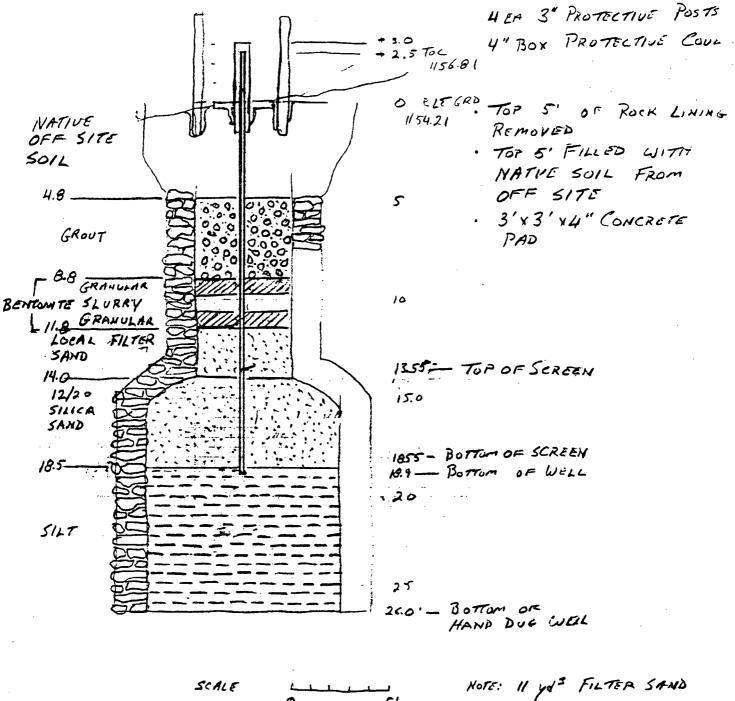
							WELL NUMB	ER Dig	ukll		
			WE	ELL- <del>DEVE</del>	LOPMENT	PURGELO	OG	L L			
Project Name	OB/OD	AREA	Ft RIL	εγ	Project Number_JH-1124D DATE 9-4-97						
Sampler(S) DANS KEOHANE (Darry Morgan Tim BERRY					Date Well Ins	stalled $N()$	Ap				
Elapsed Time	since grout	ting N/A	,	_	Developmen	teringe Metho	od N/Ap				
VOLUME OF	CASING	N	Ap-No P	urge	VOLUME OF	ANNULUS	N/Ap	-No i	Purge		
1. Depth of We	ell:	<i>.</i>	1	ft	Hole Diamete Casing Diame			in in			
2. Depth to Top	p of Water			ft	1. Height of V				ft		
3. Height of Wa	ater			ft	2. Vol/Lin. Ft.				gal		
C	Casing Diam	eter:		in.	between ca (see Ta	asing & hole able 2)			-		
4. Vol/Lin Ft. o (see Ta	-			gal	3. Porosity @	~30%	×	0.30	% porosity		
5. One Casing	-			gal	4. One Annu	lus Volume			gal		
		ONE TOTAL	WELL VOLU	ME		gal					
PARAMETER		INITIAL	1 VOL.	2 VOL.	3 VOL.	4 VOL.	5VOL.	FINAL			
Gallons		150252572									
Time (24 hr)		1340									
Conductivity (	S/cm)	380									
<b>Dissolved</b> Oxy	gen (ppm)										
Eh (mV) DT		14-29									
pH (S.U.)		7.05									
Temperature (	°F)	15.2									
Turbidity (NTU		6.34									
Turbidity (1410	)	6.74							l		
Photo Taken		YES	NO	l	Photo No.	NĮA	f				
Water Level Al	fter Developr	nent	N/Ap		Sounded Dep	th After Devel	opment	NIAP			
Water Level Af			NAP				1				
		sample c ge condu			bler san	r Joa a npler : 5	andle	grubed			
	from "	~ 16 FI	- below		ING PUINT	- 7.e. ~ 2	. Ft' belog.	3 topoF	writer		
Ū	Collect f	Field bla.	чК @ 13∙	40	$\sim$ '	lume of Oper	n Borehole an	v d Annulus be	etween Casin	g and Hole	
					Hole	Volume per	Linear Foot	Casing	Volume per	Linear Foot	
					Diameter	Gal.	Cu.Ft.	Diameter	Gal.	Cu.Ft.	
					7.25 in	2.14	0.29	1.25	2.03	0.27	
			Bino		7.25 in 7.25 in	2.14	0.29	2	1.91	0.27	
TABLE 1. Vol	une or sch		Lihe			2.14	0.29	2	2.22	0.20	
					7.75 in				2.55	0.3	
DIAMETER	O.D.	I.D.	Volume		8.25 in	2.78	0.37	2			
	(in)	(in)	(gal / lin ft.)		10.25 in	4.29	0.57	2	4.06	0.54	
1.25"	1.66	1.38	0.08		8.25 in	2.78	0.37	3	2.28	0.30	
2"	2.37	2.06	0.17		10.25 in	4.29	0.57	3	3.79	0.51	
3"	3.50	3.06	0.38		12.25 in	6.13	0.82	.⊯3	5.62	0.75	
4"	4.50	4.02	0.66		8.25 in	2.78	0.37	4	1.95	0.26	
6"	6.62	6.06	1.50		10.25 in	4.29	0.57	4	3.46	0.46	
8"	8.62	7.98	2.60		12.25 in	6.13	0.82	4	5.30	0.71	
12"	12.75	11.93	5.81	l	12.25 in	6.13	0.82	6	4.33	0.58	

FPHD-97-14 (Former Dug Well)



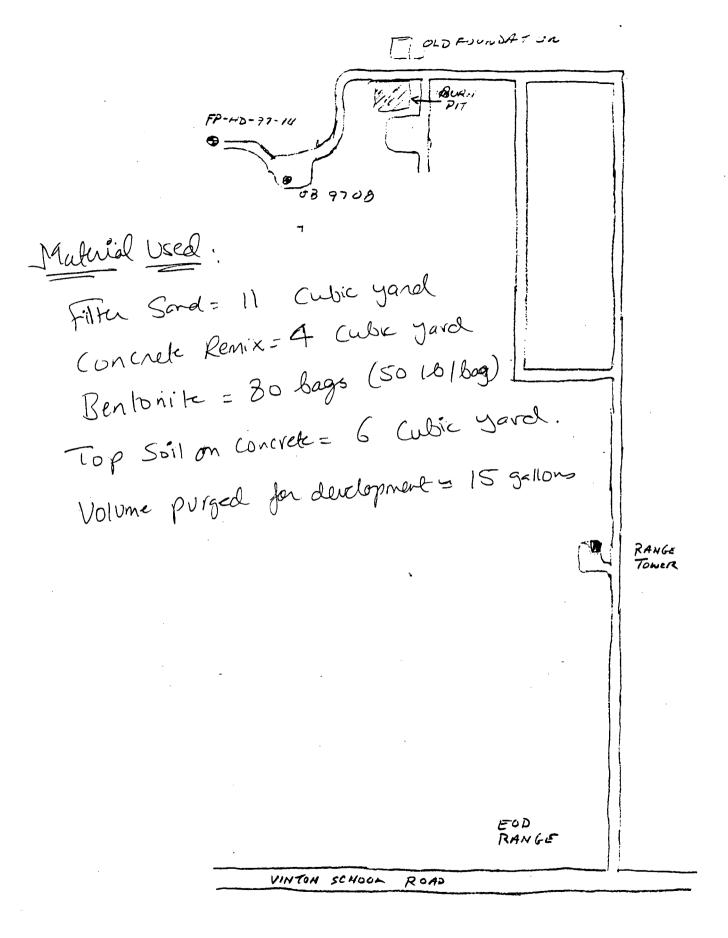
Diameter and type of well pipe 2° PVC	·····
Schedule of well pipe <u>40</u>	Screen slot size <u>.0/0</u>
Measurements:	
Length of riser pipe 16.05	
Length of Screen <u>50</u>	
Length of end blank 35'	
Total length of well installation 21.4	
Bottom depth of well 26 ESTIMATED	
Length of riser pipe stickup above ground surface	2.5
Centralizers:	
Total number of centralizers NoNE	· ·
Depth(s) of centralizer(s) below ground surface	· ·
	· .
Protective Pipe:	
Size and type of protective pipe 4" Box	· · · · · · · · · · · · · · · · · · ·
Number of weep holes drilled in protective pipe /	
Well Pad:	
Dimensions of well pad $3' \times 3' \times 4''$	
Number and size of protective posts around well	CA 3"
Filter Pack:	- 18.9- 13.8
Type and grain size of filter pack material 12/20 Locally PROCURED FILTER	SAND 14.0-11.8.
Grout Mix(es):	
Type of grout mix(es) and locations used in the wel	l installation
READY MIX 3000	
Amount and type of grout materials used for each mi	x N/A
Portland	
Bentonite (specify type)	
water	
1. Material used to fill annular space between bore	whole and protective pipe
2. Material used to fill void between protective pi	pe and well riser pipe
FINE SAND	
	5/11)




- · MEASURED DEPTH OF WELL 18.5'
- · ORIGINAL DEPTH OF 26' DETERMINED BY LENGTH OF PUMP REMOVED FROM WELL.

- · LOWER DIAMETER OF WELL ESTIMATED -USTAG THE VOLUME OF FILTER SAND PLACED.
- · ROCK LINING 1-1.5" THICK

SCALE d C '


611

[·] MAATER LEVEL 11.0'



INSTALLED

5'





# **APPENDIX B**

Unexploded Ordnance (UXO) Report

### Final Report for Ft. Riley, Kansas

#### First Mobilization

UXB Team completed mobilization to Ft Riley on March 16, 1997 to start on the 17th. A group meeting was held at the USACE office Monday morning and then we departed for the EOD Range (Range 16) to conduct a UXO clearance for personnel and equipment entry. On March 19, 1997 the UXO clearance was completed for present and equipment and personnel started arriving. Escort duties started and we also provided assistance to the client when and where needed to assist in tasks completion. Split shifts were originally discussed to keep hours down, but, would not have worked due to the many people on site with different places to be escorted. We located a spring on the site and notified the client of such, then dug a sump in it to assist in sampling. A dug well was also located in an old homestead site within the range. This also required sampling. Layne Western had 2 drill rigs on site most of the time to escort. EOD had a accidental range fire on march 14, 1997 and then on the 17th the fire department burned off additional area to ease in the UXO clearance. The burning of the range made the UXO clearance and also the escorting of personnel and equipment into the well site much easier. March 29, the last well was installed, then the decon of equipment started along with site clean up. Clean up and equipment removal was completed on March 30. March 31 was a stand by day as well logging was scheduled but the client had the equipment returned to rental company so the task was delayed. Equipment from the Funston Landfill area was shipped out, vehicle cleaned and all reports caught up to date.

### LIST OF TASKS COMPLETED

Well Installation - escort and assistance	4 wells
Well Development - escort and assistance	4 wells
Well Logging - escort and assistance	4 wells
Road ways - cleared	all permanent
Path ways & work areas for wells cleared	4 wells
Staging area cleared	2 sites
Escort to Spring location	Numerous
Escort to sample spring	1
Escort to dug well	Numerous
Escort to sample dug well	1
Escort of survey crew	2 days
Mapped location of wells, spring & dug well	1 day
Army EOD assistance required to detonate UXOs	2
÷	

#### Second Mobilization

Arrived on April 15, 1997. On April 16 we cleared and hand augered 2 soil samples in the Funston Landfill area, then went to the OBOD and cleared and installed 6 passive soil gas tubes around wells 7 and 5. No ordnance item encountered.

Third Mobilization

Arrived on May 31,1997. Met with Louis Berger & Associates on site manager at their office at 9AM, June 1, 1997 to go over the planned activities during this mobilization. Went to the EOD range to conduct a walk of the area to show us the projected locations of the wells to be installed and the areas requiring clearance. Exact locations could not be set until the USACE representative picks them on the 2nd. Started ordnance operations after the meeting. Had to rent a brush cutting machine to clear weeds and brush to facilitate ordnance clearance and safety. Well locations surveyed in for exact location. Started Drilling operations on June 3, 1997. Clearance operations continued along with escort duties and brush cutting. June 12 and 13, 1997, operations shut down due to range going hot and no one allowed in area, on standby. June 14 operations resumed after we provided a surface clearance of all roadways and pathways. 5 piezometer wells installed with pads and bumper posts. Escorted survey crew to provide the exact location and altitude for all wells(13), sample locations, springs, well logging and dug well. Assisted the drill crew and client in marking of all wells along with the installation of pads and bumper posts. June 19, 1997 team of 12 regulators were on site and escorted to several locations. All operations were completed on the morning of June 20, 1997 including demobilization of equipment and personnel.

### LIST OF TASKS COMPLETED

Piezometer wells installed - escort and assistance	5
Well development - escort and assistance	2
Well logging - escort and assistance	6
Roadways cleared - all permanent	2 occasions
Pathways & work areas for all wells cleared	13
Pathways to sample areas cleared	9
Staging areas cleared	2 sites
Escort of survey crew	2 days
Escort to conduct water levels or sample	everyday
Escort of regulators	1 day

During all mobilizations numerous expended UXO items were removed from work areas. 83 UXO items (live or suspected to be live) were removed from work areas and access routes, 2 of these UXO items had to be detonated in place by the base EOD Team. 33 ounces of bulk propellant was recovered. All UXO items or material was staged near the blow hole for Army EOD action. The Army EOD Team was notified of the UXO items being staged near their blow hole for later disposal by them.

Robert L. Diekmann Senior UXO Supervisor

## LIST OF LIVE UXO ITEMS LOCATED DURING SITE CLEARING OPERATIONS

DATE	ITEM	ACTION	COMMENTS	QUANITY	TOTALS
3-17-97	75MM Projectile	EOD Disposed of	Detonated in place by EOD	1	1
	50 Cal. Round	Removed	Stockpiled for later disposal by EOD	1	2
	30-06 Round	Removed	Stockpiled for later disposal by EOD	1	3
3-18-97	38 Cal. Round	Removed	Stockpiled for later disposal by EOD	1	4
0-10-07	20MM TPT Projec	Removed	Stockpiled for later disposal by EOD	5	9
	40MM Practice Round EOD Disposed of Detonated in place by EOD		1	10	
	105MM Smoke Cannister Removed Stockpiled for later disposal by EOD		1	11	
	2.36 Rocket Warhead	Removed	Stockpiled for later disposal by EOD	1	12
	30MM Practice Round	Removed	Stockpiled for later disposal by EOD	1	13
	20MM Round	Removed	Stockpiled for later disposal by EOD	2	15
3-19-97	20MM Round	Removed	Stockpiled for later disposal by EOD	1	16
0-10-07	20MM TPT Projec	Removed	Stockpiled for later disposal by EOD	1	17
<u></u>	Bulk Propellent	Removed	Stockpiled for later disposal by EOD	8 oz.	8 oz.
3-20-97	Bulk Propellent	Removed	Stockpiled for later disposal by EOD	2 oz.	10 oz.
3-21-97	40MM Round	EOD Disposed of	Detonated in place by EOD	1	18
02101	75MM Projectile	EOD Disposed of	Detonated in place by EOD	1	19
	2.36 Rocket Warhead	Removed	Stockpiled for later disposal by EOD	1	20
	20MM TPT Projec	Removed	Stockpiled for later disposal by EOD	1	21
	7.62 Round	Removed	Stockpiled for later disposal by EOD	2	23
3-22-97	5.56 Round	Removed	Stockpiled for later disposal by EOD	1	24
3-23-97	7.62 Round	Removed	Stockpiled for later disposal by EOD	1	25
	20MM TPT Projec	Removed	Stockpiled for later disposal by EOD	1	26
	Bulk Propellent	Removed	Stockpiled for later disposal by EOD	5 oz.	15 oz.
3-24-97	20MM Round	Removed	Stockpiled for later disposal by EOD	1	27
02.0.	20MM TPT Projec	Removed	Stockpiled for later disposal by EOD	1	28
· · · · · · · · · · · · · · · · · · ·	38 Auto Round	Removed	Stockpiled for later disposal by EOD	1	29
3-25-97	50 Cal. Round	Removed	Stockpiled for later disposal by EOD	1	30
0 20 0.	20MM TPT Projec	Removed	Stockpiled for later disposal by EOD	1	31
	5.56 Round	Removed	Stockpiled for later disposal by EOD	1	32
	Bulk Propellent	Removed	Stockpiled for later disposal by EOD	1 oz.	16 oz.
3-26-97	M120 Bomb Fuze	Removed	Stockpiled for later disposal by EOD	1	33
<u> </u>	Bulk Propellent	Removed	Stockpiled for later disposal by EOD	7 oz.	23 oz.
3-27-97	20MM TPT Projec	Removed	Stockpiled for later disposal by EOD	1	34
	Bulk Propellent	Removed	Stockpiled for later disposal by EOD	2 oz.	25 oz.
all days	Expended UXO Items	Removed	Stockpiled for later disposal/action by EOD	Numerous	
TOTALS	Bulk Propellent		Stockpiled for later disposal by EOD		25 oz.
	UXO Items		Stockpiled for EOD Disposal/Disposed of already		34
6-1-97	20MM Projectile	Removed	Stockpiled for later disposal by EOD	11	11

	20MM Round	Removed	Stockpiled for later disposal by EOD	1	12
	30MM Round	Removed	Stockpiled for later disposal by EOD	6	18
	30MM Projectile	Removed	Stockpiled for later disposal by EOD	1	19
	M117 Booby Trap Simulator	Removed	Stockpiled for later disposal by EOD	1	20
	Booby Trap Firing Device	Removed	Stockpiled for later disposal by EOD	1	21
6-3-97	50 Cal. Round	Removed	Stockpiled for later disposal by EOD	2	23
	50 Cal. Blank Round	Removed	Stockpiled for later disposal by EOD	1	24
	20MM Projectile	Removed	Stockpiled for later disposal by EOD	1	25
	38 Special Round	Removed	Stockpiled for later disposal by EOD	1	26
	38 Auto Round	Removed	Stockpiled for later disposal by EOD	1	27
	2.36 Rocket Warhead	Removed	Stockpiled for later disposal by EOD	1	28
6-5-97	20MM Projectile	Removed	Stockpiled for later disposal by EOD	4	32
6-6-97	25MM Projectile	Removed	Stockpiled for later disposal by EOD	1	33
6-7-97	25MM Projectile	Removed	Stockpiled for later disposal by EOD	1	34
6-9-97	20MM Projectile	Removed	Stockpiled for later disposal by EOD	1	35
6-10-97	50 Cal. Blank Round	Removed	Stockpiled for later disposal by EOD	1	36
6-14-97	50 Cal. Blank Round	Removed	Stockpiled for later disposal by EOD	1	37
	20MM Projectile	Removed	Stockpiled for later disposal by EOD	8	45
	30MM Projectile	Removed	Stockpiled for later disposal by EOD	1	46
	Bulk Propellent	Removed	Stockpiled for later disposal by EOD	4oz.	4 oz.
6-15-97	20MM Projectile	Removed	Stockpiled for later disposal by EOD	1	47
6-18-97	20MM Projectile	Removed	Stockpiled for later disposal by EOD	2	49
	Bulk Propellent	Removed	Stockpiled for later disposal by EOD	4oz.	8 oz.
all days	Expended UXO items	Removed	Stockpiled for later disposal/action by EOD	Numerous	
This MOB	Bulk Propellent		Stockpiled for later disposal by EOD		8 oz.
Totals	UXO Items		Stockpiled for later disposal by EOD		49
Totals For	Bulk Propellent		Stockpiled for later disposal by EOD		33 oz.
Project	UXO Items		Stockpiled for EOD Disposal/Disposed of already		83

.

.

# **APPENDIX C**

Passive Soil Gas Survey Analytical Report



W. L. GORE & ASSOCIATES, INC.

101 LEWISVILLE ROAD • P.O. BOX 1100 • ELKTON, MARYLAND 21922-1100 PHONE: 410/392-3300 FAX: 410/996-3325 • TELEX 467637 GORE FB ELKT

ENVIRONMENTAL PRODUCTS GROUP

## 1 of 5

## GORE-SORBERSM Screening Survey Final Report

Firing Range Kansas

May 13, 1997

Prepared For: Louis Berger and Associates, Inc. 295 Promenade Street, Providence, RI 02908

W.L. Gore & Associates, Inc. Written/Submitted by

Ray F. Fenstermacher, P.G. Associate W.L. Gore & Associates, Inc. Reviewed/Approved by

Jay W. Hodny, M.S. Associate

1: PROJECTS MISC/LBERGER/FIRERANG.KS/970513.DOC

This document shall not be reproduced, except in full, without written approval of W.L. Gore & Associates

FORM 11 R.3 Rev 10/25/96

ASIA • AUSTRALIA • EUROPE • NORTH AMERICA GORE-TEX, GORE-SORBER, COMPOGARD and REMIGARD are trademarks of W. L. Gore & Associates, Inc. GORE-SORBER Screening Survey is a registererd service mark of W. L. Gore & Associates, Inc.

## GORE-SORBERsm Screening Survey Final Report

REPORT DATE: May 13, 1997

AUTHOR: RFF

## SITE INFORMATION

Site Reference: Firing Range, Kansas Customer Purchase Order Number: Verbal Gore Production Order Number: 072808

Gore Site Code: AAH

#### FIELD PROCEDURES

# Modules shipped: 7
Installation Date(s): April 16, 1997
# Modules Installed: 6
Field work performed by: Louis Berger and Associates, Inc.

Retrieval date(s): May 8, 1997 # Modules Retrieved: 6 # Modules Lost in Field: 0 • Exposure Time: 22 [days] # Trip Blanks Returned: 1 # Unused Modules Returned: 0

Date/Time Received by Gore: May 9, 1997, 12:40 PM By: TS Recorded Cooler/Water Temperature Control Blank temperature: 20.6 [°C] Chain of Custody Form attached: √

Chain of Custody discrepancies: The installation/retrieval form was not included with the chain of custody.

**Comments:** The temperature of the water control blank exceeded the generally-accepted level for shipment of environmental samples  $(2.0 \pm 4.0^{\circ} \text{ C.})$ 

FORM 11 R.3 Rev 10/25/96

## GORE-SORBERsm Screening Survey Final Report

### ANALYTICAL PROCEDURES

W.L. Gore & Associates' Screening Module Laboratory operates under the guidelines of its Quality Assurance Manual, Operating Procedures and Methods. The quality assurance program is consistent with Good Laboratory Practices (GLP) and ISO Guide 25, "General Requirements for the Competence of Calibration and Testing Laboratories", third edition, 1990. The Laboratory is audited regularly by a guality system design, development and auditing company.

Instrumentation consists of Hewlett-Packard 5890 gas chromatographs and 5971 mass selective detectors, as well as Perkin-Elmer ATD 400 automated thermal desorption units. Sample preparation simply involves cutting the tip off the bottom of the sample module and transferring one or more exposed sorbent containers (sorbers, each containing 40mg of a suitable granular adsorbent) to a thermal desorption tube for analysis. Sorbers remain clean and protected from dirt, soil, and ground water by the insertion/retrieval cord, and require no further sample preparation.

#### Screening Method Quality Assurance:

Before each run sequence, two instrument blanks, a sorber containing 5µg BFB (Bromofluorobenzene), and a method blank are analyzed. The BFB mass spectra must meet the criteria set forth in our methods before samples can be analyzed. A sorber containing BFB is also analyzed after every 30 samples and/or trip blanks, as is a method blank. Standards containing the selected target compounds at three calibration levels of 5, 20, and 50µg are analyzed at the beginning of each run. The criterion for each target compound is less than 35% RSD (relative standard deviation). If this criterion is not met for any target compound, the analyst has the option of generating second- or third-order standard curves, as appropriate. A second-source reference standard, at a level of 20µg per target compound, is analyzed after every ten samples and/or trip blanks, and at the end of the run sequence. Positive identification of target compounds is determined by the presence of the target ion and at least two secondary ions, retention time versus reference standard, and the analyst's judgment.

NOTE: All data have been archived. Any replicate sorbers not used in the initial analysis will be discarded fifteen (15) days from the date of analysis.

Laboratory analysis: thermal desorption, gas chromatography, mass selective detection Quality Assurance Level: 2 (ANA-4/A1) Instrument ID: # 3 Chemist: JW Data Subdirectory: 072808 Compounds/mixtures requested: Gore Standard VOC/SVOC Compound List (A3) Deviations from Standard Method: None

Comments: Soil vapor analytes and abbreviations are tabulated in the Data Table Key (page 5).

FORM 11 R.3 Rev 10/25/96

## GORE-SORBERsm Screening Survey Final Report

## DATA TABULATION

## # CONTOUR MAPS ENCLOSED: No maps were generated from this data

NOTE: All data values presented in Appendix A represent masses of compound(s) desorbed from the GORE-SORBER Screening Modules received and analyzed by W.L. Gore, as identified in the Chain of Custody (Appendix A). The measurement traceability and instrument performance are reproducible and accurate for the measurement process documented. Semi-quantitation of the compound mass is based on either a single-level (QA Level 1) or three-level (QA Level 2) standard calibration.

#### Comments:

- Stacked total ion chromatograms (TIC's) are included in Appendix A. The last three digits
  of each module number are incorporated into the TIC identification (e.g.: AAH<u>503</u>TC.D
  represents module #136<u>503</u>).
- Low levels of target analytes (particularly PCE) were detected in most of the modules with the exception of module location 136504.

GORE-SORBER is a registered trademark of W. L. Gore & Associates, Inc.

FORM 11 R.3 Rev 10/25/96

## GORE-SORBERsm Screening Survey Final Report

## KEY TO DATA TABLE Firing Range, Kansas

UNITS	
μg	micrograms (per sorber), reported for compounds for which we run external standards.
MDL	method detection limit
ANALYTES	
t12DCE	trans-1,2-dichloroethene
11DCA	1,1-dichloroethane
c12DCE	cis-1,2-dichloroethene
111TCA	1,1,1-trichloroethane
12DCA	1,2-dichloroethane
TCE	trichloroethene
PCE	tetrachloroethene
BLANKS	

TBn

unexposed trip blanks, which traveled with the exposed modules

## APPENDIX A:

1. CHAIN OF CUSTODY 2. DATA TABLE 3. STACKED TOTAL ION CHROMATOGRAMS

# GORE-SORBER[®] Screening Survey Chain of Custody

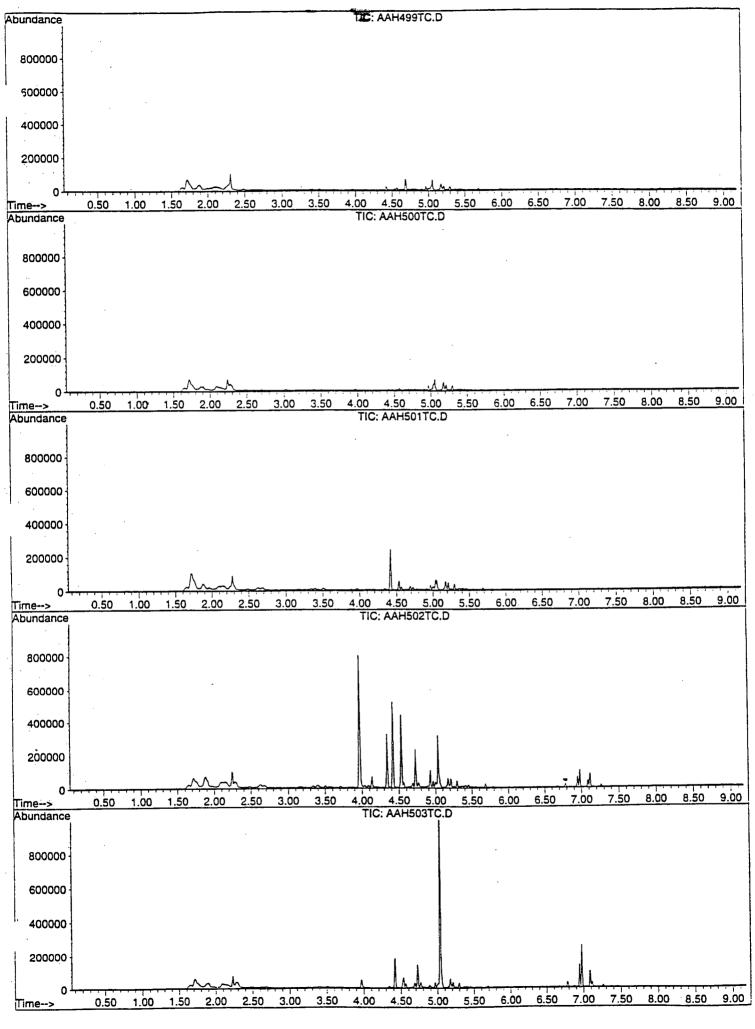
For W.L. Gore & Associates use only Production Order # 72908



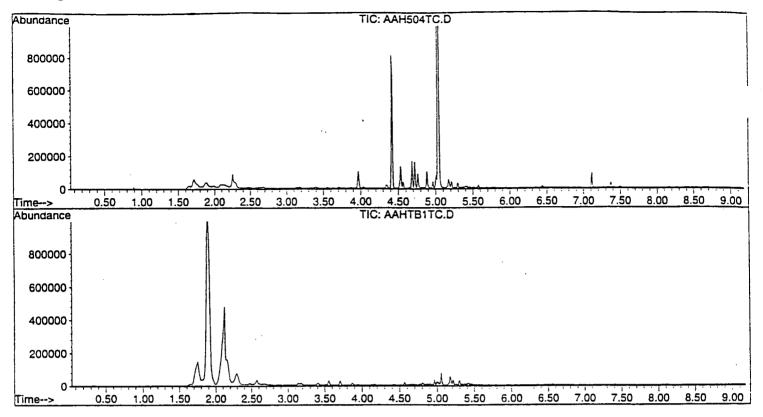
W. L. Gore & Associates, Inc., Environmental Products Group

101 Lewisville Road • Elkton, Maryland 21921 • Tel: (410) 392-3300 • Fax (410) 996-3325

istomer Name:	Customer ma	2.2.4.75	Sec I:ve	S	ite Name:	F.	RING-RAN	6-2		
ddress:	245 PROME			s	ite Address:					
	PROVIDENCE						kn.	ivsnis		
	1.000,000,000			P	roject Manager:	DAVE	EGNIN			
hone:	4015215980		1911	c	Lustomer Project	No.:				
	401 331 8756			c	Customer P.O. #:	Nº1.A	Quo	te #:		
AX:					of Modules for I		( #0	f Trip Blanks	,	
erial # of Modu	lles Shipped			1					Pieces	
136499	through	# / -	545CS		fotal Modules Sh		7	Pieces		
	through	#			Fotal Modules Re			Piece	<b></b>	
	through	#			Total Modules In			1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 -	4 1	
	through	#		7	Serial # of Trip B	ianks (Clier	u Deciaes)	# 13650		
<u>.</u>	through	#		E.		#				
<u>.</u>	through	#		Tr		2 #				
¢	through	#				#=				
installation Perf	ormed By		yan a saafi Tana ta		Installation Meth	od(s) ( <i>circlu</i>	e those that a			
Name (please p	rint): <u>DAVID</u>	STEIN	<u> </u>		Slide Hammer	Hamm	er Drill	Auger		
Company/Affili	ation: Louis	Reran	5 Asocio		Other:					
Lungling Stre	+ Date and Time	e e tra Un da por	4	1-1-1:	-1-97		:00	AM/PM		
Installation Con	nplete Date and Tin	ne:	4	146	1.97	-12-	:05	AM		
The statistics			$\mathcal{N}$		Total Modules L	ost in Field		PICC		
Company/Affil	iation: Louis [	uner t	- Loran -	A CONTRACTOR	I otal Umised M	odniez vem			To and the local to The	
Retrieval Start	Date and Time	With the second second	7:075-75-	all and the second	717 J 1 1 2 2	127	-00			
	plete Date and Tim			. I= §	2177- A	: - <del></del>	-00	ANI (FIY)	trankers .	
Target Analyte	s to be Mapped	STORE N	To Be Deter	mined Pe	nding Completio	n of Lab Ar	alysis []			
(Check Option	s or List as appropr		r write No	ne", if a	plicable.				18-135 	
111.		National States	Analyte #2:	TGE		Analy	te #3. <u>[/.C-</u>			
Other Instructi	ons, if any.	7EX						Parts Date	Time	
Relinquished H	By C) terra	JUN	Date,	Time	Received Dy.C.	200000			1:0000	
Affiliation: W	L. Gore & Associ	ates, Inc.	4/14/8	1.5:00	Affiliation: <u>(</u> )	Vis Hen:	10	4/13/97		
	By Downstitei		Date	Time	Received By: #	the second s		Date	Time	
-	nichenses	· <u>.</u>	5/8/97	2:87 pa	Affiliation: 73	25217	641	=	Tim	
Relinquished			Date	Time	Received By:	- mark	hel T	Date		
Affiliation			-1		Affiliation: W				12:1	
				1	of Samples Wh			20.		


GORE-SORBER ® Screening Survey is a registered service mark of W.L. Gore & Associates. Inc.

## GORE SORBER SCREENING SURVEY ANALYTICAL RESULTS LOUIS BERGER AND ASSOCIATES, PROVIDENCE, RI SELECTION OF ANY EIGHT COMPOUNDS FROM GORE STANDARD TARGET VOCs/SVOCs (A3) FIRING RANGE, KS SITE AAH - PRODUCTION ORDER #072808


MODULE	DATE							
NUMBER	ANALYZED	t12DCE, ug	11DCA, ug	c12DCE, ug	111TCA, ug	12DCA, ug	TCE, ug	PCE, ug
MDL =		0.16	0.05	0.03	0.08	0.02	0.01	0.03
136499	05/12/97	0.00	0.00	0.00	0.00	0.00	0.00	0.05
136500	05/12/97	0.00	0.00	0.00	0.00	0.00	0.00	0.03
136501	05/12/97	0.00	0.00	0.00	0.00	0.00	0.03	0.10
136502	05/12/97	0.00	0.00	0.00	0.00	0.00	0.00	0.10
136503	05/12/97	0.00	0.00	0.00	0.00	0.00	0.00	0.05
136504	05/12/97	0.00	0.00	0.00	0.00	0.00	0.00	0.00
136505	05/12/97	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	Max. Detected	0.00	0.00	0.00	0.00	0.00	0.03	0.10

aahrpt.xls



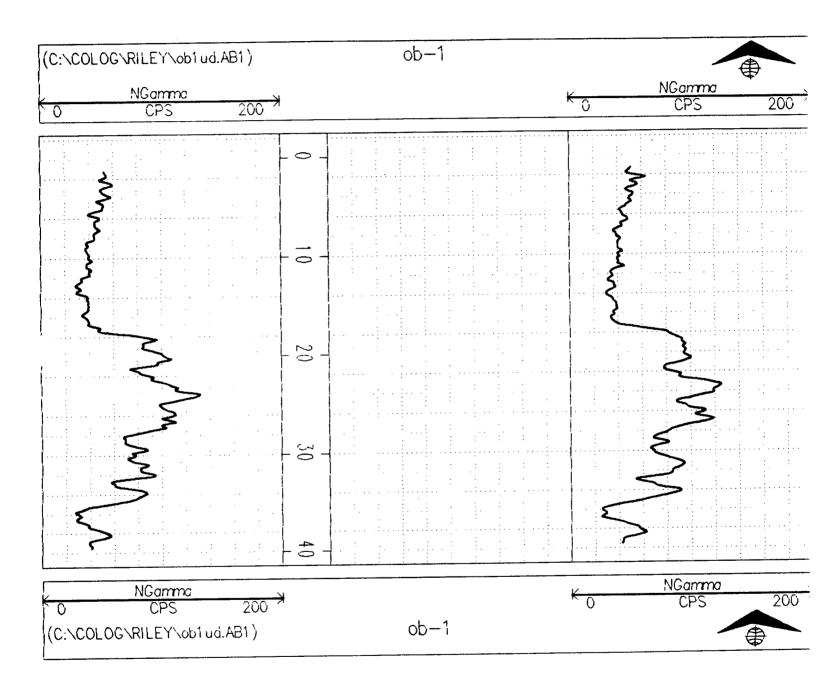


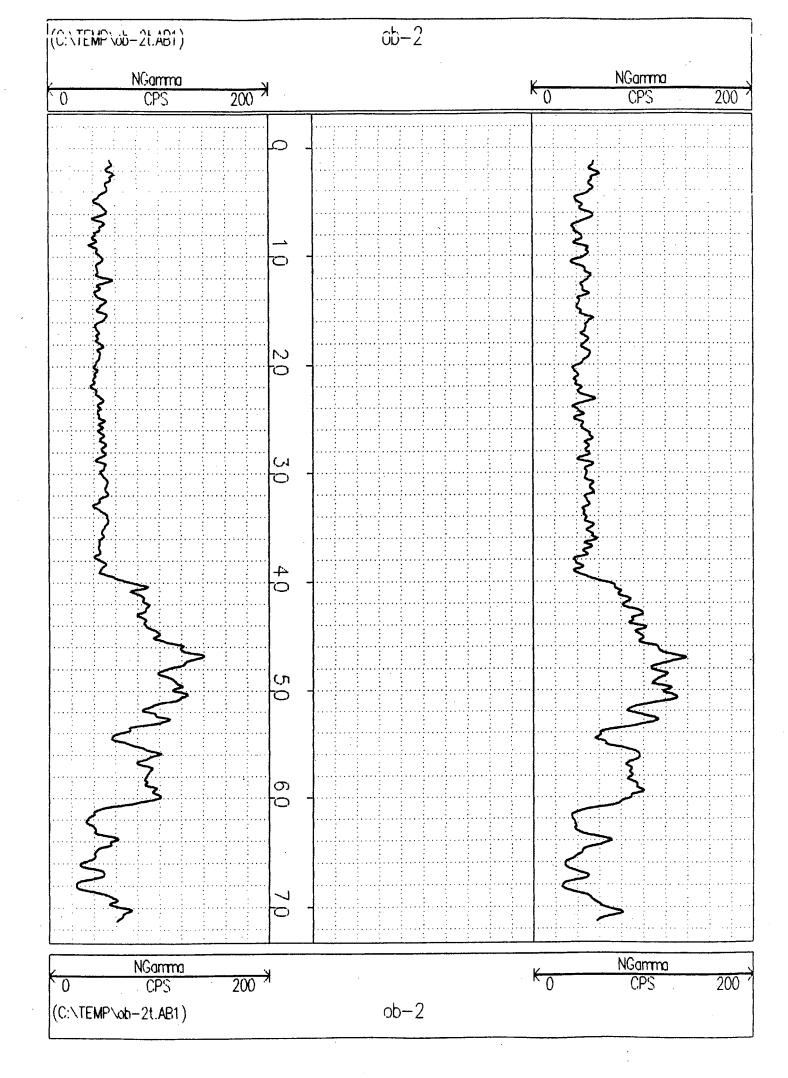


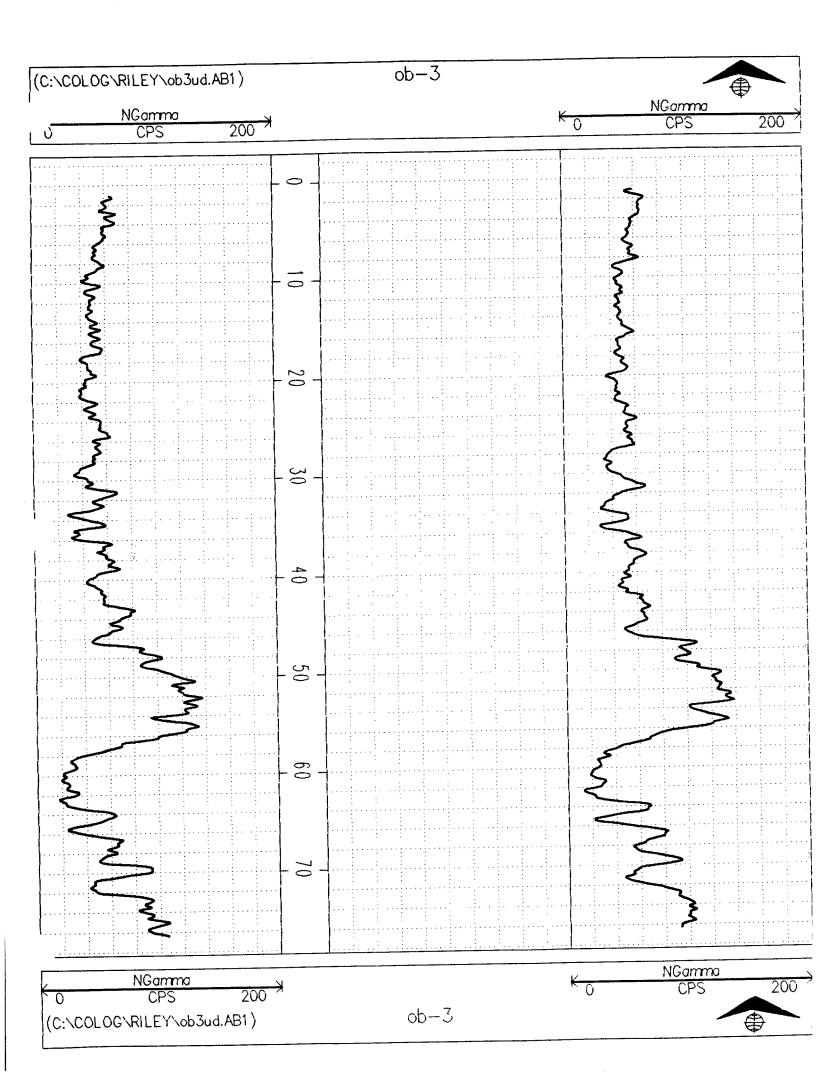


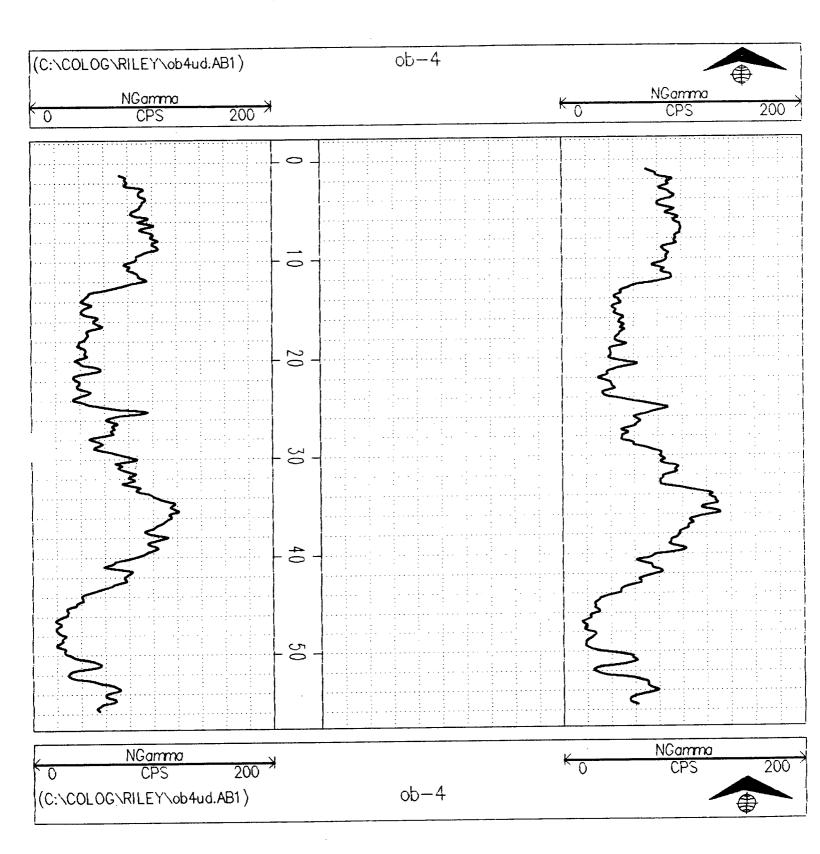
# APPENDIX D

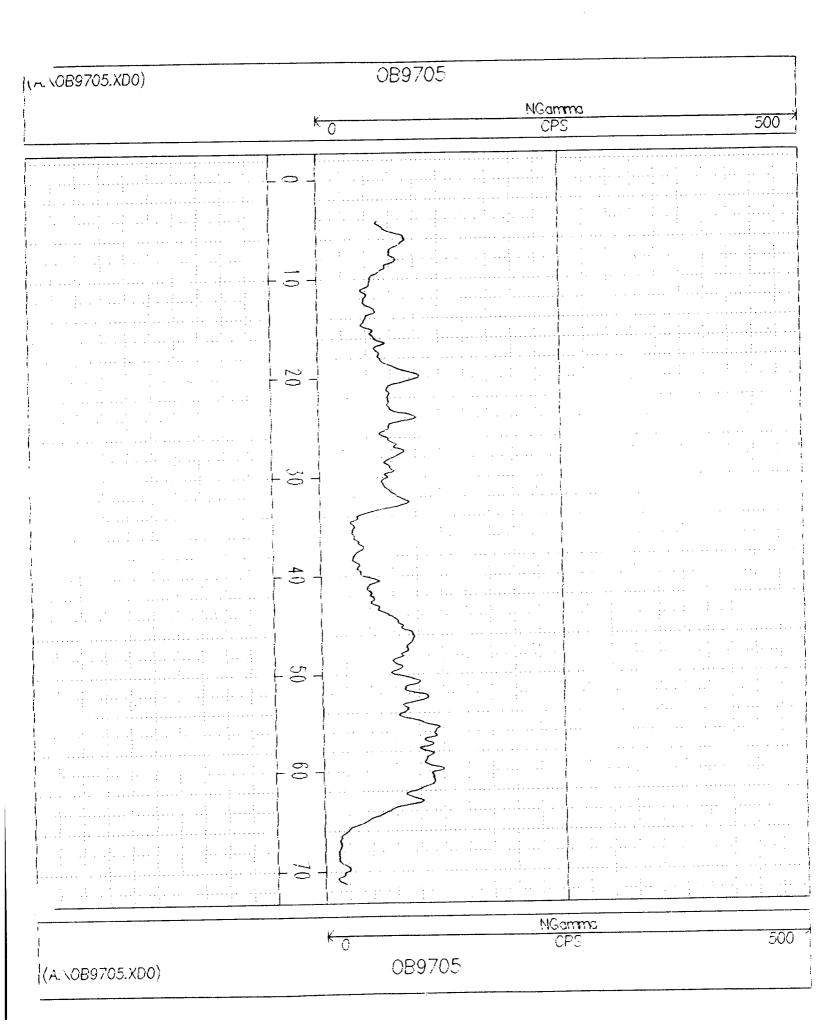
**Geophysical Logs** 

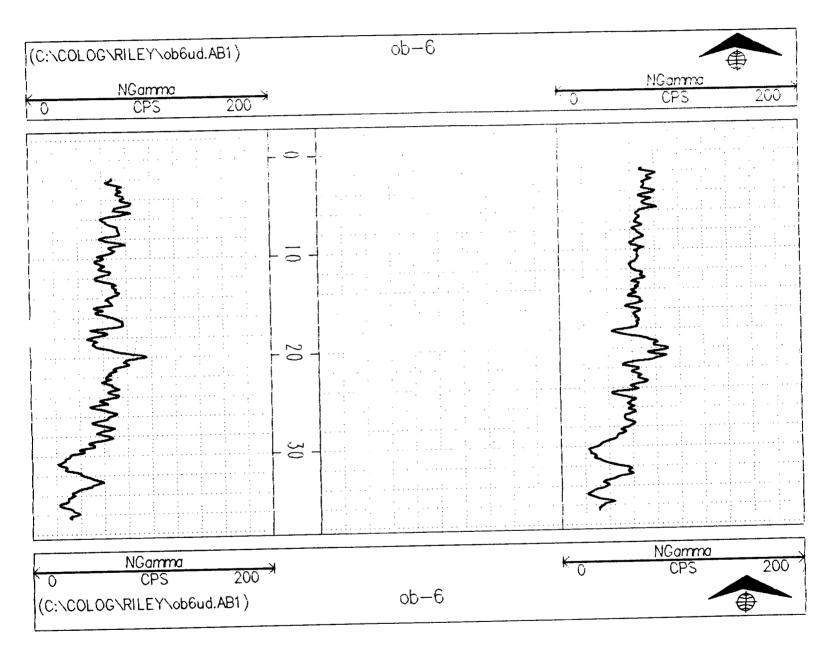

# **APPENDIX D**

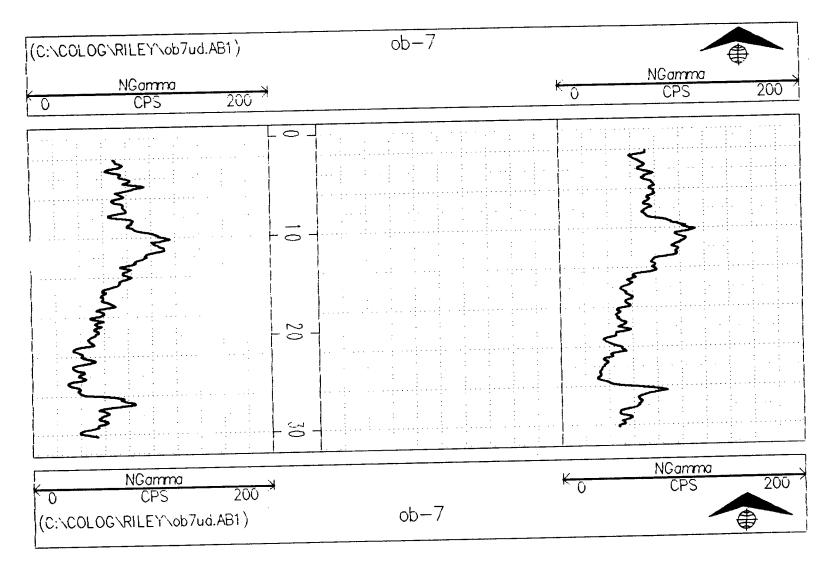

..

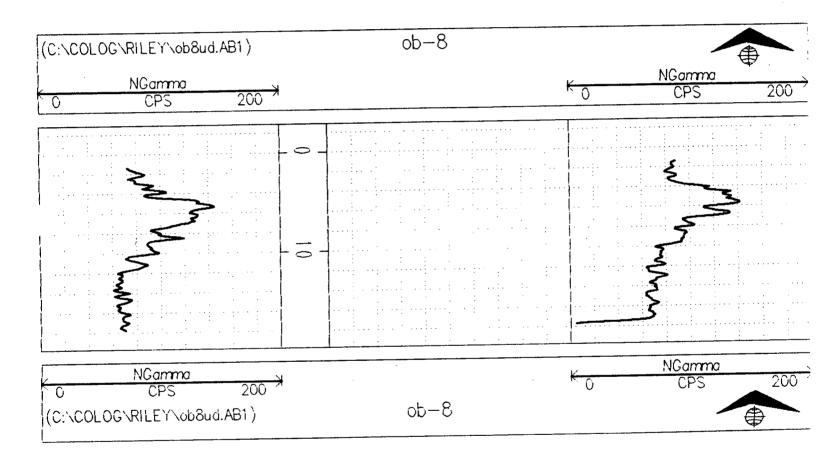

. ·

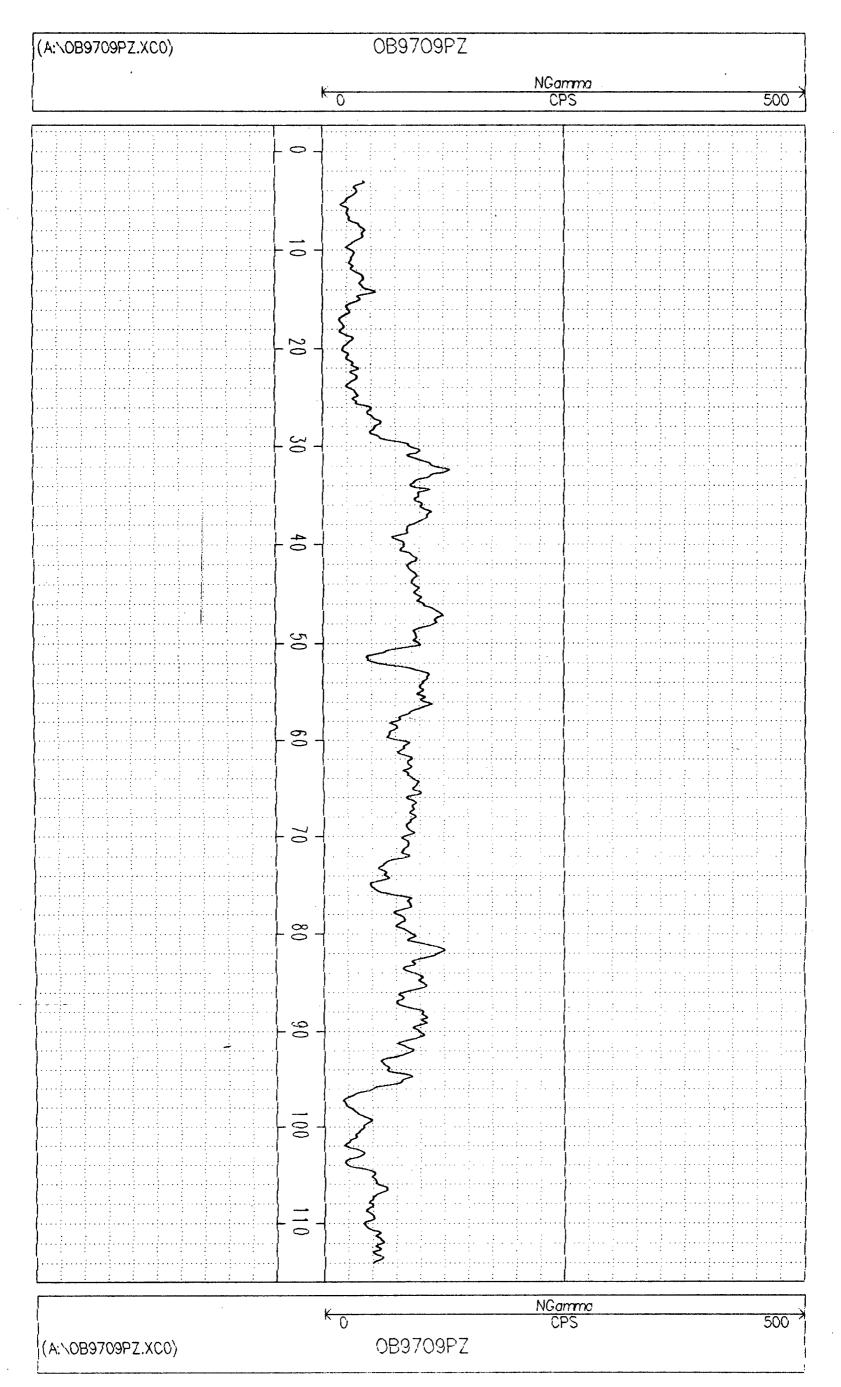

Geophysical Logs (Gamma Logs - Scale : 1" = 10')


OB-93-01 OB-93-02 OB-93-03 OB-93-04 OB-97-05 OB-97-06 OB-97-07 OB-97-08 OB-97-09PZ OB-97-10PZ OB-97-11PZ OB-97-11PZ OB-97-13PZ IZ-92-010 Outcrop 1



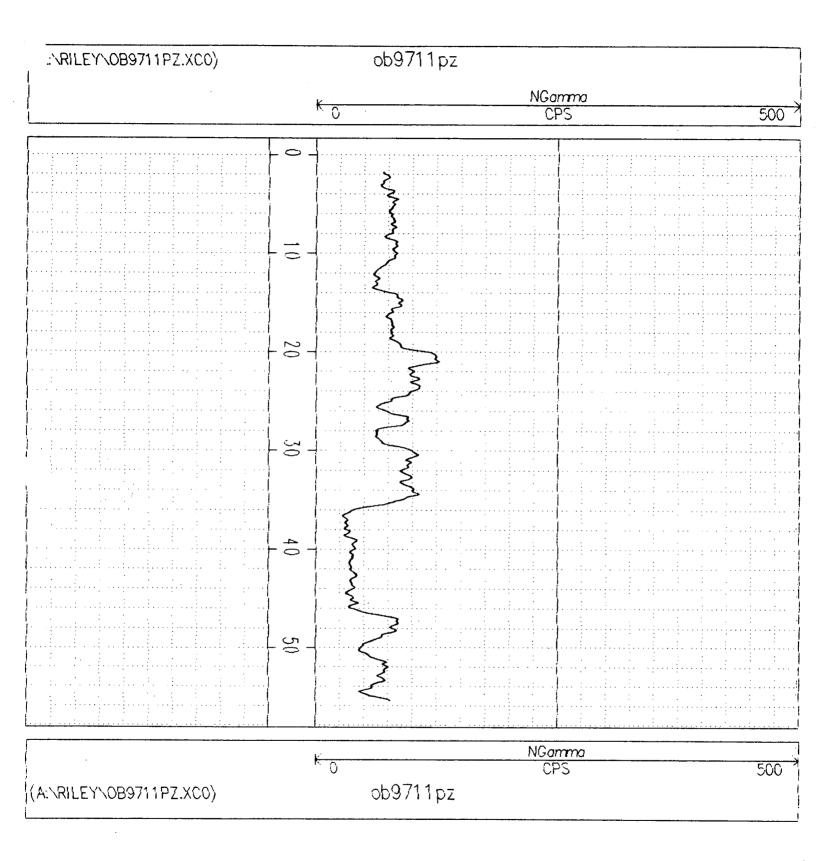





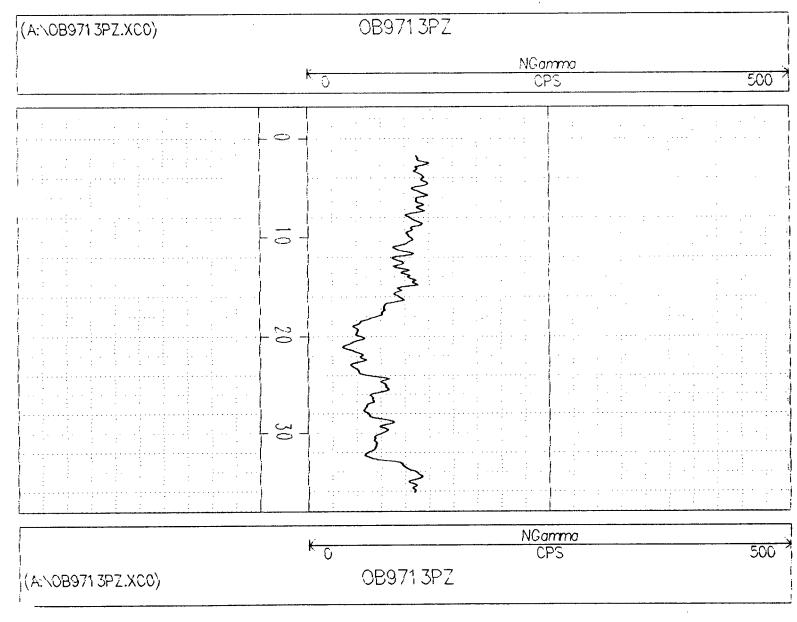


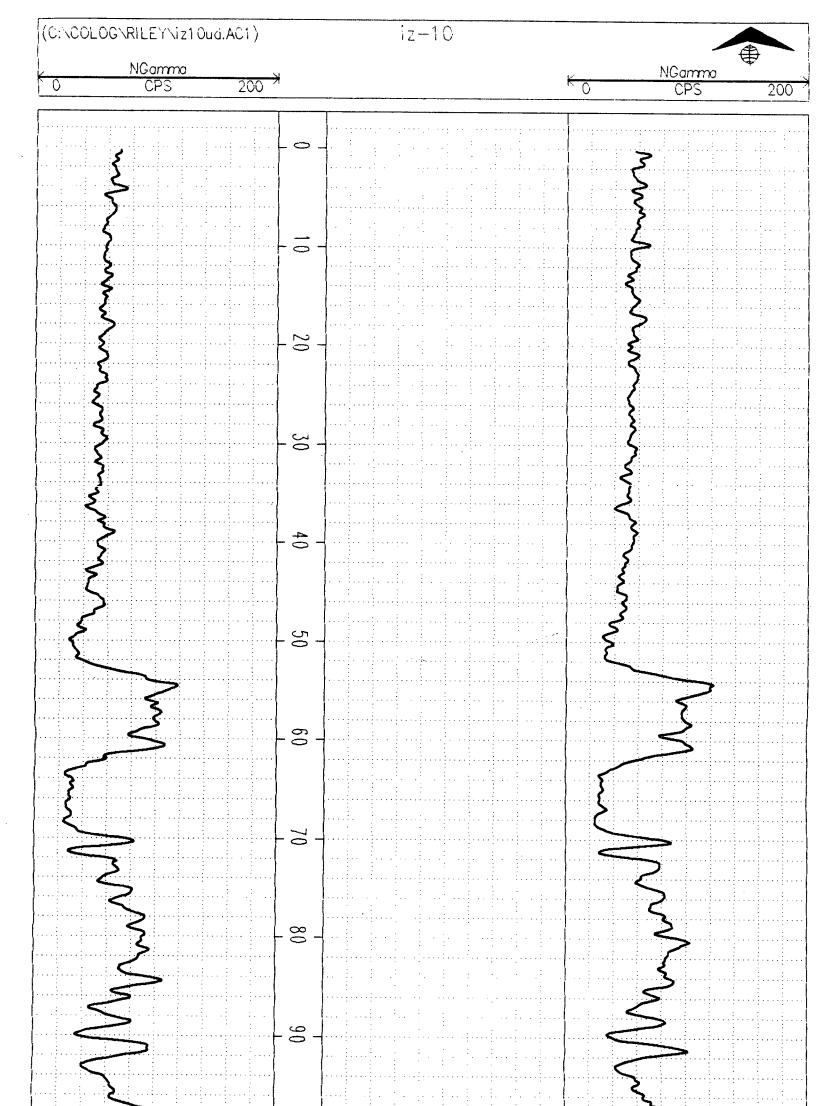


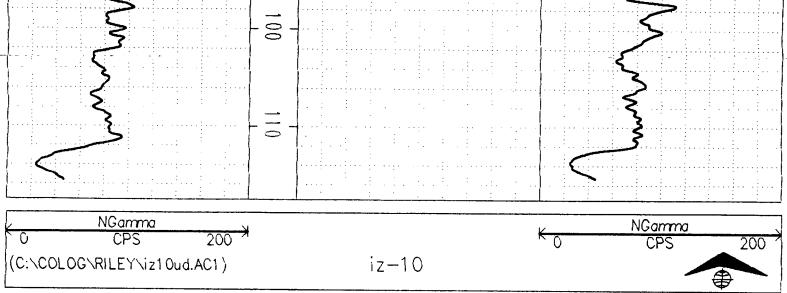



.


) JB971 0PZ.XB0)


0B9710PZ


	<del>K 0</del>	NGamma CPS	500
		······	
			n da an
· · · · · · · · · · · · · · · · · · ·			
			····· · ······ ···
			· · · · · · · ·
	$\sim$		
	5	>	
	5		
· · · · · · · · · · · · · · · · · · ·			
	2		
			- 
	3		
			· · · · · · · · · · · ·
00			
		an a	· · · · · · · · · · · ·
			· · · · · · · · · · · · · · · · · · ·
1	<del>K 0</del>	NGamma CPS	500
(A:\0B9710PZ.XB0)	0 0B971(		



\0B9712PZ.XC2)	OB9712F	2	<u> </u>
·····	K O	NGamma CPS	500
			: : : .
	×××		
	20		
	$\left  \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$		
	30		
			······
	40		
	<u>المعامة المعامة المعام</u>		
	50		
	المستقدم المستقدم المستقد المست المستقد المستقد ا	NGamma CPS	
A:\089712PZ.XC2)	<del>к ₀</del> 0В9712Р	CPS	500









# SUPPLEMENTAL

## **TECHNICAL MEMORANDUM**

# MOBILIZATION #2 ACTIVITIES OPEN BURN/OPEN DETONATION AREA FORT RILEY, KANSAS

4 November 1997

Prepared for:

United States Army Engineer District, Kansas City CENWK-EP-EA 601 East 12th Street Kansas City, Missouri 64106-2896 Contract No. DACA41-92-D-0001

Prepared by:

Louis Berger & Associates, Inc. 1819 H Street, NW, Suite 900 Washington, DC 20006

#### Louis Berger & Associates, Inc.

1819 H Street, NW, Suite 900, Washington, DC 20006 Tel 202.331.7775 • Fax 202.293.6224

ENGINEERS • PLANNERS • SCIENTISTS • ECONOMISTS • ARCHAEOLOGISTS

4 November 1997

Mr. Glen Shonkwiler U.S. Army Engineer District, Kansas City Attn: CENWK-EP-EA 601 East 12th Street Kansas City, Missouri 64106-2896

RE: Supplemental Technical Memorandum Mobilization #2, Open Burn/Open Detonation Area, Fort Riley, Kansas Contract No. DACA41-92-D-0001

Dear Glen:

Enclosed are four copies of the Supplemental Technical Memorandum for Mobilization #2 at the Open Burn/Open Detonation Area. This memo supplements the Technical Memorandum that was submitted on 22 August 1997.

We included figures showing the locations of the wells, piezometers, and surface water locations. We also included groundwater contours using data collected on 2 September 1997 since we do not believe that the wells were fully recovered when we evaluated earlier rounds of groundwater data. We also updated the cross-section to include the geophysical logging of the piezometers and the screened intervals of the piezometers.

If you have any questions, please do not hesitate to call me.

Sincerely,

LOUIS BERGER & ASSOCIATES, INC.

Barry Millman, P.E. Program Manager

Enclosures

cc: Mike Greene, CENWK (1 copy) John Cook, Dynamac (5 copies), Dave Egan, Berger (1 copy) Susan Knauf, Berger (1 copy) Harris Cheema, Berger (1 copy) File (DO32/JH1124D) Supplemental Technical Memorandum - OB/OD Mobilization #2 _

Fort Riley, Kansas

Page

i

# **Table of Contents**

1.0	Introduction
2.0	Groundwater Contours 1

# **List of Figures**

Figure 1	Location of Wells, Nested Piezometers, and Features
Figure 2	Location of Surface Water Samples
Figure 3	Groundwater Elevations Contour - Schroyer Limestone, 2 September 1997
Figure 4	Groundwater Elevations Contour - Schroyer Limestone Bottom, 2 September 1997
Figure 5	Groundwater Elevation Contour - Havensville Shale, 2 September 1997
Figure 6	Location of Geologic Cross-Sections
Figure 7	Well Elevations/Composition

## **List of Tables**

4 November 1997_

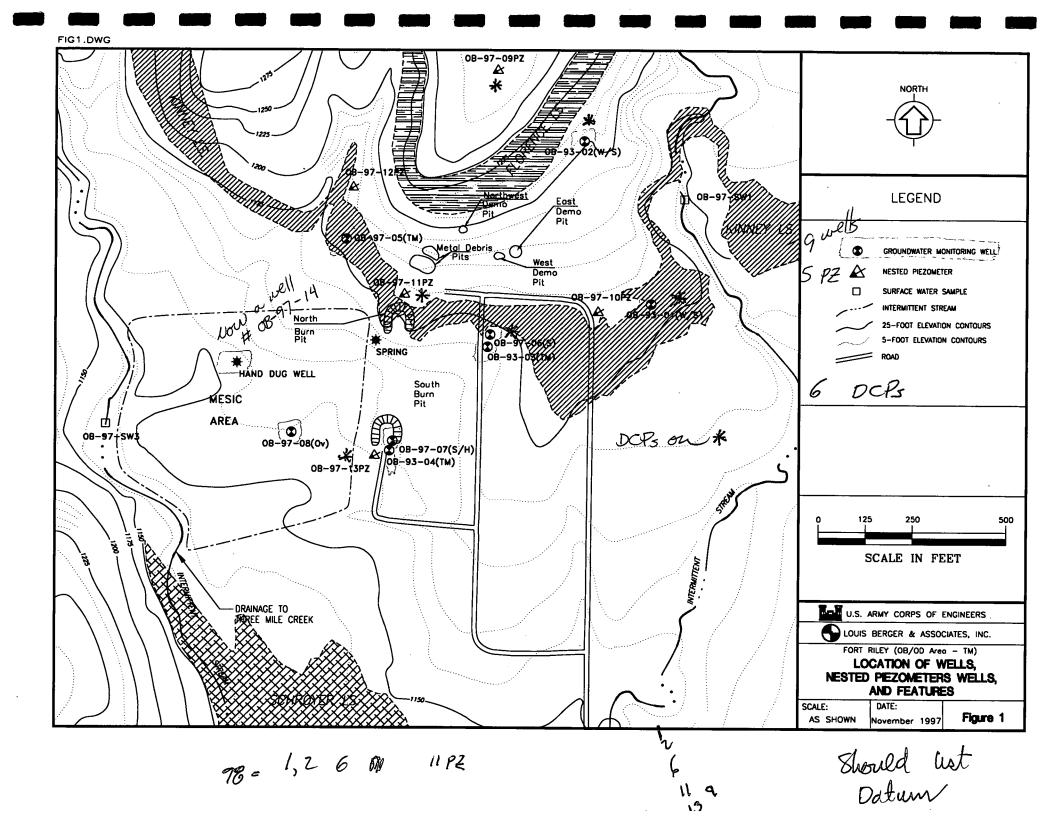
Table 2	Survey Data - Revised
Table 5	Summary of Groundwater Elevation Data - Revised

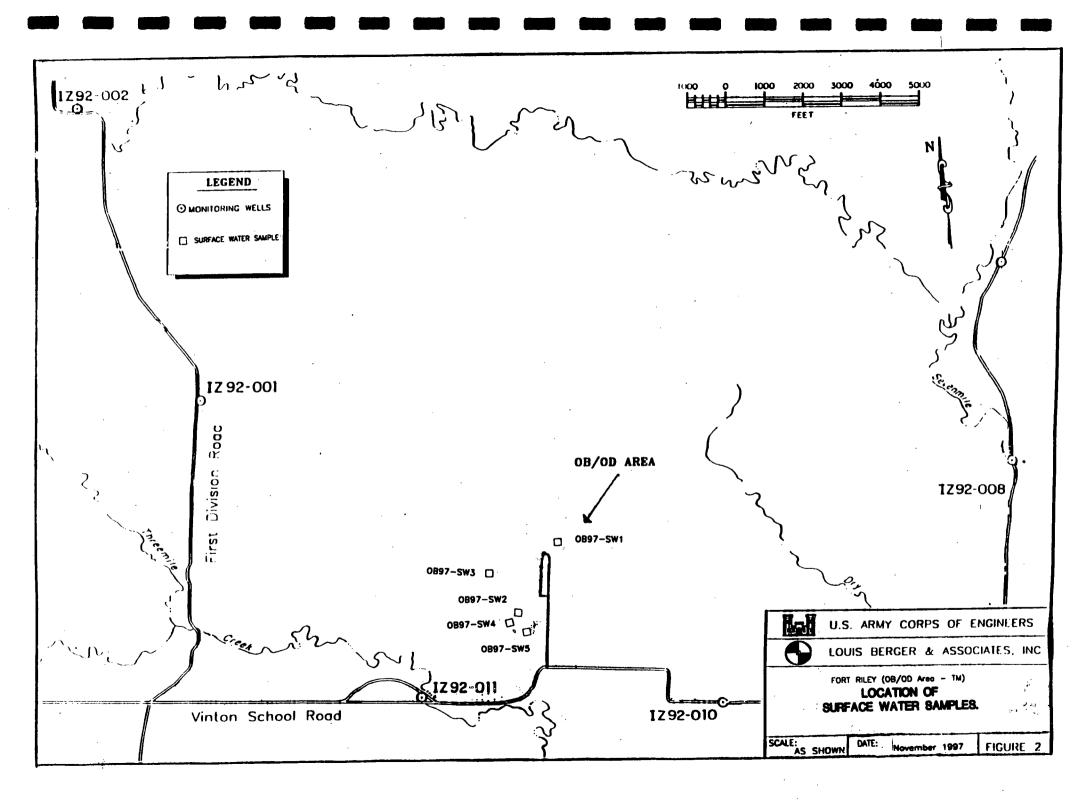
1

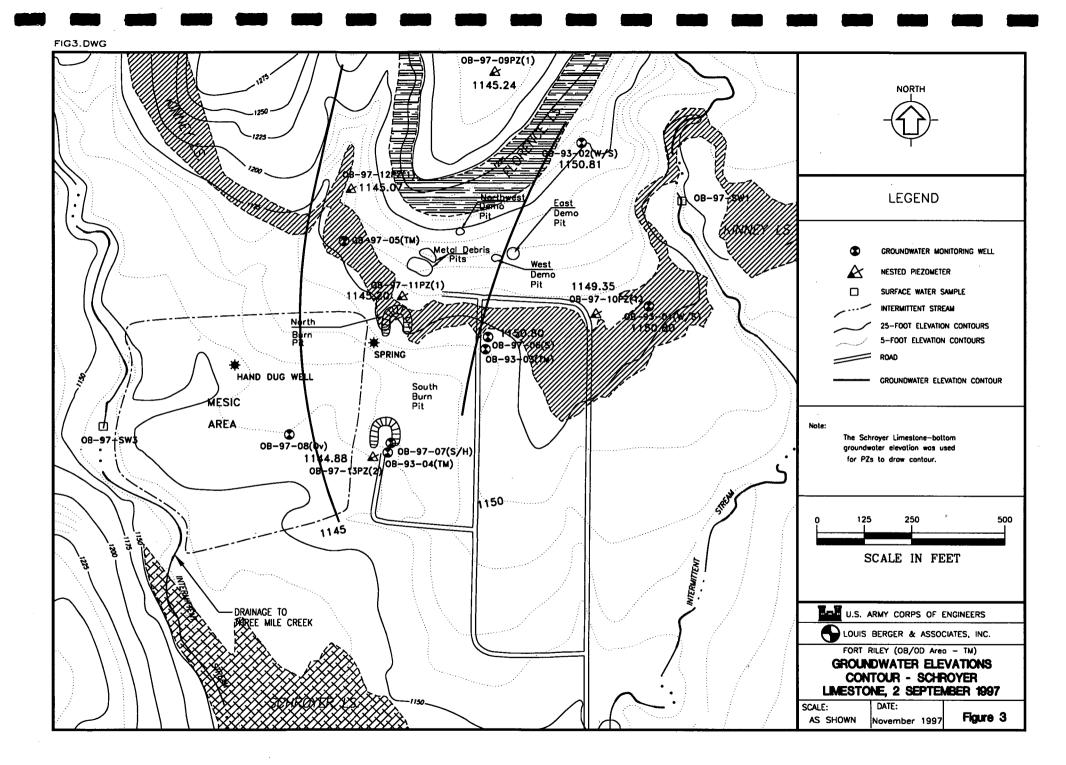
Supplemental Technical Memorandum - OB/OD Mobilization #2

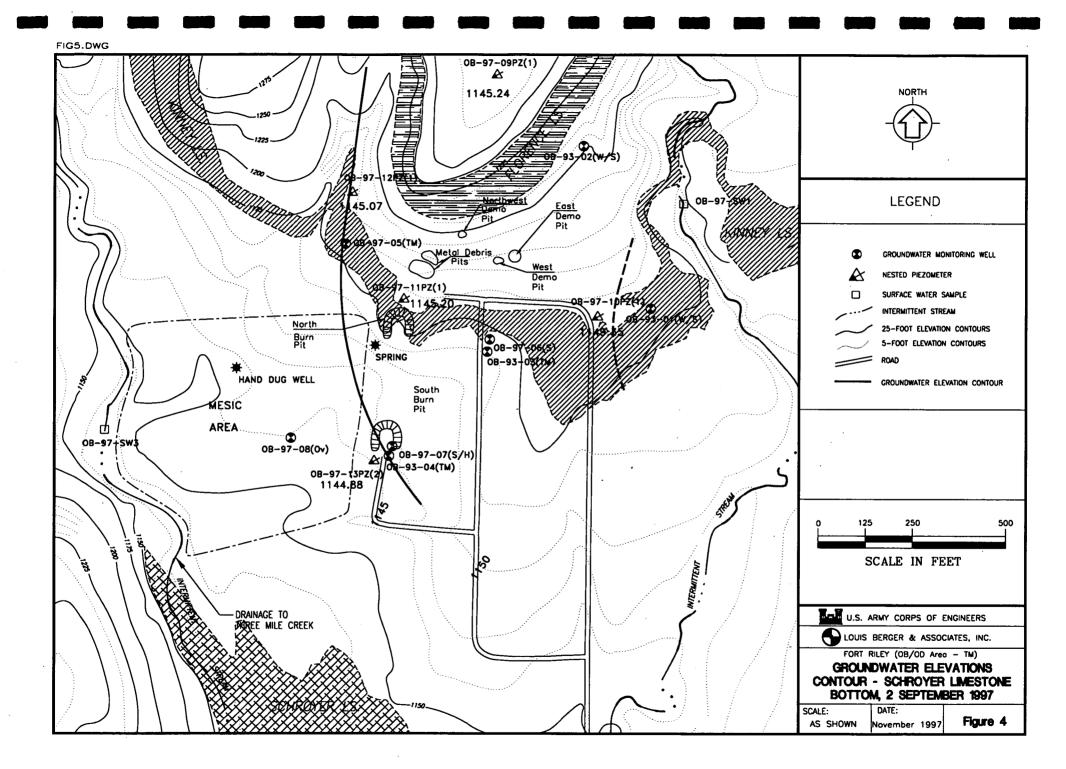
# **Overview of Mobilization #2 Activities Open Burn/Open Detonation Area**

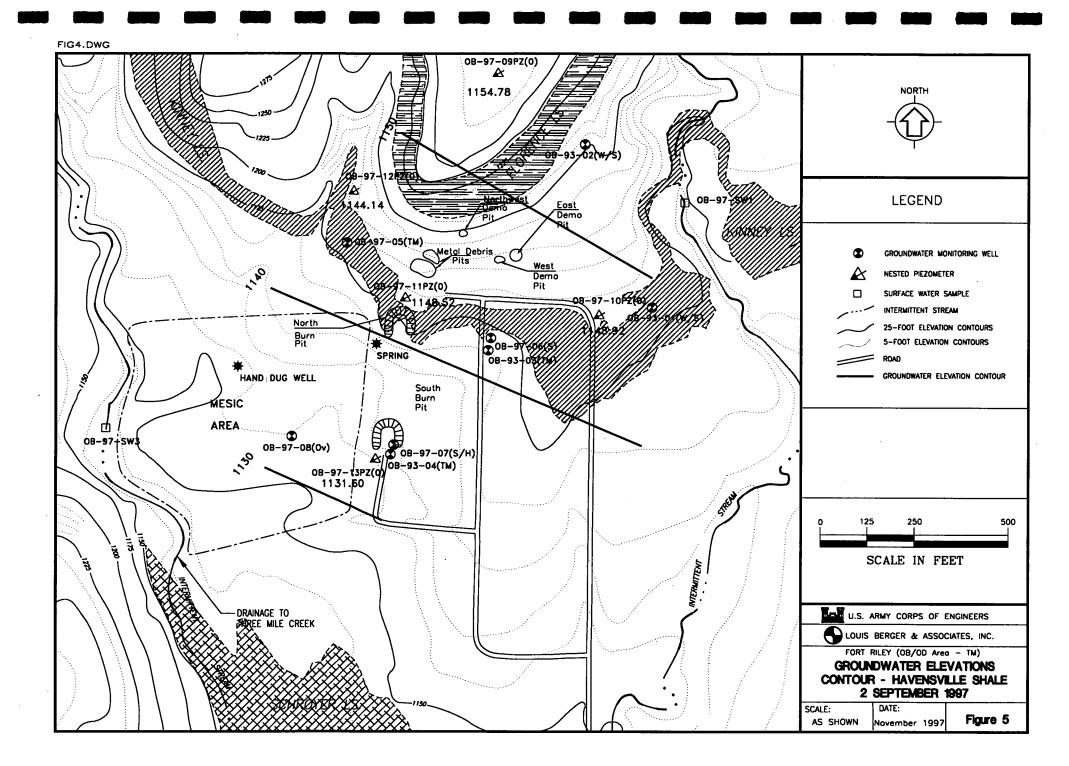
#### 1.0 Introduction

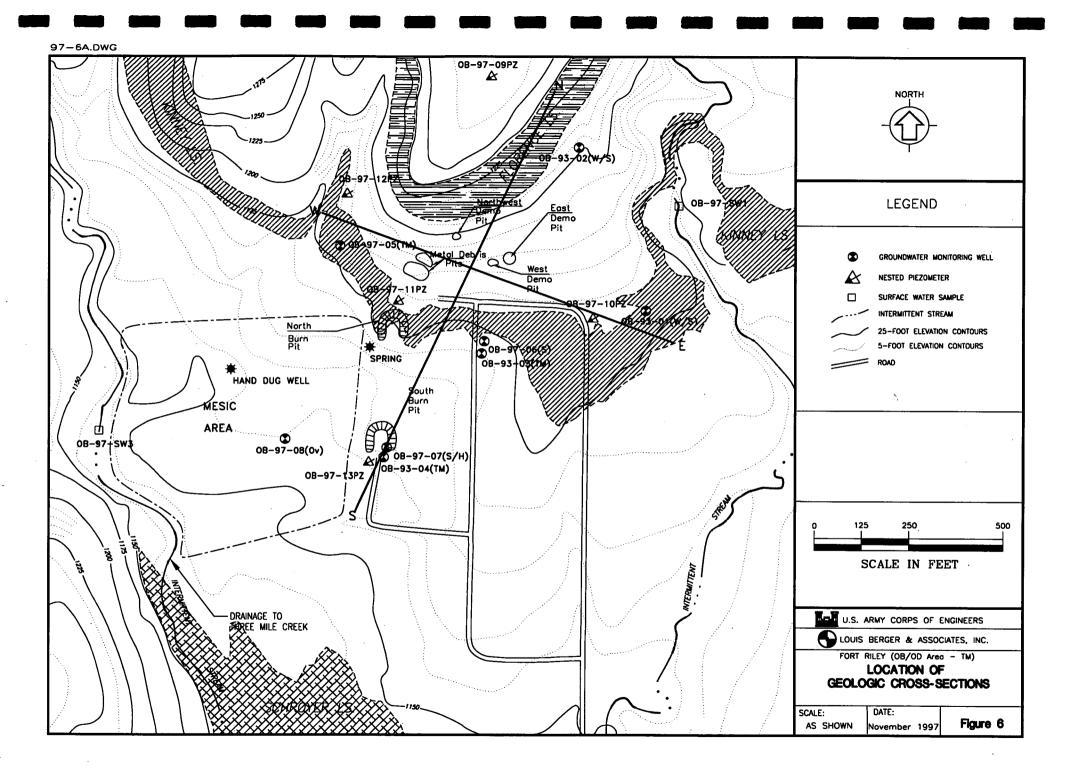

This report presents supplemental information to be used in conjunction with the Technical Memorandum for Mobilization #2, which was submitted on 22 August 1997. The groundwater elevation data collected soon after the piezometers were installed were evaluated. It is not believed that the wells had enough time to fully recover and thus it would not be appropriate to use that data to draw groundwater contours. Therefore the groundwater elevation data collected on 2 September 1997 was selected to draw groundwater contours. Table 5 was updated to include that round of data. Table 2 was also revised to correct the survey data elevations for the surface water locations. Included in this report are the following figures to aid in reviewing the data presented in the Technical Memorandum:


- Site map showing all the well and piezometer locations
- Site map showing location of surface water sampling locations (to date, only OB97-SW2 has been sampled)
- Groundwater elevation contours using the wells in the Schroyer Limestone and the piezometers screened in the Schroyer Limestone bottom
- Groundwater elevation contours using only the piezometers screened in the Schroyer Limestone bottom
- Groundwater elevation contours using the piezometers screened in the Havensville Shale
- A map showing the cross-section cuts
- A cross section that overlays the drilling log information with the geophysical log information and shows the elevation of the screens in the wells and piezometers

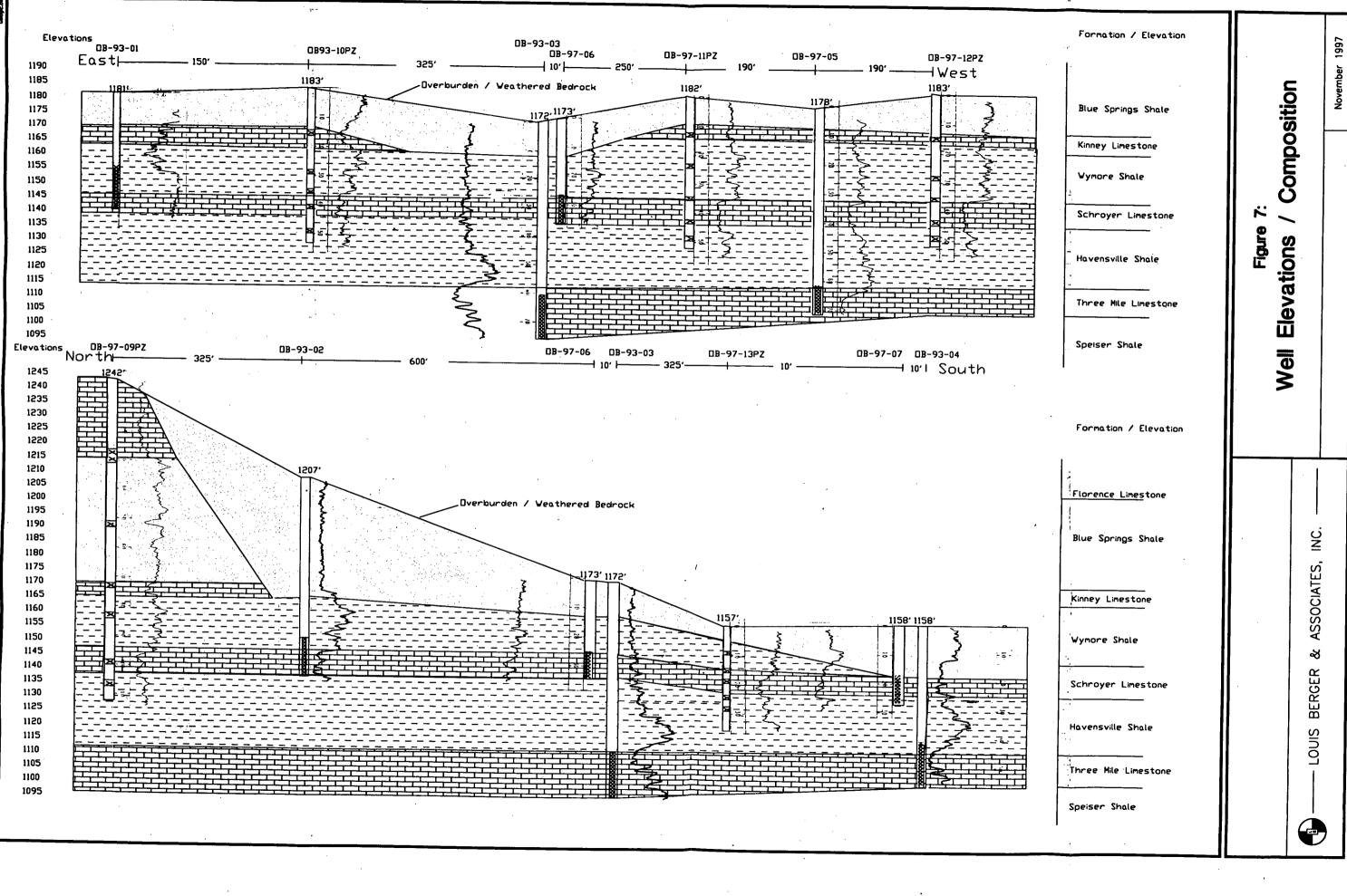

#### 2.0 Groundwater Contours


The groundwater contours for 2 September 1997 is in the westerly direction using both the wells and piezometers screened in the Schroyer Limestone bottom (Figure 3) or just the piezometers screened in the Schroyer Limestone bottom (Figure 4). The groundwater contours for 2 September 1997 in the Havensville Shale is in the southwesterly direction (Figure 5).


There are no contours drawn for the Threemile Limestone, the Kinney Limestone, the Wymore Shale, or the Schroyer Limestone top as either there were insufficient elevations measured (i.e., wells were dry) or the gradient was too small to infer a direction.












.



And Lands And

#### Table 2 Survey Data - Revised

Survey			NAD 27 C	oordinates	NAD 83 Coordinates		
Point	Ground - ft msl	TOC - ft msl	Latitude/ Easting	Longitude/ Northing	Latitude/ Easting	Longitude/ Northing	
OB93-01	1182.07	1183.72	2351617.00	297014.00	1663860.43	297017.70	
OB93-02	1208.44	1210.08	2351430.00	297455.00	1663673.43	297458.70	
OB93-03	1172.88	1174.84	2351178.00	296891.00	1663421.43	296894.70	
OB93-04	1158.32	1160.09	2350915.00	296603.00	1663158.43	296606.70	
OB97-05	1178.23	1180.12	2350827.53	297143.29	1663070.96	297146.99	
OB97-06	1173.36	1175.37	2351177.15	296903.05	1663420.58	296906.75	
OB97-07	1158.72	1160.37	2350918.19	296614.14	1663161.62	296617.84	
OB97-08	1158.25	1160.11	2350704.07	296753.03	1662947.50	296756.73	
OB97-09PZ	1242.81	1245.70	2351194.18	297646.11	1663437.61	297649.81	
OB97-10PZ	1183.28	1185.52	2351567.81	296982.44	1663711.24	296986.14	
OB97-11PZ	1182.21	1184.43	2350973.70	296987.18	1663217.13	296990.88	
OB97-12PZ	1183.24	1185.65	2350811.13	297281.66	1663054.56	297285.36	
OB97-13PZ	1157.92	1160.15	2350926.34	296598.84	1663169.77	296602.54	
Dug Well	NAp	1155:28	2350548.60	296813.88	1662792.03	296817.58	
Spring	1162.48	1163.66	2350873.72	296885.77	1663117.15	296889.47	
OB97-SW1	1168.74	1169.94	2351710.83	297304.08	1663954.26	297307.78	
OB97-SW2	1132.01	1132.92	2351041.69	295273.69	1663285.12	295277.37	
OB97-SW3	1145.30	1145.97	2350180.08	296664.68	1662423.51	296668.38	
OB97-SW4	1130.10	1131.65	2350911.84	295132.88	1663155.27	295136.56	
OB97-SW5	1128.99	1130.96	2351195.15	294895.91	1663438.58	294899.59	

Notes:

msl - mean sea level;

TOC - Top of Casing

Elevation for dug well is the top of the angle iron adjacent to well.

Elevations for the spring are ground elevation (1162.48 ft msl) and the top of the iron bar (1163.66 ft msl) placed at the head of the spring by the surveyor.

Elevations for surface water sample locations are the ground surface along the centerline of each stream and the top of the iron bar placed at each location by the surveyor.

NAp - Not Applicable

# Table 5 Summary of Groundwater Elevation Data - Revised

OB93-01         Wyr           OB93-02         Wyr           OB93-03         Three           OB93-04         Three           OB97-05         Three           OB97-06         Schro           OB97-07         Schro           OB97-08         O           OB97-09PZ(0)         Haw           OB97-09PZ(1)         Schro           OB97-09PZ(2)         W           OB97-09PZ(3)         Kinn           OB97-09PZ(4)         Blue           OB97-109PZ(1)         Schroy           OB97-10PZ(1)         Schroyer           OB97-10PZ(2)         Schroyer           OB97-10PZ(3)         W           OB97-10PZ(3)         W           OB97-10PZ(4)         Kinn           OB97-10PZ(3)         W           OB97-10PZ(4)         Kinn           OB97-10PZ(3)         W           OB97-10PZ(4)         Kinn           OB97-10PZ(4)         Kinn           OB97-10PZ(4)         Kinn           OB97-11PZ(0)         Haw	ymore/Schroyer ymore/Schroyer reemile Limestone reemile Limestone hroyer Limestone hroyer Limestone overburden lavensville Shale hroyer Limestone Wymore Shale inney Limestone ue Springs Shale	Top. of Screen Elev. 1155.00 1151.00 1111.00 1116.00 1115.00 1146.50 1140.00 1149.00 1133.81 1139.81 1155.81 1168.81 1191.81	Bottom of Screen Elev. 1140.00 1136.00 1096.00 1101.00 1105.00 1136.50 1130.00 1139.00 1132.81 1138.81 1154.81	Grd. Elev. 1182.07 ·1208.44 1172.88 1158.32 1178.23 1173.36 1158.72 1158.25 1242.81 1242.81	Measuring Point Elev. 1183.72 1210.08 1174.84 1160.09 1180.12 1175.37 1160.37 1160.11 1245.70	depth (ft) 5-Jul-97 NM NM NM 72.94 38.49 32.94 20.90	1-Jun:97 1155.41 1155.40 1124.03 1125.01 1124.10 1155.39	4-Jun-97 1154.91 1154.89 1123.86 1124.89 1123.95 1154.90	5-Jun-97 1154.87 1154.86 1123.85 1124.90 1123.96	6-Jun-97 1154.84 1154.85 1123.84 1124.88 1123.94	7-Jun-97 1154.59 1154.59 1123.79 1124.84	9-Jun-97 1154.35 1154.34 1123.73	a contraction of the product of the second	te <u>11-Jun-97</u> 1154.39 1154.39 1123.67	14-Jun-97 1154.11 1154.11 1123.53	16-Jun-97 1153.85 1153.88 1123.46	17-Jun-97 1153.65 1153.70 1123.38	18-Jun-97 1153.47 1153.51 1123.31	20-Jun _z 97 1153.37 1153.39 1123.24	1151.95 1151.96 1122.48	1152.11 1152.16 1122.53	27-Aug-97 1151.01 1151.03 1121.37 1121.39	2-Sep-97 1150.80 1150.81 1121.31
OB93-01         Wyr           OB93-02         Wyr           OB93-03         Three           OB93-04         Three           OB93-05         Three           OB97-05         Three           OB97-06         Schro           OB97-07         Schro           OB97-08         C           OB97-09PZ(0)         Hav           OB97-09PZ(1)         Schro           OB97-09PZ(2)         W           OB97-09PZ(3)         Kinn           OB97-09PZ(4)         Blue           OB97-10PZ(1)         Schroyer           OB97-10PZ(2)         Schroyer           OB97-10PZ(3)         W           OB97-10PZ(3)         W           OB97-10PZ(3)         W           OB97-10PZ(4)         Kinn           OB97-10PZ(3)         W           OB97-10PZ(4)         Kinn           OB97-10PZ(4)         Kinn           OB97-10PZ(4)         Kinn           OB97-10PZ(4)         Kinn           OB97-11PZ(0)         Hav	ymore/Schroyer ymore/Schroyer reemile Limestone reemile Limestone hroyer Limestone hroyer Limestone overburden lavensville Shale hroyer Limestone Wymore Shale inney Limestone ue Springs Shale	1155.00 1151.00 1111.00 1116.00 1116.00 1116.00 1146.50 1140.00 1149.00 1133.81 1139.81 1155.81 1168.81	1140.00 1136.00 1096.00 1101.00 1105.00 1136.50 1130.00 1139.00 1132.81 1138.81	1208.44 1172.88 1158.32 1178.23 1173.36 1158.72 1158.25 1242.81	1183.72 1210.08 1174.84 1160.09 1180.12 1175.37 1160.37 1160.11	NM NM NM 72.94 38.49 32.94	1155.41 1155.40 1124.03 1125.01 1124.10 1155.39	1154.91 1154.89 1123.86 1124.89 1123.95	1154.87 1154.86 1123.85 1124.90 1123.96	1154.84 1154.85 1123.84 1124.88	1154.59 1154.59 1123.79	1154.35 1154.34 1123.73	1154.32 1154.33	1154.39 1154.39	1154.11 1154.11	1153.85 1153.88	1153.65 1153.70	1153.47 1153.51	1153.37 1153.39 1123.24	1151.95 1151.96 1122.48	1152.11 1152.16 1122.53	1151.01 1151.03 1121.37	1150.80 1150.81
OB93-02         Wyr           OB93-03         Three           OB93-04         Three           OB97-05         Three           OB97-06         Schro           OB97-07         Schro           OB97-08         C           OB97-09PZ(0)         Hav           OB97-09PZ(1)         Schro           OB97-09PZ(2)         W           OB97-09PZ(3)         Kim           OB97-09PZ(4)         Blue           OB97-09PZ(5)         Flore           OB97-10PZ(1)         Schroyer           OB97-10PZ(2)         W           OB97-10PZ(3)         W           OB97-10PZ(4)         Schroyer           OB97-10PZ(3)         W           OB97-10PZ(4)         Kim           OB97-10PZ(3)         W           OB97-10PZ(4)         Kim           OB97-10PZ(3)         W           OB97-10PZ(4)         Kim           OB97-10PZ(4)         Kim           OB97-10PZ(4)         Kim           OB97-11PZ(0)         Hav	Vymore/Schroyer reemile Limestone reemile Limestone hroyer Limestone hroyer Limestone overburden lavensville Shale hroyer Limestone Wymore Shale inney Limestone ue Springs Shale	1151.00 1111.00 1116.00 1115.00 1146.50 1140.00 1149.00 1133.81 1139.81 1155.81 1168.81	1136.00 1096.00 1101.00 1105.00 1136.50 1130.00 1139.00 1132.81 1138.81	1208.44 1172.88 1158.32 1178.23 1173.36 1158.72 1158.25 1242.81	1210.08 1174.84 1160.09 1180.12 1175.37 1160.37 1160.11	NM NM 72.94 38.49 32.94	1155.40 1124.03 1125.01 1124.10 1155.39	1154.89 1123.86 1124.89 1123.95	1154.86 1123.85 1124.90 1123.96	1154.85 1123.84 1124.88	1154.59 1123.79	1154.34 1123.73	1154.33	1154.39	1154.11	1153.88	1153.70	1153.51	1153.39 1123.24	1151.96 1122.48	1152.16 1122.53	1151.03 1121.37	1150.81
OB93-03         Three           OB93-04         Three           OB93-05         Three           OB97-05         Three           OB97-06         Schro           OB97-07         Schro           OB97-08         C           OB97-09PZ(0)         Hav           OB97-09PZ(1)         Schro           OB97-09PZ(2)         W           OB97-09PZ(3)         Kim           OB97-09PZ(4)         Blue           OB97-09PZ(5)         Flore           OB97-10PZ(1)         Schroyer           OB97-10PZ(2)         Schroyer           OB97-10PZ(3)         W           OB97-10PZ(4)         Kim           OB97-10PZ(3)         W           OB97-10PZ(4)         Kim           OB97-10PZ(3)         W           OB97-10PZ(4)         Kim           OB97-10PZ(3)         W           OB97-10PZ(4)         Kim           OB97-10PZ(4)         Hav	reemile Limestone reemile Limestone reemile Limestone hroyer Limestone overburden lavensville Shale hroyer Limestone Wymore Shale inney Limestone ue Springs Shale	1111.00 1116.00 1115.00 1146.50 1140.00 1149.00 1133.81 1139.81 1155.81 1168.81	1096.00 1101.00 1105.00 1136.50 1130.00 1139.00 1132.81 1138.81	1172.88 1158.32 1178.23 1173.36 1158.72 1158.25 1242.81	1174.84 1160.09 1180.12 1175.37 1160.37 1160.11	NM NM 72.94 38.49 32.94	1124.03 1125.01 1124.10 1155.39	1123.86 1124.89 1123.95	1123.85 1124.90 1123.96	1123.84 1124.88	1123.79	1123.73			1				1123.24	1122.48	1122.53	1121.37	
OB93-04         Three           OB97-05         Three           OB97-06         Schro           OB97-07         Schro           OB97-08         C           OB97-09PZ(0)         Hav           OB97-09PZ(1)         Schro           OB97-09PZ(2)         W           OB97-09PZ(3)         Kim           OB97-09PZ(4)         Blue           OB97-09PZ(5)         Flore           OB97-10PZ(1)         Schroyer           OB97-10PZ(2)         Schroyer           OB97-10PZ(3)         W           OB97-10PZ(3)         W           OB97-10PZ(4)         Kim           OB97-10PZ(3)         W           OB97-10PZ(4)         Kim           OB97-10PZ(3)         W           OB97-10PZ(4)         Kim           OB97-10PZ(4)         Kim           OB97-11PZ(0)         Hav	reemile Limestone reemile Limestone hroyer Limestone overburden lavensville Shale hroyer Limestone Wymore Shale inney Limestone ue Springs Shale	1116.00 1115.00 1146.50 1140.00 1149.00 1133.81 1139.81 1155.81 1168.81	1101.00 1105.00 1136.50 1130.00 1139.00 1132.81 1138.81	1158.32 1178.23 1173.36 1158.72 1158.25 1242.81	1160.09 1180.12 1175.37 1160.37 1160.11	NM 72.94 38.49 32.94	1125.01 1124.10 1155.39	1124.89 1123.95	1124.90 1123.96	1124.88			1123.67	1123.67	1123.53	1123.46	1123.38	1123.31					1121.31
OB97-05         Three           OB97-06         Schro           OB97-07         Schro           OB97-08         C           OB97-09PZ(0)         Hav           OB97-09PZ(1)         Schro           OB97-09PZ(2)         W           OB97-09PZ(3)         Kim           OB97-09PZ(4)         Blue           OB97-09PZ(5)         Flore           OB97-10PZ(1)         Schroyer           OB97-10PZ(2)         Schroyer           OB97-10PZ(3)         W           OB97-10PZ(3)         W           OB97-10PZ(4)         Kim           OB97-10PZ(3)         W           OB97-10PZ(4)         Kim           OB97-10PZ(3)         W           OB97-10PZ(4)         Kim           OB97-10PZ(3)         W           OB97-10PZ(4)         Kim           OB97-10PZ(4)         Hav	reemile Limestone hroyer Limestone overburden lavensville Shale hroyer Limestone Wymore Shale inney Limestone ue Springs Shale	1115.00 1146.50 1140.00 1149.00 1133.81 1139.81 1155.81 1168.81	1105.00 1136.50 1130.00 1139.00 1132.81 1138.81	1178.23 1173.36 1158.72 1158.25 1242.81	1180.12 1175.37 1160.37 1160.11	72.94 38.49 32.94	1124.10 1155.39	1123.95	1123.96		1124 84			1		1						1121 20 1	1
OB97-06         Schro           OB97-07         Schro           OB97-08         C           OB97-09PZ(0)         Hav           OB97-09PZ(1)         Schro           OB97-09PZ(2)         W           OB97-09PZ(3)         Kim           OB97-09PZ(4)         Blue           OB97-09PZ(5)         Flore           OB97-10PZ(1)         Schroyer           OB97-10PZ(2)         Schroyer           OB97-10PZ(2)         Schroyer           OB97-10PZ(3)         W           OB97-10PZ(4)         Kim           OB97-10PZ(3)         W           OB97-10PZ(4)         Kim           OB97-10PZ(3)         W           OB97-10PZ(4)         Kim           OB97-10PZ(4)         Kim           OB97-10PZ(4)         Kim	hroyer Limestone royer/Havensville Overburden lavensville Shale hroyer Limestone Wymore Shale inney Limestone ue Springs Shale	1146.50 1140.00 1149.00 1133.81 1139.81 1155.81 1168.81	1136.50 1130.00 1139.00 1132.81 1138.81	1173.36 1158.72 1158.25 1242.81	1175.37 1160.37 1160.11	38.49 32.94	1155.39			1122 04		1124.78	1124.74	1124.74	1124.62	1124.53	1124.42	1124.34	1124.23	1123.17	1123.16		1121.36
OB97-07         Schro           OB97-08         C           OB97-09PZ(0)         Hav           OB97-09PZ(1)         Schro           OB97-09PZ(2)         W           OB97-09PZ(3)         Kinn           OB97-09PZ(4)         Blue           OB97-09PZ(5)         Flore           OB97-10PZ(0)         Hav           OB97-10PZ(1)         Schroyer           OB97-10PZ(2)         Schroyer           OB97-10PZ(3)         W           OB97-10PZ(4)         Kinn           OB97-10PZ(3)         W           OB97-10PZ(4)         Kinn           OB97-10PZ(3)         Hav	royer/Havensville Overburden (avensville Shale hroyer Limestone Wymore Shale inney Limestone ue Springs Shale	1140.00 1149.00 1133.81 1139.81 1155.81 1168.81	1130.00 1139.00 1132.81 1138.81	1158.72 1158.25 1242.81	1160.37 1160.11	32.94		1154 90		1123.94	1123.89	1123.83	1123.77	1123.78	1123.62	1123.56	1123.48	1123.40	1123.34	1122.51	1122.57	1121.33	1121.28
OB97-08         C           OB97-09PZ(0)         Haw           OB97-09PZ(1)         Schro           OB97-09PZ(2)         W           OB97-09PZ(3)         Kim           OB97-09PZ(4)         Blue           OB97-09PZ(5)         Flore           OB97-10PZ(0)         Haw           OB97-10PZ(1)         Schroyer           OB97-10PZ(2)         Schroyer           OB97-10PZ(3)         W           OB97-10PZ(3)         W           OB97-10PZ(4)         Kim           OB97-10PZ(4)         Kim           OB97-10PZ(4)         Haw	Overburden avensville Shale hroyer Limestone Wymore Shale inney Limestone ue Springs Shale	1149.00 1133.81 1139.81 1155.81 1168.81	1139.00 1132.81 1138.81	1158.25 1242.81	1160.11			1131.30	1154.86	1154.86	1154.59	1154.39	1154.34	1154.40	1154.13	1153.87	1153.67	1153.49	1153.38	1151.97	1152.17	1151.13	1150.80
OB97-09PZ(0)         Hav           OB97-09PZ(1)         Schro           OB97-09PZ(2)         W           OB97-09PZ(3)         Kinn           OB97-09PZ(4)         Blue           OB97-09PZ(5)         Flore           OB97-10PZ(0)         Hav           OB97-10PZ(1)         Schroyer           OB97-10PZ(2)         Schroyer           OB97-10PZ(3)         W           OB97-10PZ(3)         W           OB97-10PZ(4)         Kinn           OB97-10PZ(3)         W           OB97-10PZ(4)         Kinn           OB97-10PZ(4)         Hav	avensville Shale hroyer Limestone Wymore Shale inney Limestone ue Springs Shale	1133.81 1139.81 1155.81 1168.81	1132.81 1138.81	1242.81			1146.66	1146.93	1147.00	1147.15	1147.05	1146.77	1146.76	1146.68	1146.46	1146.32	1146.25	1146.17	1146.03	1145.27	1145.26	1144.90	1144.86
OB97-09PZ(1)         Schro           OB97-09PZ(2)         W           OB97-09PZ(3)         Kim           OB97-09PZ(4)         Blue           OB97-09PZ(5)         Flore           OB97-10PZ(0)         Hav           OB97-10PZ(1)         Schroyer           OB97-10PZ(2)         Schroyer           OB97-10PZ(3)         W           OB97-10PZ(3)         W           OB97-10PZ(4)         Kim           OB97-10PZ(4)         Kim           OB97-10PZ(4)         Hav	hroyer Limestone Wymore Shale inney Limestone ue Springs Shale	1139.81 1155.81 1168.81	1138.81	1	1245 70	20.39	1145.94	1145.62	1145.51	1145.44	1145.28	1145.05	1144.98	1144.92	1144.74	1144.53	1144.45	1144.36	1144.18	1142.98	1142.92	1142.45	1142.50
OB97-09PZ(2)         W           OB97-09PZ(3)         Kinn           OB97-09PZ(4)         Blue           OB97-09PZ(5)         Flore           OB97-10PZ(0)         Hav           OB97-10PZ(1)         Schroyer           OB97-10PZ(2)         Schroyer           OB97-10PZ(3)         W           OB97-10PZ(4)         Kinn           OB97-10PZ(3)         Hav	Wymore Shale inney Limestone ue Springs Shale	1155.81 1168.81		1 1040 01	1245.70	113.01												1158.44	1156.21	1155.68	1150.20	1154.73	1154.78
OB97-09PZ(3)         Kinn           OB97-09PZ(4)         Blue           OB97-09PZ(5)         Flore           OB97-10PZ(0)         Hav           OB97-10PZ(1)         Schroyer           OB97-10PZ(2)         Schroyer           OB97-10PZ(3)         W           OB97-10PZ(4)         Kinn           OB97-10PZ(3)         W           OB97-10PZ(4)         Kinn           OB97-10PZ(4)         Hav	inney Limestone ue Springs Shale	1168.81	1154.81	1242.81	1245.70	107.19												1146.52	1146.51	1145.21	dry	1145.32	1145.24
OB97-09PZ(4)         Blue           OB97-09PZ(5)         Flore           OB97-10PZ(0)         Hav           OB97-10PZ(1)         Schroyer           OB97-10PZ(2)         Schroyer           OB97-10PZ(3)         W           OB97-10PZ(4)         Kinn           OB97-10PZ(4)         Hav	ue Springs Shale	I		1242.81	1245.70	89.85												1158.43	1156.21	1156.05	dry	dry	dry
OB97-09PZ(5)         Flore           OB97-10PZ(0)         Haw           OB97-10PZ(1)         Schroyer           OB97-10PZ(2)         Schroyer           OB97-10PZ(3)         W           OB97-10PZ(4)         Kinn           OB97-10PZ(4)         Haw	1 2 1	1101 81	1167.81	1242.81	1245.70	78.08												1168.83	1168.73	1168.58	dry	1168.41	1168.48
OB97-10PZ(0)         Hav           OB97-10PZ(1)         Schroyer           OB97-10PZ(2)         Schroyer           OB97-10PZ(3)         W           OB97-10PZ(4)         Kinn           OB97-10PZ(4)         Hav	•••••••••••	11/1.01	1190.81	1242.81	1245.70	55.06											· ·	1191.96	1192.00	1191.93	dry	1191.71	1191.73
OB97-10PZ(1)         Schroyer           OB97-10PZ(2)         Schroy           OB97-10PZ(3)         W           OB97-10PZ(4)         Kinn           OB97-11PZ(0)         Hav	orence Limestone	1216.81	1215.81	1242.81	1245.70	31.24												1216.28	1215.73	1214.91	dry	dry	dry
OB97-10PZ(2)         Schroy           OB97-10PZ(3)         W           OB97-10PZ(4)         Kim           OB97-11PZ(0)         Have	avensville Shale	1134.28	1133.28	1183.28	1185.52	53.35						Wells	not installe	d				1138.54	1140.01	1146.31	1136.65	1149.01	1148.92
OB97-10PZ(3) W OB97-10PZ(4) Kini OB97-11PZ(0) Hav	er Limestone-bottom	1141.28	1140.28	1183.28	1185.52	45.59						<u> </u>					· · ·	1151.28	1151.18	1150.78	1150.33	1149.56	1149.35
OB97-10PZ(4) Kint OB97-11PZ(0) Hav	oyer Limestone-top	1147.28	1146.28	1183.28	1185.52	40.67											•	1153.47	1153.44	1151.99	1151.95	1151.16	1151.10
OB97-11PZ(0) Hav	Wymore Shale	1154.28	1153.28	1183.28	1185.52	32.62												1164.71	1164.50	1164.69	1157.52	1163.79	1163.74
	inney Limestone	1167.28	1166.28	1183.28	1185.52	19.55												1166.24	1166.24	dry	dry	dry	dry
OB97-11PZ(1) Schroyer	lavensville Shale	1132.21	1131.21	1182.21	1184.43	53.40												1154.52	1153.62	1152.96	1152.41	1148.42	1148.52
	er Limestone-bottom	1138.21	1137.21	1182.21	1184.43	47.55											-	1146.67	1146.66	1145.29	1145.70	1145.36	1145.20
OB97-11PZ(2) Schroy	oyer Limestone-top	1146.21	1145.21	1182.21	1184.43	39.60												1146.59	1146.54	1145.21	1145.29	dry	dry
OB97-11PZ(3) W	Wymore Shale	1153.21	1152.21	1182.21	1184.43	32.53												1154.56	1153.59	1152.95	1152.41	dry	dry
OB97-11PZ(4) Kini	inney Limestone	1169.21	1168.21	1182.21	1184.43	16.93											-	1168.39	1168.39	1167.76	dry	dry	dry
OB97-12PZ(0) Hav	lavensville Shale	1133.24	1132.24	1183.24	1185.65	53.60											••.	1147.57	1136.52	1147.79	1135.29	1143.87	1144.14
OB97-12PZ(1) Schroyer	er Limestone-bottom	1139.24	1138.24	1183.24	1185.65	47.56												1146.43	1146.43	1145.12	1145.53	1145.34	1145.07
OB97-12PZ(2) Schroy	oyer Limestone-top	1147.24	1146.24	1183.24	1185.65	39.67												1146.56	1146.65	- 1146.21	dry	dry	dry
OB97-12PZ(3) W	Wymore Shale	1154.24	1153.24	1183.24	1185.65	32.60	-										· • •	1160.22	1160.11	1158.91	1158.85	1156.81	1156.52
OB97-12PZ(4) Kin	inney Limestone	1169.24	1168.24	1183.24	1185.65	17.72												dry	dry	1168.18	dry	dry	dry
OB97-13PZ(0) Havens	nsville Shale-bottom	1127.92	1126,92	1157.92	1160.15	33.34												1145.33	1132.33	1132.18	1131.69	1131.50	1131.60
	vensville Shale-top	1131.92	1130.92	1157.92	1160.15	29.54												1146.20	1145.69	1145.23	1143.91	1144.58	1144.61
OB97-13PZ(2) Schroyer	ver Limestone-bottom	1136.92	1135.92	1157.92	1160.15	24.42												1146.04	1146.05	1145.30	1145.28	1144.96	1144.88
OB97-13PZ(3) Schroy		1141.42	1140.42	1157.92	1160.15	19.86												1147.19	1141.32	1143.79	1144.24	1143.68	1143.69
OB97-13PZ(4)	oyer Limestone-top	1146.92	1145.92	1157.92	1160.15	14.67									1144.03	1143.83	· 1143.74 *	1149.83 1143.67	1147.39 1143.50	1146.35 1142.40	1146.60	1146.20 1140.93	1146.11 1141.02
Dug Well	oyer Limestone-top Overburden		NAp	NM	1155.28	20.29	NM	1144.88	1144.73	1144.63	1144.58	1144.58	1144.50	1144.52							1141.98		1 11/11/17

1

Notes:

NAp - Not applicable NM - Not measured

A MEMBER OF THE BERGER GROUP



Louis Berger & Associates, Inc.

100 Halsted Street, East Orange, New Jersey 07019 Tel 973.678.1960 • Telex 138.152 • Fax 973.672.4284

ENGINEERS • PLANNERS • SCIENTISTS • ECONOMISTS • ARCHAEOLOGISTS

August 5, 1998

Commander U. S. Army Engineer District, Kansas City ATTN: CENWK-EP-EA (Glen Shonkwiler) 601 E. 12th Street Kansas City, MO 64106-2896

RE: DACA41-92-0001 Indefinite Delivery Contract for Various Military Hazardous Waste Cleanup Projects at Fort Riley, Kansas Draft Final Site Investigation (SI) for the Open Burn/Open Detonation Area Delivery Order 32 (JH1124F/JG1270)

Dear Mr. Shonkwiler:

Louis Berger & Associates, Inc. is pleased to submit 5 copies of the Draft Site Investigation Addenda for the Open Burn/Open Detonation at Fort Riley, Kansas. Also included in this submission are the responses to the comments. As identified in the text of the responses to several comments, there will be a separate letter submission directly from the Army to the regulators regarding proposed future activities at the site.

This document has been subjected to Berger's internal Quality Control process prior to release.

Copies have been distributed according to the list found at the bottom of this letter.

Should you have any questions or comments regarding this submission, please contact either Tom Lewis at (973) 678-1960, extension 755 or me at the same number, extension 737.

Sincerely,

LOUIS BERGER & ASSOCIATES, INC.

win Susan E. Knauf

Program Director

SEK Enclosures (5 copies)



Copy: Directorate of Environment & Safety AFZN-ES-L (Attn. John Cook) Building 407 Main Post Fort Riley, Kansas 66442-6016 (9 copies)

> Bob Koke (2 copies) Federal Facilities/Special Emphasis Section Superfund Division U. S. EPA Region VII 726 Minnesota Ave. Kansas City, KS 66101

U. S. Army Corps of Engineers HTRW-CX (2 copies) ATTN: CENWO-HX-S (Document Distribution) Omaha, NE 68144-3869 Commander (2 copies) Center for Health Promotion & Preventative Medicine ATTN: HSHB-ME-SR /Larry Tannenbaum Aberdeen Proving Grounds, MD 21010-5401

Randy Carlson (2 copies) Bureau of Environmental Remediation KDHE Forbes Field, Building 740 Topeka, KS 66620

U. S. Army Environmental Center ATTN: ENAEC-IR-P/Joe King Aberdeen Proving Grounds, MD 21010-5401 (1 copy)

LBA: T. Lewis M. McCloskey JH1124F (Project File - D.C.)

F:\HOME\MMCCLOSK\FTRILEY\OBOD\SIFCVRLT.WPD

#### Responses to KDHE Review Comments Draft SI Addendum OB/OD dated 20 April 1998 Fort Riley, KS

No.	Reference	Comment	Response					
Gene	eneral Comments by Randall Carlson, Ph.D., KDHE/BER, 16 June 1998							
1	General	Recommendations should accompany the OB/OD report, either as part of the report or in a separate letter. Discussions within the report concerning the installation of wells state that quarterly groundwater monitoring is planned for the site. The monitoring program should be described in the Executive Summary and in Section 5, Summary and Conclusions.	Agree. A letter outlining recommendations for future work at the site will be prepared and submitted by the Army under separate cover after submittal of the Draft Final SI Addendum. Plans for monitoring will specifically be included in this letter. The monitoring program will be referred to as "periodic" instead of "quarterly" because of the restricted access to the OB/OD Area.					
2	General	Three of the planned surface water samples from the east and west intermittent streams were not collected because the streams were dry when the field work was conducted. These samples should be collected during the next sampling effort.	Agree. Surface water samples were collected from all five intermittent stream locations on 5 April 1998. The results indicate very low levels (i.e., all below MCLs) of TCE at locations SW-4 (3.7 ug/l) and SW-5 (3.1 ug/l) downgradient of the OB/OD Area. These results are included in the DSR.					

Louis Berger & Associates, Inc. August 5, 1998 Fort Riley, Kansas F:\HOME\MMCCLOSK\FTRILEY\OBOD\KDHESI2.WPD

No.	Reference	Comment	Response
<u>No.</u> 3	General	<b>Comment</b> The extent of groundwater contamination has not been defined by the investigation, as shown on the enclosed map of total VOCs. The general direction of groundwater flow from the north and south burn pits is toward the south-southwest (Figure 4-7), however, the most downgradient wells, OB-97-08 and OB97-13PZ have 110 and 200 ug/L TCE, respectively, well above the MCL of 5 ug/L for TCE. Additional monitoring wells should be installed west of OBHD97-14, southwest of the southern burn pit between the western intermittent stream and wells OB-97-08 and OB97- 13PZ and south of the southern burn pit. The highest concentrations of VOCs have been found in the Schroyer Limestone and this unit should be the main focus of further investigations. The Threemile Limestone also has TCE above the MCL and should be investigated further as well. There is a greater potential for contamination in the Threemile Limestone south of the southern burn pit where TCE may have reached greater depths because it is further from the main source areas.	As mentioned above in response to general comment 1, a letter outlining recommendations for future characterization and delineation work at the site will be prepared and submitted under separate cover after submittal of the Draft Final SI Addendum. The rationale, quantity and location for any additional monitoring wells will be addressed in that letter. It should be noted that a risk screening evaluation is being conducted for the site and the results will be presented in a separate report. Based on initial risk screening information, the impacted groundwater is not a current or likely future potable water source and meeting drinking water source quality (i.e., MCLs) at this site is not anticipated to be necessary for protection of human health and the environment. It is agreed that the Schroyer Limestone has the highest concentrations of VOCs. However, horizontal movement (along bedding planes) is interpreted to be much greater than any downward vertical movement. Therefore, these highest concentrations of VOCs are
		Structural dip of the rock layers can be a major control on the direction of groundwater flow. To aid in our understanding of the geology at the OB/OD site and its relationship to groundwater flow direction and contaminant migration, I prepared maps of the tops	believed to discharge to the intermittent streams downgradient of the site, and not migrate down to the Threemile Limestone. The TCE concentration in the intermittent streams receiving groundwater from the Schroyer Limestone is only 3 ug/l. The much lower

Louis Berger & Associates, Inc. August 5, 1998

No.	Reference	Comment	Response
3	General (Continued)	of the Schroyer Limestone and the Havensville Shale (enclosed) from the information in the drillers logs and gamma logs. The groundwater flow direction in the Schroyer Limestone shows some similarity to the slope of the top of the Schroyer Limestone. The groundwater flow direction at the top of the Schroyer Limestone is west-southwest (Figure 4-13). The Schroyer limestone is higher to the northeast where the demo pits are present and forms an east-west trending erosional low between the north and south burn pits, where overburden soils lie in contact with the top of the Schroyer. The direction of groundwater flow at the top of the Havensville Shale is to the south-southwest (Figure 4-15) and corresponds well with the slope of the top of the Havensville Shale. The Havensville Shale probably acts as an aquitard, thus, the dip of the Havensville should correspond with the direction of groundwater flow at the top of the unit.	TCE concentrations detected in the Threemile Limestone would likewise migrate predominantly horizontally and eventually discharge to Threemile Creek further downgradient of the site. Based on the ratio of TCE concentration observed in the Schroyer to the concentration observed in the receiving surface water, any TCE reaching Threemile Creek via the Threemile Limestone would be at nondetectable concentrations. The proposed future investigation work will help to further confirm this premise. The association of the orientation of the top of formations to the direction of groundwater flow in these zones is noted. However, care must be taken in generalizing the effects of the tops of the formations because variations in lithology at these contacts has been observed. For example, the top of the Schroyer Limestone is much more clearly defined on the eastern side of the site but is significantly eroded, blending with the overburden, on the western side of the site. There are likely a variety of factors which contribute to the observed flow directions in the various zones screened beneath the site.

Louis Berger & Associates, Inc. August 5, 1998

•

.

Fort Riley, Kansas F:\HOME\MMCCLOSK\FTRILEY\OBOD\KDHESI2.WPD

.

,

No.	Reference	Comment	Response
4	General	The report states that identifying source areas is very difficult to impossible and that identifying sources may not be necessary given that the dissolved phase concentrations are not high enough to indicate the presence of free product at the site. However, the downgradient extent of groundwater contamination has not been defined. Therefore, the potential for migration has not been assessed, and the conclusion is not justified at this time. Please refer to the enclosed map of total VOCs. The highest concentrations of VOCs stem from the northern and southern burn pits. There appear to have been smaller releases at the Metal Debris pits and the West Demo Pit. There are no obvious sources near or upgradient of the relatively high concentrations of 2- butanone and carbon disulfide in well OB-97-09PZ. Although not mentioned, 2-butanone is a common laboratory contaminant; carbon disulfide, however, is not. The northern and southern burn pits, although	It is agreed that the downgradient extent of groundwater contamination has not been fully defined. As mentioned above in response to general comment 1, a letter outlining recommendations for future work at the site will be prepared and submitted under separate cover after submittal of the Draft Final SI Addendum. Any additional delineation activities will be addressed in that letter. The fact remains, however, that the relatively low dissolved concentrations identified near the suspected source areas do not indicate the presence of any residual free product at the source areas. It is agreed that the majority of the chlorinated solvents were historically released in or near the North and South Burn Pit areas with possibly smaller releases at the Metal Debris pits and the west Demo Pit. The 2- butanone as well as the carbon disulfide identified in OB-97-09PZ are not believed to be contaminants released to the site. As mentioned, the 2-butanone is a common laboratory contaminant. Carbon disulfide is
		not the only source areas, appear to be the predominant source areas for the release of chlorinated volatile organic compounds to groundwater.	not a common laboratory contaminant, but it is a naturally-occurring compound. It is particularly common in anaerobic environments, such as the dark gray shale in which OB-97-09PZ(0) is screened.

.

4

No.	Reference	Comment	Response	
4	General (Continued)	A Gore Sorber screening survey of six points was conducted during the initial investigations, however, it was not successful in delineating the extent of groundwater contamination. This was probably because so few points were screened. A passive soil gas survey laid out on a grid with numerous screening points may be more successful in defining the distribution of groundwater contamination and accurately locating all the source areas.	The soil gas survey conducted at the site was only a demonstration test to evaluate its potential effectiveness as an investigation tool at the site. The sorbers were placed in the vadose zone three feet below ground surface above areas of highest known groundwater contamination. Only low levels of VOC contaminants were detected in analysis of the sorbers. As stated in the report, it is believed that the reason for only detecting low levels in the soil gas detectors above known contaminated groundwater lies in the fact that the shale (layer of low permeability) overlying the groundwater impedes the upward migration of soil gas from the groundwater to the detector. Based on the low levels detected and this vertical barrier limitation, a more extensive deployment of passive soil gas detectors at the OB/OD area was not considered suitable and was, therefore, not recommended or pursued.	
Spec	ific Comments by	Randall Carlson, Ph.D., KDHE/BER, 16 June 1998		
1	Section 1.4.1 Paragraph 1 Page 1-3	Mentioning the latitude and longitude coordinates would improve the description of the site.	Agree. The latitude of 39° 08' 31.88" and longitude of 96° 45' 46.16" (based on survey of piezometer PZ-97-11) will be added to the text.	
2	Section 1.4.1 Paragraph 2 Page 1-4	Although the mesic area is not listed as a wetland, if its characteristics qualify it as a wetland, it should be treated as such.	The mesic area will be evaluated to determine if it should be treated as a wetland. The results of this evaluation will be presented in the Risk Screening and Ecological Assessment Report.	

.

1

1

No.	Reference	Comment	Response
3	Section 1.4.1 Paragraph 2 Page 1-4	Statements in the middle of the paragraph where the tributaries are discussed need improvements in sentence structure.	Agree. A portion of a sentence is missing from this paragraph. The sentence fragment currently reads "The tributaries located to the east and west" and will be completed with "of the site join about 1,000 feet south of the southern site boundary."
4	Section 1.5 Paragraph 2 Page 1-6	The discussion should mention that the designated beneficial uses of Threemile Creek are aquatic life support and contact recreation.	Agree. A sentence was added to the end of the first paragraph stating that the designated beneficial uses of Threemile Creek are aquatic life support and contact recreation.
5	Section 2.2.1 Paragraph 2 page 2-2	Which pit is referred to in this paragraph?	This paragraph refers to the North Burn Pit. The text was revised to clarify this.
6	Section 2.2.2 Paragraph 2 Page 2-2	For clarity in referring to the maps, the open burn pit should be referred to as the northern burn pit.	Agree. The text was revised to refer to the open burn pit as the North Burn Pit.
7	Section 2.2.5 Paragraph 1 Page 2-3	The text should also mention the secondary MCL for sulfate of 250 mg/L.	The primary MCLs are included in this paragraph for evaluation purposes. The secondary MCLs could also be included, but they would be unnecessary. No change to the text was made.
8	Section 3.3.2.1 OB-97-12PZ Page 3-7	This well is upgradient, rather than downgradient, of well OB-97-05 as stated in the text.	Agree. The text was revised to state that OB-97-12PZ is upgradient of OB-97-05.

•

e

, <b>No.</b>	Reference	Comment	Response
9	Section 4.1.1 Paragraph 3 Page 4-1	Comments concerning the necessity of further actions should be contained in the Executive Summary and the chapter on Summary and Conclusions. As stated in general comment 4 above, the main source areas already are evident. Further definition of the source areas may be accomplished through a passive soil gas survey followed by confirmatory soil borings and monitoring wells.	As mentioned above in response to general comment 1, a letter outlining recommendations for future work at the site will be prepared and submitted under separate cover after submittal of the Draft Final SI Addendum. It is agreed that the main source areas are already evident. No change to the text was made.
10	Figure 4-9 Geologic Cross- Sections	The gamma logs on the north to south cross-section are flipped 180 degrees from their proper orientation, such that the limestones appear to have the highest readings and the shales the lowest readings. Please orient the gamma logs correctly.	Agree. The gamma logs presented on the north to south cross-section will be flipped 180 degrees so that they are in their proper orientation.

Louis Berger & Associates, Inc. August 5, 1998 Fort Riley, Kansas F:\HOME\MMCCLOSK\FTRILEY\OBOD\KDHESI2.WPD

!

No.	Reference	Comment	Response
11	Figure 4-9 Geologic Cross-Sections	The lithologic descriptions in the cross-section do not appear to have accounted for the lithologic interpretations that can be made from the gamma logs. The depth measurements of the gamma logs are probably more accurate than the driller's logs and gamma logs are sensitive to shales. The driller's logs are based on grab samples whose depth of origin during the drilling is less certain. Thus, the gamma logs should be relied on to pick the tops and bottoms of the alternating limestone and shale units. Some examples of the discrepancies between the gamma and driller's logs are as follows. The driller's logs for well OB-97-12PZ shows the Kinney Limestone as approximately 4 feet thick, whereas the gamma log indicates it is approximately six feet thick. Also, the base of the Schroyer Limestone in well OB-97-12PZ appears to be about two feet lower than shown. The top of the Schroyer on wells OB-97-05 and OB-97- 11PZ appears to be about two feet lower than shown. The base of the Schroyer Limestone on well OB-97- 11PZ appears to be about two feet lower than shown.	It should be noted that the formation contacts are not always identified by contacts between limestones and shales. For example, the base of the Schroyer Limestone is interpreted to be the bottom of a chert- bearing limestone. A non-chert-bearing limestone located beneath this point would be considered the top of the Havensville Shale. For this reason, it would be misleading to define the formation contacts based strictly on gamma logs which indicate more significant lithological changes (such as from limestone to shale). This is in agreement with regional geologic references/interpretations by others. The driller's logs and the gamma logs were reviewed and the cross sections revised appropriately. The lithological symbols defining each formation were removed leaving the contact lines with the formation names placed within the cross sections. The previous depiction of the formations using the conventional lithological symbols (bricks for limestone, dashes for shale) may have been misleading. For example, the Schroyer Limestone is not comprised completely of limestone, but rather intervals of limestone and shale. Likewise, the Havensville Shale is not comprised completely of shale, but rather intervals of shale and limestone.

No.	Reference	Comment	Response
12	Figure 4-11	The very steep gradient shown on the figure appears unrealistic. The elevation of the spring probably does not correspond to the piezometric head of the groundwater, but rather corresponds to a bedding plane or fracture within the Kinney Limestone.	While we agree that the spring corresponds with a bedding plane or fracture actually located slightly below the base of the Kinney Limestone, the spring is flowing and the water supporting this flow is the groundwater in the Kinney Limestone. The contours represent the hydraulic gradient between the spring and the supporting head in the Kinney Limestone. If the flow of the spring could be captured in a riser, the water level in the riser would likely reach an elevation that would be more comparable to those in the Kinney and depict a less steep gradient.
13	Figures 4-14 and 4-15	The base of the Schroyer Limestone makes contact with the top of the Havensville Shale. How is it that groundwater can flow northwest at the base of the Schroyer and south-southwest at the top of the Havensville?	Disagree. The bottom of Schroyer and top of Havensville, as depicted on the groundwater contour maps, are not intervals in direct contact. These approximate one-foot thick intervals are vertically separated by six to ten feet. The factors influencing the flow direction of the approximate one-foot intervals can change within that six to ten foot separation.
14	Figure 4-16	Well OB-97-09PZ did not contain TCE as shown on the map.	Agree. The detection of 0.7 ug/l will be removed from the figure and replaced with ND.
15	Appendix C	A gamma log for well OB-93-3 is not present as indicated in the Table of Contents for the appendix.	The gamma log for OB-93-3 is present in the appendix but is out of place, appearing after OB-97-4. This will be corrected.

4

.

.

No.	Reference	Comment	Response
16	Appendix C	A gamma log for well IZ-92-10 is included here but is not shown on the maps accompanying the report. Where is well IZ-92-10?	Well IZ-92-10 is shown on Figure 1-1, Site Location Map. Reference to this figure was also added to the seventh bullet under Section 3.1.2 on page 3-4.

Louis Berger & Associates, Inc. August 5, 1998

ン

Fort Riley, Kansas F:\HOME\MMCCLOSK\FTRILEY\OBOD\KDHESI2.WPD

#### Responses to CENWK Review Comments Draft SI Addendum OB/OD dated 20 April 1998 Fort Riley, KS

No.	Reference	Comment	Response
Com	ments by Becker,	CENWO-HX-G	
1	General	<ul> <li>Overall, I would say that the report provides a good overview of the conditions found and does a fair appraisal of the complicated hydrogeology at the site. It is clear to me that additional data would probably be required before the site risks can be fully evaluated to the satisfaction of the regulators. In particular, the full extent of the chlorinated compounds is not yet known.</li> <li>I would suggest that any additional monitoring/investigation consider obtaining data necessary to evaluate the potential for natural attenuation, including concentrations of electron</li> </ul>	Agree. A letter outlining recommendations for future work at the site will be prepared and submitted under separate cover after submittal of the Draft Final SI Addendum. A risk screening study is currently being conducted and the results will be presented in a separate report. Obtaining data necessary to evaluate the potential for natural attenuation will certainly be given consideration in any recommended further action.
2	Section 3.2	receptors, redox, and organic carbon content. Identify the type of passive soil gas device/product -	As stated in the report presented in Appendix C,
2	Page 3-4	was it Geosorber?	GORE-SORBER Screening Modules were used in the soil gas survey demonstration test. A similar reference was added to Section 3.2.

Louis Berger & Associates, Inc. August 5, 1998

No.	Reference	Comment	Response		
Com	Comments by Becker, CENWO-HX-G				
3	Figure 3-2	It is apparent that we do not yet have adequate well coverage in the west, south and northwest directions to fully define the extent of the plume.	Agree. As mentioned above in response to general comment 1, a letter outlining recommendations for future work at the site will be prepared and submitted under separate cover after submittal of the Draft Final SI Addendum. The rationale, quantity and location for any additional monitoring wells will be addressed in that letter.		
4	Section 4.1.1 Page 4-1	I would say that there are not enough data to definitively say that there is no discrete source area remaining - there has not been adequate sampling of soils in the pits, particularly in the south pit. I would recommend that sampling be conducted there, if safety concerns will allow. Removing any source may be key to getting regulatory acceptance of natural attenuation or no action on ground water.	As mentioned above in response to general comment 1, a letter outlining recommendations for future work at the site will be prepared and submitted under separate cover after submittal of the Draft Final SI Addendum. Any additional investigation of the source areas will be addressed in that letter. Investigation within the pits is problematic due to UXO issues. In addition, the groundwater contaminant concentrations adjacent to these areas are relatively low and do not indicate the presence of any residual free product. The results of the current risk screening study may help to guide any future activities.		
5	Section 4.3.1.3 Page 4-8	Is it possible that there is a divide between well MW OB-93-04 and the other two wells?	A wide range of interpretations is possible with so little data. More data from this interval would be necessary to formulate an interpretation with any confidence.		

No.	Reference	Comment	Response	
Com	ments by Becker,	CENWO-HX-G		
6	Figure 4-14	Note that OB-97-13PZ(3) should probably be OB- 97-13PZ(2) on this figure.	OB-97-13PZ(3) is the correct interval to be depicted on this figure (screened from elevation 1140.42 to 1141.42 ft amsl). The "Formation Screened" indicated on Table 3-10 was corrected from "Schroyer Limestone-top" to "Schroyer Limestone-bottom".	
	END OF COMMENTS			

Fort Riley, Kansas F:\HOME\MMCCLOSK\FTRILEY\OBOD\BECKER.WPD

### Responses to CENWK Review Comments Draft SI Addendum OB/OD dated 20 April 1998 Fort Riley, KS

No.	Reference	Comment	Response
Com	ments by Carol B	ottjer, CENWK-EP-ES, 3 June 1998	·
1	Section ES Paragraph 2 Page ES-4	Figure 1-2 does a better job of showing the position of the spring relative to the North Burn Pit than referenced Figure 4-1 does. Change reference.	Agree. The reference to Figure 4-1 was changed to 1-2.
2	Section 1.4.1 Paragraph 1 Page 1-4	5th-7th sentences - Correct grammar.	Agree. A portion of a sentence was missing from this paragraph. The sentence fragment previously read "The tributaries located to the east and west" and was completed with "of the site join about 1,000 feet south of the southern site boundary."
3	Section 1.5 Paragraph 2 Page 1-7	3rd sentence - "USEPA 1988b" is missing from the reference section. Add missing information.	Agree. The sentence referencing the EPA document has been removed from the text.
4	Sections 2.2.1, 2.2.2 Page 2-2	Previous Comment 11 - Change "Method 6010 Series" references to "Method 6010/7000 series" or something similar.	Agree. "Method 6010 Series" references were changed to "Method 6010/7000 Series".
5	Section 3.4.2 Page 3-11	Previous Comment 11 - Two analytical methods are still shown for sulfate. Delete Method 9038 reference, per A-E's comment response.	Agree. Method 9038 were deleted.

Louis Berger & Associates, Inc. August 5, 1998 Fort Riley, Kansas

Ňo.	Reference	Comment	Response	
Com	ments by Carol B	ottjer, CENWK-EP-ES, 3 June 1998		
6	Section 3.4.2.1 Paragraph 1 Page 3-12	Previous Comment 16 - The 5th and 6th lines indicate that there were discrepancies in analyte identities. As such, it seems questionable whether the project objective (per last line of paragraph) "to determine the presence or absence of contaminants" was met. Rewrite paragraph for clarity.	Agree. The paragraph was rewritten for clarity.	
7	Section 3.4.2.3 Tables 3-3 & 3-8 Page 3-14	Section title and last sentence - The tables show that the spring was sampled in 3/97 and 6/97. Additionally, the 08 May 98 Data Summary Report (DSR) compares the 6/97 and 12/97 sampling events' results. Update SI Report Addendum to be consistent with its tables and with the DSR.	Agree. The references to the spring sampling was updated to be consistent with the tables and the DSR.	
	END OF COMMENTS			

Louis Berger & Associates, Inc. August 5, 1998 Fort Riley, Kansas

#### Responses to CENWK Review Comments Draft SI Addendum OB/OD dated 20 April 1998 Fort Riley, KS

.

No.	Reference	Comment	Response
Com	ments by Cathy l	Forget, CENWO-HX-H	
1	Section 5.0	Even though the water supply at Range 18 is not potable, risk to human receptors should be evaluated via all other exposure pathways. This is especially important due to the high volatility of TCE, and high concentrations. Similarly, potentially complete pathways for irrigation should be evaluated on the surrounding farmlands.	A risk screening study is currently being conducted and the results will be presented in a separate report. Even though the data for the site are not complete, there is enough groundwater flow direction information to know that the contaminants released at the OB/OD area would not impact the non-potable well at Range 18. The surrounding farmlands are even less likely receptors due to their distance from the site. Any contaminants migrating via groundwater would discharge to surface water long before reaching these sites. The concentration of TCE discharging from the Schroyer Limestone (the most highly contaminated interval beneath the OB/OD Area) to the intermittent stream just south of the site results in a surface water concentration of only 3 $\mu$ g/l, based on the results of the surface water sampling conducted in May 1998 and presented in the DSR.
	<u> </u>	END OF COMMENT	S

Louis Berger & Associates, Inc. August 5, 1998