FORT RILEY CERCLA ADMINISTRATIVE RECORD DO NOT REMOVE

JOB No. 11-1532

CONTRACT No. DACW41-89-D-0124 DELIVERY ORDER No. 0034

WORKING DRAFT

PRELIMINARY ASSESSMENT/SITE INVESTIGATION REPORT

FOR

PRELIMINARY ASSESSMENT/SITE INVESTIGATION FORMER DRY CLEANING FACILITY FORT RILEY, KANSAS

PREPARED FOR

U.S. ARMY CORPS OF ENGINEERS KANSAS CITY DISTRICT

SEPTEMBER 1992

GOVERNMENT SERVICES BRANCH 114 TOWNPARK DRIVE, 4TH FLOOR KENNESAW, GEORGIA 30144-5508 404-499-6800

September 15, 1992

U.S. Army Engineer District, Kansas City 601 E. 12th Street Kansas City, MO 64106-2896

Attention:

Captain Carol Charette Project Manager

Subject:

Working Draft Preliminary Assessment/Site Investigation Report Former Dry Cleaning Facility Fort Riley, Kansas Contract No. DACW41-89-D-0124 LEGS Project No. 11-1532

Dear Captain Charette:

Law Environmental, Inc., Government Services Branch (LEGS) is pleased to submit the Working Draft Preliminary Assessment/Site Investigation Report for the Preliminary Assessment/Site Investigation at Fort Riley, Kansas. The distribution list for the report is repeated for your convenience:

Captain Carol Charette U.S. Army Engineer District, Kansas City 601 E. 12th Street Kansas City, MO 64106-2896 (816) 426-7446

Ms. Janet Wade Environmental and Natural Resources Division Building 408 Fort Riley, Kansas 66442-6000 (913) 239-3962

Mr. Scott Marquess Waste Management Division, EPA Region VII 726 Minnesota Avenue Kansas City, Kansas 66101 (913) 551-7063 Captain Carol Charette September 15, 1992 Page 2

Ms. Rachel Miller Bureau of Environmental Remediation Kansas Department of Health & Environment Forbes Field, Building 740 Topeka, Kansas 66620-7500 (913) 296-1500

If you have any questions regarding the report or any aspect of the project, please call us at (404) 499-6800.

Sincerely,

LAW ENVIRONMENTAL, INC.

Hem M. Prochaska Kevin M. Prochaska

Kevin M. Prochaska Project Manager

KMP/AJW:mlh

Enclosure

Mos

Arthur J. Whallon Project Principal

WORKING DRAFT

PRELIMINARY ASSESSMENT AND SITE INVESTIGATION REPORT

For

PRELIMINARY ASSESSMENT/SITE INVESTIGATION FORMER DRY CLEANING FACILITY FORT RILEY, KANSAS

Prepared for:

INSTALLATION RESTORATION PROGRAM U.S. Army Corps of Engineers Kansas City District 601 East 12th Street Kansas City, Missouri 64106

Prepared by:

Law Environmental, Inc. Government Services Branch 114 TownPark Drive Kennesaw, Georgia 30144

SEPTEMBER 1992

TABLE OF CONTENTS

																			<u>Page</u>
EXEC	UTIVE	SUMMAR	ч	• •	• •	•	••	•	•	•	•	•	•	•	•	• •	•		E8-1
1.0	INTR	ODUCTIO	N	• •	• •	•	••	•	•	•	•	•	•	•	•	• •	٠	•	1-1
	1.1	PURPOS	Е	• •	• •	•	••	•	•	•	•	•	•	•	•	•	•	•	1-1
	1.2	SITE B	ACKGR	DUND	• •	•	•••	•	•	•	•	•	•	•	•	• •	•	•	1-1
		1.2.1	Site	Deso	crip	otic	n.	•	•	•	•	•	•	•	•	•	•	•	1-1
		1.2.2	Faci	lity	Ope	erat	ion	S I	115	στο	ry		•	•	•	•	٠	•	1-5
		1.2.3	Prev	lous	TUA	/est	iga	τ10	ons	5	•	• `	•	•	•	• •	•	٠	1-8
	1.3	SCOPE	OF INV	VEST:	IGAJ	TON	•	•	•	•	•	•	•	•	•	•	•		1-10
	1.4	REPORT	ORGAI	NIZA	FION	Ι.	•••	•	•	•	•	•	•	•	•	• •	•		1-10
2.0	STUD	Y AREA	CHARA	CTER:	IZAJ	NOI	· 1	•	•	•	•	•	•	•	•	• •	•	•	2-1
	2.1	GEOGRA	PHY Al	ND PI	HYSI	OGR	APH	Y	•	•	•	•	•	•	•	•	•	•	2-1
		2.1.1	Locat	tion		•		•	•	•	•	•	•	•	•		•	•	2-1
		2.1.2	Clima	ate	• •	•		•	•	•	•	•	•	•	•		•	•	2-1
		2.1.3	Phys	iogra	aphy		• •	•	•	•	•	•	•	•	•	• •	•	•	2-2
	2.2	GEOLOG	ч	• •	• •	•	••	•	•	•	•	•	•	•	•		•	•	2-2
		2.2.1	Regio	onal	Geo	olog	v .		•	•	•	•	•	•	•		•		2-2
		2.2.2	Loca			-	-											•	2-4
		2.2.3	Hydro															•	2-5
3.0	SITE	-SPECIF	іс сня	ARAC'	rer i	ZAT	ION	S	UMN	IAR	Y	•	•	•	•	• •	•	•	3-1
	3.1	FIELD	ACTIV	ITIE	s.	•	•••	•	•	•	•	•	•	•	•		•	•	3-1
		3.1.1	Soil	Gas	Sur	vey		•	•	•	•	•	•	•	•		•	•	3-1
		3.1.2	Soil	Bor	ings	5.		•	•	•	•	•	•	•	•		•	•	3-3
		3.1.3																	3-3
		3.1.4	Surfa	ace I	Wate	er a	nd	Se	lin	nen	t	Sa	mp	1 1	ng		•	•	3-8
		3.1.5																	3-8
		3.1.6																	3-8
	3.2	SITE S	TRATIO	GRAPI	HY A	ND	HYD	RO	GEC	DLO	GΥ		•	•	•		•		3-10
		3.2.1	Site	Stra	atic	rar	hv	•			•	•	•	•	•		•		3-10
		3.2.2																	3-12
				_	-														

,

TABLE OF CONTENTS (Continued)

<u>Page</u>

4.0	NATU	RE AND EXTENT OF CONTAMINATION	4-1
	4.1	SAMPLING PROGRAM	4-1
•		4.1.2 Soil Sampling	4-1 4-3 4-4 4-5
	4.2	ANALYTICAL PROGRAM	4-6
		4.2.1 Analytical Methods 4	4-6
	4.3	ANALYTICAL RESULTS	4-9
		4.3.2 Soil Analytical Results 4- 4.3.3 Surface Water and Sediment Analytical	-10 -13
			-28 -31
5.0	EXPO	SURE ASSESSMENT	5-1
	5.1	CONCEPTUAL SITE MODEL	5-1
	5.2	CHEMICALS OF CONCERN	5-2
		5.2.2 Soil Sampling Results	5-2 5-3
		Results	5-4
	5.3	COMPARISON TO APPLICABLE OR RELEVANT AND APPROPRIATE REQUIREMENTS (ARARS) AND TO BE CONSIDERED (TBC) REQUIREMENTS	5-5
			5-7 -16
	5.4	FATE AND TRANSPORT	-17
		5.4.2 Polycyclic Aromatic Hydrocarbons (PAHs) 5-	-19 -19 -20

4

Ľ

TABLE OF CONTENTS (Continued)

REFEI	RENCE	s	• •	• •	• •	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	R-1
	6.4	RECOM	MEND	ATION	is.	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	6-4
	6.3	EXPOS	URE	ASSES	SSME	ENT	st	JMM	ÍAF	RY	•	•	•	•	•	•	•	•	•	•	•	6-3
	6.2	ANALY	TICA	L SUN	IMA F	RY	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	6-2
	6.1	SITE	INVE	STIG	ATIC	DN/	CH	ARA	ACI	EF	RIZ	ZAJ	rIC	ON	•	•	•	•	•	•	•.	6-1
6.0	SUMM	ARY AN	ID CO	NCLUS	SION	18	•	•	•	•	. •	•	•	•	•	•	•	•	•	•	•	6-1
	5.6	ENVIF	ONME	NTAL	IMI	PAC	TS	•	•	•	•	•	•	•	•	•	•	•	•	•		5-22
	5.5	POTEN	TIAL	RECI	EPTC	DRS	٠	•	•	•	•	•	•	•	•	•	•	•	•	•		5-20
																						<u>Page</u>

.

1

LIST OF FIGURES

.

Figure	Page
1-1	Former Dry Cleaning Facility Location Map 1-3
1-2	Former Dry Cleaning Facility 1-4
1-3	General Floor Plan of the Former Dry Cleaning Facility and Laundry Facility - Pre 1983 1-7
2-1	Geologic Map of Fort Riley
2-2	Generalized Geologic Cross Section Through Fort Riley
2-3	Uppermost Rock Units
3-1	Soil Gas Sampling Locations
3-2	Shallow Soil Boring Sampling Locations 3-4
3-3	Monitoring Well Locations
3-4	Surface Water and Sediment Sampling Locations 3-9
3-5	Northwest to Southeast Cross Section 3-11
3-6	Potentiometric Surface Map
4-1	Soil Gas Sample Locations - Tetrachloroethene 4-11
4-2	Soil Gas Sample Locations - Total FID Volatiles . 4-12
4-3	Positive Analytical Results: Soils from Monitoring Well Borings - Volatile Organics 4-23
4-4	Soil Boring Analytical Results from Monitoring Well Borings and Sample Depths 4-24
4-5	Positive Analytical Results: Soils from Shallow Soil Borings - Volatile Organics 4-26
4-6	Shallow Soil Boring Analytical Results from Shallow Borings and Sample Depths 4-27
4-7	Positive Analytical Results: Soils from Monitoring Well Borings - Semi-Volatile Organics 4-29
4-8	Positive Analytical Results: Soils from Shallow Soil Borings - Semi-Volatile Organics 4-30

1532.23

14

LIST OF FIGURES (Continued)

.

<u>Figure</u>		<u>Page</u>
4-9	Positive Analytical Results: Surface Water and Sediments - Volatile and Semi-Volatile Organics .	4-32
4-10	Positive Analytical Results: Ground Water - Volatile Organics	4-36
4-11	Positive Analytical Results: Ground Water - Semi-Volatile Organics	4-38
5-1	Exposure Model	. 5-3
6-1	Additional Data Needs	. 6-6

-v-

LIST OF TABLES

<u>Table</u>		<u>Page</u>
4-1	Project Activities and Objectives	. 4-2
4-2	Positive Hits - Soils from Monitoring Well Borings	4-14
4-3	Positive Hits - Soils from Shallow Borings	4-18
4-4	Positive Hits - Surface Waters	4-33
4-5	Positive Hits - Sediments	4-34
4-6	Positive Hits - Ground Waters	4-35
5-1	Potential Applicable or Relevant and Appropriate Requirements for Ground Water	. 5-9
5-2	Potential To-Be-Considered Requirements for Soils	5 - 11
5-3	Potential Applicable or Relevant and Appropriate Requirements for Surface Water	5-13
5-4	Potential To-Be-Considered Requirements for Sediments	5-15
5-5	Endangered and Threatened Species (and Associated Habitats) Common to Fort Riley Area	5-18

LIST OF APPENDICES

- Appendix A Scope of Services
- Appendix B Interview/Background Information
- Appendix C Soil Gas Survey
- Appendix D HTW/Test Boring Record
- Appendix E Monitoring Well Installation Diagrams
- Appendix F Monitoring Well Development/Additional Development
- Appendix G Geotechnical Analysis
- Appendix H Survey Data/Site Map
- Appendix I MRD Data/Revised Sampling Procedure

EXECUTIVE SUMMARY

The U.S. Army Corps of Engineers - Missouri River Division, Kansas City District (CEMRK) has contracted with Law Environmental, Inc. -Government Services Division (Law) to determine the presence or absence of contamination associated with operating practices at the former Dry Cleaning Facility at Fort Riley, Kansas, and to prepare a Preliminary Assessment/Site Investigation (PA/SI) Report for the site. Fort Riley is listed as a National Priority List (NPL) site. Specific tasks for the PA/SI included a review of the history of operations, preparation of a site map, conducting a soil gas survey, drilling of soil borings and monitoring well installations, survey activities, sample collection and chemical analyses.

The former Dry Cleaning Facility (Bldg. 181) is located in the southwest corner of the Main Post cantonment area and is part of the Historical District at the base. The site is situated on the edge of a bluff cut by the Kansas River, approximately 3,000 feet east-northeast of the confluence of the Republican and Smoky Hill Rivers. The facility is built over residuum and loess underlain by the limestone and shale bedrock. Adjacent to this facility are the alluvial deposits of the Kansas River floodplain.

The Fort Riley Dry Cleaning Facility was operated in Building 181 from the 1930s to 1983; after 1983, operations were moved to Building 183. At some point during the operation of this facility in Building 181, still bottoms derived from the recycling of cleaning solution were disposed of improperly. It has been reported that still bottoms were occasionally dumped on the ground behind the building or placed in dumpsters as a means of disposal. Trash found in the dumpsters would be transported to Southwest Funston Landfill. There is uncertainty as to the specific location of the dumping; doors opening onto the rear portion of the Dry Cleaning site are present at the back of the building on both the southeast and southwest sides, but no signs of systematic dumping

are evident at either portal. Still bottoms generally constitute a sludge comprising sediment and solvent. Prior to 1966, the cleaning solvent used at the Dry Cleaning Facility was Stoddard (naptha) solvent; after 1966, tetrachloroethene (PCE) was used.

The soil gas survey was performed by Target Environmental Services (TARGET) from October 29 through November 2, 1991. Sample analysis was performed on 49 separate samples using an on-site laboratory supplied by TARGET. The survey encompassed the entire former Dry Cleaning Facility. All of the samples collected during the field phase of the survey were subjected to dual analyses. One analysis was conducted to determine concentrations of tetrachloroethene (PCE). The second analysis was conducted to determine the concentrations of petroleum based solvents, such as Stoddard solvent.

The results of laboratory analysis revealed high levels of PCE at the northeast corner of the former Dry Cleaning Facility. More moderate levels of PCE extended westward and northward across Custer Road. Low levels extended throughout the site. Low levels of petroleum based solvents were present at the northeast corner of the building, where PCE was also highest. These low levels extended westward beyond the building.

Fifteen shallow soil borings were drilled to a depth of 15 feet. The locations of the borings were determined by the soil gas results, and the accessibility for a truck-mounted drill rig. Two soil samples were collected from each boring and analyzed for volatile and semi-volatile organic compounds.

Six monitoring wells were drilled and installed based on the results of the soil gas survey and the 15 soil borings. Four soil samples were collected from each of the six borings. Ground-water samples were collected after well development. Soil and groundwater samples were analyzed for volatile and semi-volatile organic compounds.

1532.23

ES-2

Borings at the site revealed that the geology consists of a 30- to 40-foot thick soil horizon overlying the regional limestone/shale bedrock. The soil is thickest south of the site and thins to the north. The soil is composed of loess, alluvial deposits, and weathered bedrock. A continuous zone of weathered bedrock is situated between the base of the soil horizon and the top of the bedrock.

Ground water was encountered at the site at depths between 35 to 40 feet below the ground surface. The ground-water flow is discrete, dropping only 2.52 feet from northwest to southeast. Ground-water flow direction is to the southeast.

Analytical results of the soil and ground-water samples collected during the investigation revealed the presence of volatile and semi-volatile organic compounds beneath the site. Those compounds identified in the soils and ground water include trichloroethene, tetrachloroethene, vinyl chloride, 1,2-dichloroethene, toluene, 1,1,2-trichloroethane, carbon disulfide, pyrene, dibromochloromethane, benzo[a]anthracene, benzo[a]pyrene, chrysene, 2-methylnaphthalene, phenanthrene, bis(2and fluoranthene, ethylhexyl)phthalate. The contamination is most pronounced to the northeast and southeast of the site, and corresponds to the lineation of a sewer line extending from the Current Dry Cleaning Facility and Steam Plant.

An exposure assessment addressing public health and environmental concerns was performed in accordance with current EPA guidance. A conceptual site model was developed to identify the possible exposure pathways that may arise from contaminant releases at the site to both human and ecological receptors. The assessment addressed potential routes of contaminants in all medias of concern to all potential receptors, either directly or indirectly affected. In addition, a brief description of the environmental fate and transport of the chemicals detected at the site was included in the

exposure assessment. Lastly, chemical-specific and locationspecific Applicable and Relevant or Appropriate Requirements (ARARs) and To-Be-Considered (TBC) requirements were identified for the site. A comparison to ARARs revealed that the maximum concentrations of several constituents present in the ground water beneath the site exceeded Maximum Contaminant Levels (MCLs). The concentrations of methylene chloride (130 μ g/L), tetrachloroethene (660 μ g/L), and trichloroethene (33 μ g/L) exceeded the standards (for each: MCL = 5 μ g/L) for these constituents. In addition, the level of vinyl chloride detected in the site's ground water (11 μ g/L) exceeds the MCL of 2 μ g/L. 1,2-Dichloroethene was detected at concentrations below the MCL.

ARARs for surface water, the Ambient Water Quality Criteria (AWQC), were exceeded by methylene chloride and tetrachloroethene. Federal AWQC for the protection of human health for the consumption of fish and water and for the consumption of fish alone were exceeded by both constituents.

A comparison of the maximum concentrations detected in site media to TBCs also revealed levels which exceeded these requirements. Kansas Action Levels (KALs) and Kansas Notification Levels (KNLs) methylene chloride, water were exceeded by for around tetrachloroethene, trichloroethene, and vinyl chloride. The detected concentration of total 1,2-dichloroethenes maximum exceeded the KNL, but not the KAL. A comparison of constituents' maximum concentrations in soil and sediment to TBCs revealed that constituents were present at levels below the Resource Conservation and Recovery Act's (RCRA) soil action levels and below the National Oceanic and Atmospheric Administration's (NOAA) sediment criteria.

The PA/SI was performed to determine the presence of contamination at the former Dry Cleaning Facility. This study has established that there is contamination in the soils, surface water, and ground water at the site, however, the vertical and horizontal extent needs to be delineated. Several additional investigative

1532.23

ES-4

alternatives are recommended, including additional monitoring wells, a sewer line survey, a more thorough study of former underground storage tanks, a study of the waste practices at the Current Dry Cleaning Facility and Steam Plant. Localized interim action for soils is also suggested.

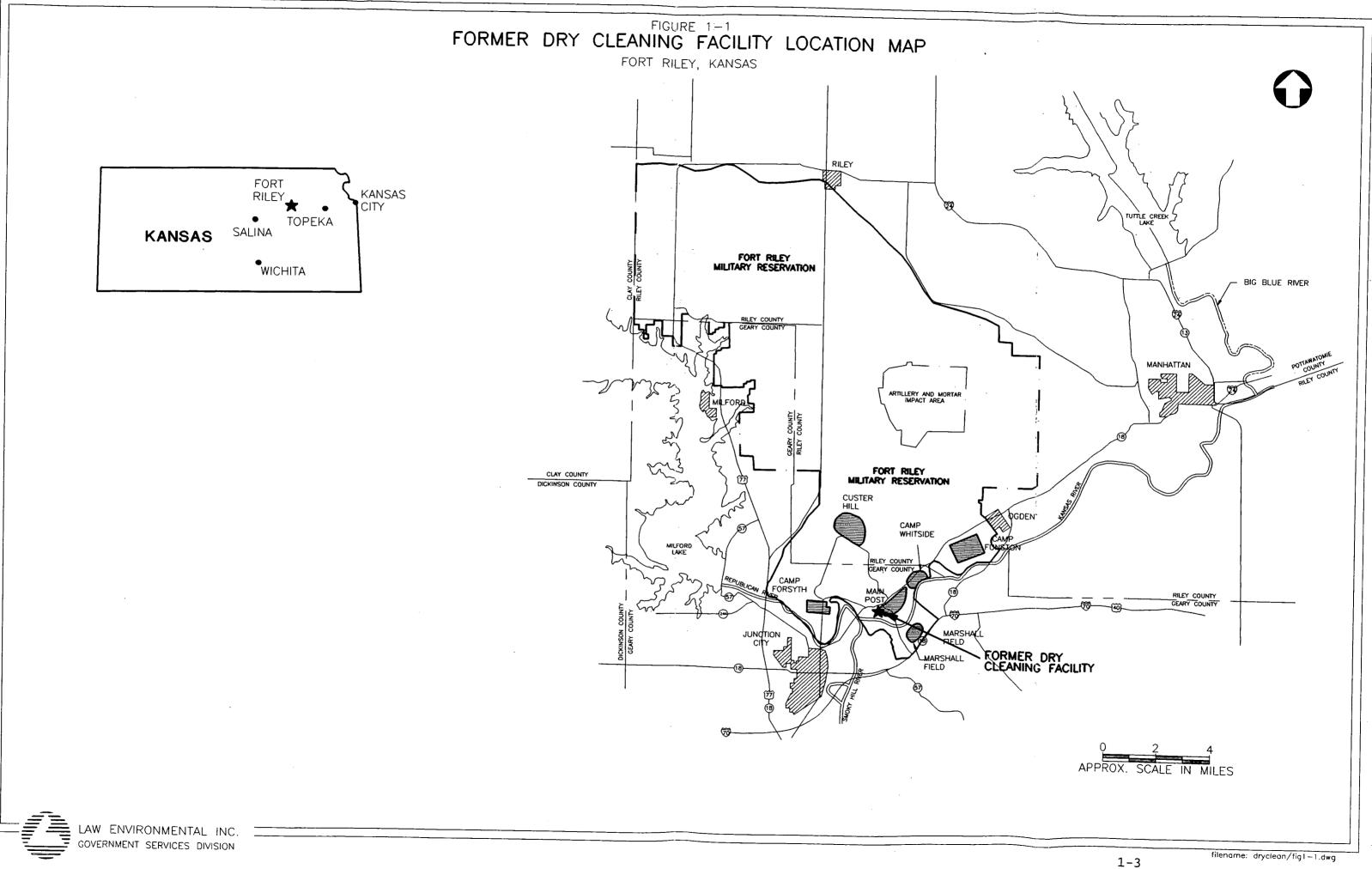
1.0 INTRODUCTION

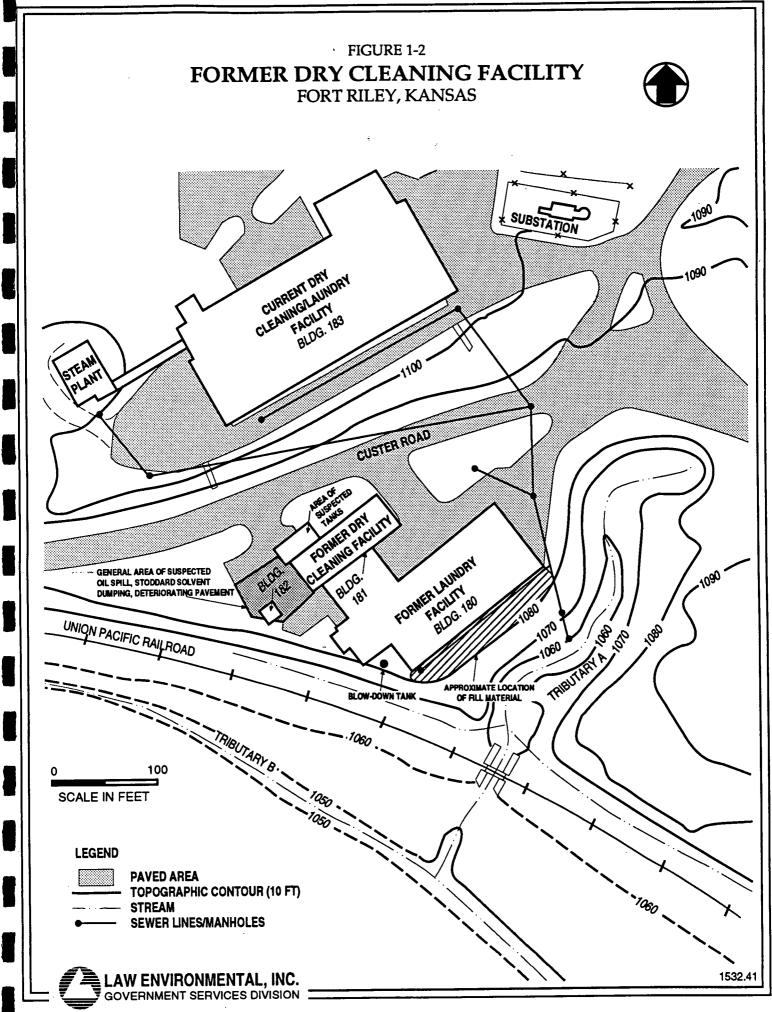
Law Environmental, Inc. - Government Services Division (Law) was contracted by U.S. Army Corps of Engineers - Missouri River Division, Kansas City District (CEMRK) to perform a site reconnaissance and to prepare a Preliminary Assessment and Site Investigation Report (PA/SI) at the former Dry Cleaning Facility at Fort Riley, Kansas. The report documents the investigation procedures and findings of the study. The report is divided into six sections and nine appendices.

1.1 <u>PURPOSE</u>

The purpose of this study is to complete a Preliminary Assessment and Site Investigation to identify if contamination is present at the former Dry Cleaning Facility at Fort Riley. Specifically, the investigation was designed to confirm the presence or absence of significant contamination at the designated sites; assess the potential for contamination migration; identify environmental levels of contaminants relative to regulatory standards; and define future investigations and/or actions which may be required.

1.2 SITE BACKGROUND


1.2.1 <u>Site Description</u>


The Fort Riley Military Reserve was occupied initially in 1852 as a small encampment at the confluence of the Republican and Smoky Hill Rivers. It has since expanded to comprise approximately 150 square miles in Riley and Geary Counties, Kansas. There are six distinct areas on the base: the Main Post, Custer Hill, Camp Funston, Camp Whitside, Camp Forsyth and the Marshall Army Airfield. These areas account for approximately five percent of the total area of the reserve, with the remaining land used for training maneuvers, gunnery ranges, etc. (Figure 1-1).

The former Dry Cleaning Facility (Bldg. 181, formerly Bldg. 213) is located in the southwest corner of the Main Post cantonment area. Adjacent to Building 181 to the south, Building 180 housed the former laundry facility. Both buildings are situated on the edge of an escarpment approximately 30 feet above the Kansas River floodplain and north of a railway extending along the floodplain, adjacent to the escarpment (Figure 1-2). The facility is located about 800 feet north of the Kansas River. Approximate coordinates for the site are: latitude 39° 04' 32"and longitude 96° 47' 30".

A steeply banked ravine is located approximately 50 feet southsoutheast of the buildings. This ravine extends under the railroad tracks and connects with other minor drainages before terminating in the Kansas River. Several sanitary sewer lines, estimated to be fifteen feet below ground, are present to the north and northeast of the site, originating from the steam plant and the current Dry Cleaning Facility (Figure 1-2). The sewer lines are constructed to carry wastes to the southeast, and their presence in the area offers possible routes of migration. During an interview with the former manager of the Dry Cleaning Facility, it was stated that, after dry cleaning operations had moved to Bldg. 183, the diatomaceous earth used to filter spent solvent before the recycling process was periodically dumped into the sewer line. In a follow-up interview with Wayne Wright of the Sanitary Sewer Department, Mr. Wright was unable to confirm that the dumping ever A recent inspection of the New Dry Cleaning Facility occurred. revealed compressor oil leakage into the floor drains (Appendix B). The inspection also found drums of PCE, dyes, detergents, and Therminol oil stored in rooms with floor drains.

Because of slope instability adjacent to the ravine, fill material was reported to have been brought in from off site to maintain the

grade on the east and south sides of Building 180. Most recent filling occurred in the summer of 1991 when approximately three feet of fill dirt was placed along the southeast side of the site. The approximate area (150' x 40') affected by fill is shown on Figure 1-2. All soil samples analyzed during the site investigation were collected below the new fill. Therefore the samples represent "true" site conditions.

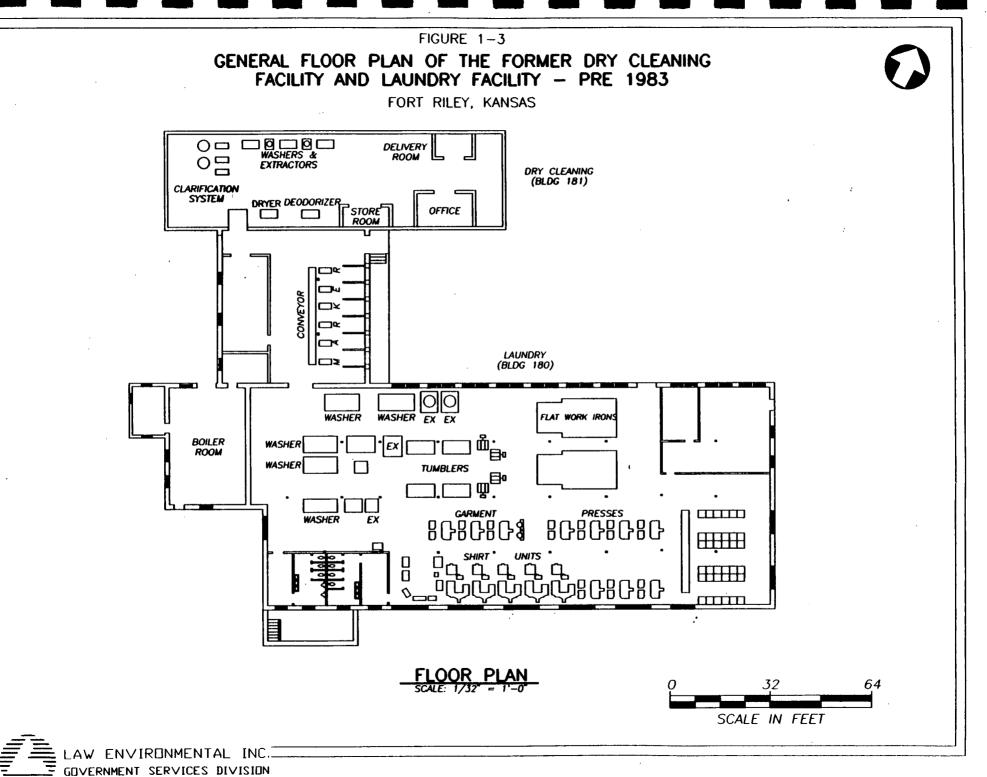
Numerous overhead power and telephone lines are present and buried utilities, steep topography, and potentially buried tanks hinder access to the facility. A buried tank was previously located on the north side of the building and thought to be used for heating oil storage was removed at an undetermined date and the tank pit backfilled with soil (Figure 1-2).

A former supervisor for the former Dry Cleaning Plant stated that two 500 gallon tanks, located at the northeast corner of Building 181, were removed around 1978. One tank held new naphtha solvent (Stoddard) while the other tank held used solvent which was eventually "cooked-off". The former supervisor did not remember there being a heating oil tank at the site. However, in recent discussions with Mr. Traxel of the Roads and Grounds Department, Mr. Traxel could not recall any tanks at the former Dry Cleaning Facility other than a blowdown tank. The blowdown tank was located on the southwest side of the building and was used for boiler blowdown collection (Figure 1-2). The location of this tank has been verified from base maps. This tank reportedly has been removed. Also, cisterns may have existed, or still exist, on the north side of the building.

1.2.2 Facility Operations History

According to site plans, the Fort Riley former Dry Cleaning Facility operated in Building 181 as early as the 1930s. After

1532.23


1983, the dry cleaning operations were moved to Building 183. Presently, both Buildings 180 and 181 are used as office space and for general storage of computers, furniture, and lawn maintenance equipment. The original laundry section (180) was constructed in 1915 and totally reconstructed in 1945. The original dry cleaning plant (181) was constructed in the 1930s. The separate structures were linked in 1945. Figure 1-3 presents the general floor plans of Buildings 180 and 181 as they existed during cleaning activities.

According to a 1956 building listing, laundry operations occurred in both Buildings 180 and 183. Laundry operations are believed to have ceased in Building 180 during this period of time. The drv cleaning operation in Building 181 remained on-site and expanded into the old laundry portion. Prior to 1966, the cleaning solution used was (Stoddard) solvent; since 1966, tetrachloroethylene (PCE) was used. Tetrachloroethylene has been identified as a hazardous substance or contaminant within the meaning Sections 101 (14) and 101 (33) of CERCLA, 42 U.S.C. §§ 9601 (14) and (33). During the facility's use for dry cleaning, still bottoms derived from the recycling of cleaning solution were reportedly dumped on the ground behind the building (USATHAMA, 1984; USAEHA, 1984 and 1987). Still bottoms are the residue remaining after distillation of used cleaning solvent. They generally constitute a sludge comprising sediment and small quantities of solvent.

Previous investigation efforts of the former Dry Cleaning Facility have reported that during the facility's dry cleaning operation, an estimated volume of approximately 21 gallons per month of still bottoms were generated and subsequently disposed by dumping behind the building (USAEHA, 1988). At that rate, the total estimated quantity of disposed PCE sludge would exceed 4,000 gallons.

However, Ft. Riley employees familiar with past practices at the facility have indicated that still bottoms were routinely disposed

1532.23

1-7

in dumpsters, implying that a relatively small volume was dumped behind the building. According to the CIF Action Officer, no disposal records were assembled during operation of the former Dry Cleaning Facility. Disposal was authorized through the waste dumpster in quantities of less than 200 pounds. Waste items included small quantities of sludge collected from distilling the solvent (1 to 2 gallons every 3 months) and paper/carbon filters from the distilling machine (12 to 30 filters every 3 months).

Another employee familiar with past practices at the former Dry Cleaning Facility stated that an outside dumpster was used to dispose of waste materials since at least 1953. Neither the actual location of the dumpster nor the amounts of waste material disposed are documented.

It has been reported that still residue from Stoddard solution had been disposed of by pouring on the ground behind the building (ESE, 1984). This practice may have occurred near the "back door" outside of the former Dry Cleaning Facility. The "back door" is thought to be located at the west end of the building, near an area where a patch of badly deteriorated asphalt had been reported. Whether the deterioration of the asphalt is related to repeated dumping of Stoddard solvent is unknown. In addition, an oil spill is thought to have occurred in this area (ESE, 1984), although this also cannot be confirmed because the spill supposedly happened in 1980 and a 1985 site reconnaissance found no evidence of the alleged spill.

1.2.3 Previous Investigations

In 1984, an Installation Assessment (USATHAMA, 1984) was conducted under the Department of Defense Environmental Restoration Program to determine the existence of hazardous and/or toxic substances at Fort Riley and the potential for migration of contamination from the installation to off-site areas. The initial data collection

1532.23

and field investigation efforts indicated the possibility of soil contamination at the former Dry Cleaning Facility.

In June 1986, U.S. Army Environmental Hygiene Agency (USAEHA) analyzed two soil samples collected on the west side of Building 181 for PCE. According to the CIF Action Officer, soil samples were collected from a grassy area along the west side of the building just north of the old boiler room. No PCE was detected in either of the two samples (detection limit was 0.02 ppm). Sample collection procedures and depths of sampling were not documented at the time of the study, and assuming that surficial samples were analyzed, a PCE non-detect would be irrelevant due to the volatile nature of the compound in near surface soils.

In 1988, the USAEHA conducted an evaluation study of all solid waste management units at Fort Riley. The USAEHA report stated that no evidence outside the building was observed which would indicate systematic spilling of dry cleaning solvent or sludge. The report also stated that the potential for solvent (PCE) release to the environment was low due to the lack of detection at the site. USAEHA recommended that no further sampling be done at the site.

On June 28, 1991, the U.S. Department of the Army (DA), 1st Infantry Division (mechanized) and Fort Riley entered into a Federal Facility Agreement (FFA) with the U.S. Environmental Protection Agency (U.S. EPA) and the state of Kansas, through the Kansas Department of Health and Environment (KDHE).

Under the FFA, the DA agreed to conduct a Site Assessment to identify all potential and known, past and present, solid and hazardous waste treatment, storage, or disposal areas where hazardous substances could have been released or come to be located. As part of the Site Assessment, the Inactive Dry Cleaning Facility was reinvestigated.

1.3 SCOPE OF INVESTIGATION

The Preliminary Assessment/Site Investigation at the former Dry Cleaning Facility is primarily intended to characterize potential contamination releases due to past waste management practices or from other types of releases in the vicinity of the site. Prior to commencement of field activities, a records review and historical evaluation was completed, the results of which have been discussed in Section 1.2.

During the Site Investigation, a soil gas survey consisting of 49 separate sampling points was completed as the first stage of field The results of the survey were used to determine the work. placement of 15 soil borings to collect soil samples at two separate depths from each boring. Six monitoring wells were installed at various locations around the site. The wells were designed to intersect the top of the water table. Soil samples were collected from the monitoring well borings during drilling and ground-water samples were collected after development of the completed wells. Three surface water samples and three sediment samples were collected near the site. The site was surveyed and a map was constructed of the area using two-foot contour intervals. All soil boring locations and monitoring wells were also surveyed upon completion of the monitoring well sampling. An in-depth discussion of field activities is presented in Section 3.0.

1.4 <u>REPORT ORGANIZATION</u>

- 1.0 INTRODUCTION Discusses the purpose of the investigation and provides a general background of the site.
- 2.0 STUDY AREA CHARACTERIZATION Summarizes regional characteristics influencing field activities.

- 3.0 SITE-SPECIFIC CHARACTERIZATION Provides a detailed discussion of site-specific characteristic and methodology of the investigation.
- 4.0 NATURE AND EXTENT OF CONTAMINATION Discusses the results of site characterization and the nature and extent of contamination at the site.
- 5.0 EXPOSURE ASSESSMENT Discusses contaminant presence and migration potential to human receptors.
- 6.0 SUMMARY OF CONCLUSIONS Summarizes the findings of the investigations and makes recommendations for future work.

2.0 STUDY AREA CHARACTERIZATION

2.1 GEOGRAPHY AND PHYSIOGRAPHY

2.1.1 Location

Fort Riley is located in north-central Kansas, occupying 100,000 acres of land in Riley and Geary Counties. Agriculture is the primary land use in the area, comprising approximately 70 percent of the total land use. Urban areas comprise less than 5 percent of the land use. Urban populations near Fort Riley include Junction City to the south, Manhattan, Ogden, and Keats to the east, Riley to the north, and Milford to the west. Manhattan and Junction City contain the largest residential areas.

To the west of Fort Riley, the land is dominated by Milford Reservoir encompassing 16,300 acres. The northern and eastern boundaries of Fort Riley are bordered by agricultural areas and rangeland. The southern and southeastern boundaries are bordered by agricultural and residential areas.

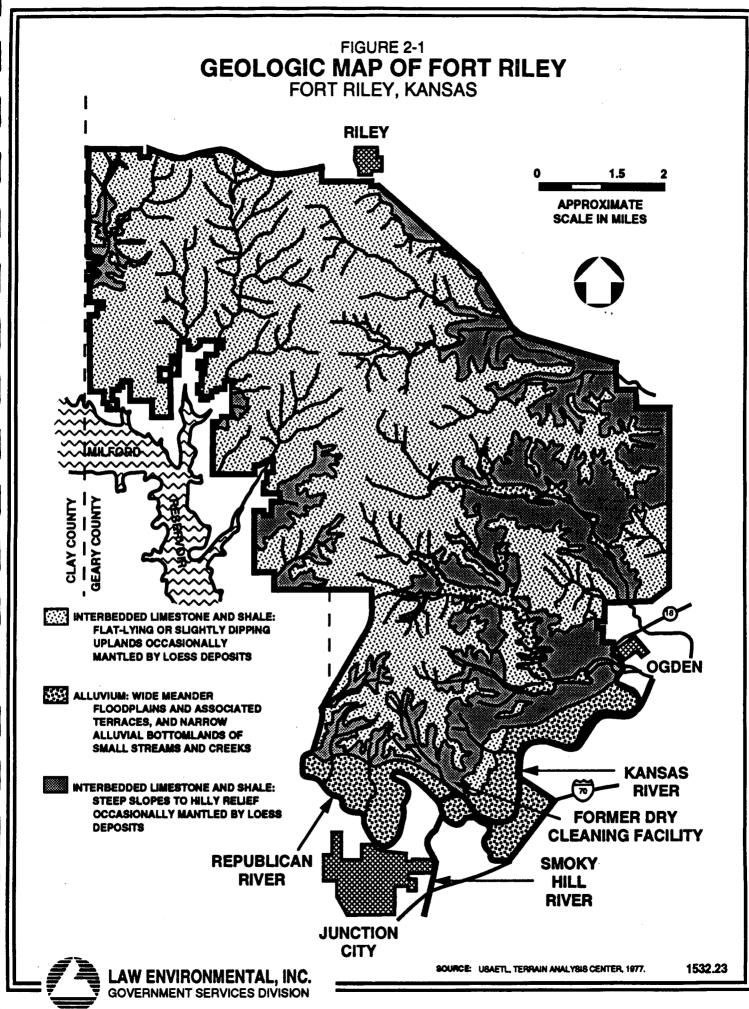
2.1.2 Climate

Based upon data collected at the Manhattan, Kansas Climate Station, the Ft. Riley region experiences a temperate climate, with an average daily high temperature of 90°F in July, and average daily low temperature of 37°F in January.

Prevailing wind direction varies from south to southwest during the period of April to January and from a northerly direction during the months of February and March. Mean wind speed is fairly constant at 8 miles per hour with a normal maximum of 12 miles per hour.

Average annual precipitation near Fort Riley is 31 inches. Approximately 70 percent of this occurs from April through September. Twenty-four hour event totals can exceed 3.5 inches from April through October, during thunderstorm periods. June and July experience the highest incidence of thunderstorms per month. Lake evaporation is approximately 50 inches per year, resulting in a net annual estimated evapotranspiration rate of 19 inches per year (U.S. National Climatic Data Center, 1982).

2.1.3 <u>Physiography</u>


Fort Riley lies within the Osage Plains section of the Central Lowlands physiographic province. The topography around Fort Riley consists of plains incised by steep drainage features. The elevation ranges from 1,025 to 1,356 feet above mean sea level.

Terrain on the installation varies from alluvial bottomlands along the Republican and Kansas Rivers on the southern boundary through the hilly to steep country in the central section, and into the high uplands or prairies toward the north.

2.2 GEOLOGY

2.2.1 <u>Regional Geology</u>

Fort Riley is situated in three distinct geological-topographical areas (Figure 2-1). The first is the uplands area, consisting of flat-lying to gently, northwesterly dipping limestones and shales. The uplands area generally is covered by various shale units which overlie the escarpment-forming limestones. Small streams have dissected these thick shale units and eroded much of the area into a rolling plateau. Local relief ranges from 164 to 240 feet in the uplands area.

The bedrock exposed in the Fort Riley area is Lower Permian age and consists of alternating limestones and shales. The uppermost geologic unit is the Chase Group, comprising up to 335 feet of thick, chert-bearing limestones and red and green shales. Bedding planes dip gently to the northwest.

Overlying the bedrock are alluvial deposits, residual soil developed from the bedrock, and windblown loess of Pleistocene and Recent age. The loess deposits on Fort Riley range from 0 to 2 feet in thickness (USAETL, Terrain Analysis Center, 1977). Where the Republican and Kansas Rivers have cut into the Permian limestones and shales, they have created alluvial deposits of silt, clay, and very fine sand near the surface grading to coarser sand and gravel with depth. The maximum thickness of the alluvium on Fort Riley, as determined from well logs, is 91 feet. Most of the soils at Fort Riley are silty loams between 6 and 12 inches thick, underlain by clays and weathered limestone and shale.

According to the USDA Soil Conservation Survey Report (USDA SCS, 1975) and confirmed by borings at the site, the former Dry Cleaning Facility has similar surface soil characteristics. Outside of each drainage feature, the soil is characterized as Kennebec Series silt loam. This soil type has a medium to rapid surface runoff with erosion problems.

The drainage features are in the Breaks-Alluvium soil association, which includes loess, residuum weathered from shale and limestone, and surrounding soil material types. Surface runoff tends to be rapid and permeability tends to be low.

2.2.2 Local Geology

The former Dry Cleaning Facility is located in the uplands physiographic unit (Figure 2-1). The uplands area consists of flat-lying to gently, northwesterly dipping limestones and shales

and generally is covered by various shale units which overlie the escarpment-forming limestones. Small streams have dissected these thick shale units and eroded much of the area into a rolling plateau. Local relief ranges from 164 to 240 feet in the uplands area. Towards the south is the alluvial bottomlands of the Kansas and Republican Rivers; relief in this area ranges from 25 to 60 feet. North of the site is the hilly to steep country composed of alternating limestones and shales, which extend from the uplands down to the alluvial bottomlands.

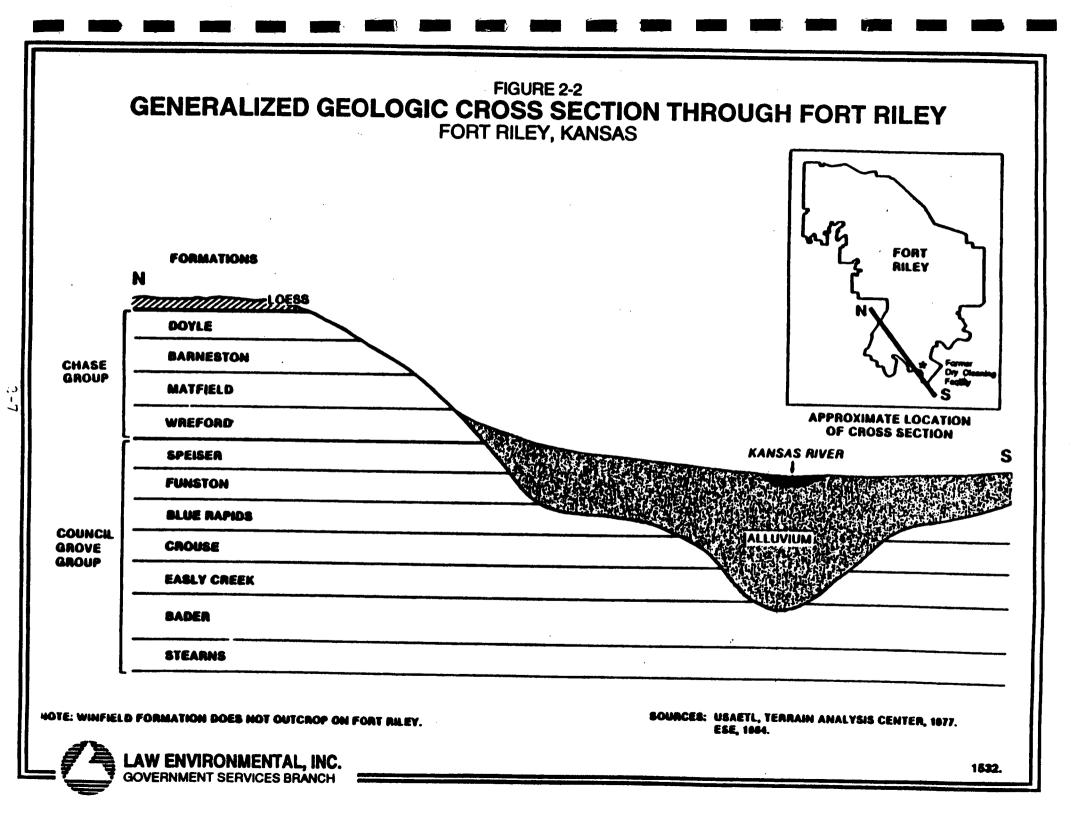
At the former Dry Cleaning Facility, the drainage slopes are steep and bedrock outcrops are present from approximately 10 to 15 feet above the drainage floor on the east side. Erosion of the soils on the east side of the building has required the placement of 1 to 6 feet of fill material to maintain the bank stability and prevent undermining of the foundation.

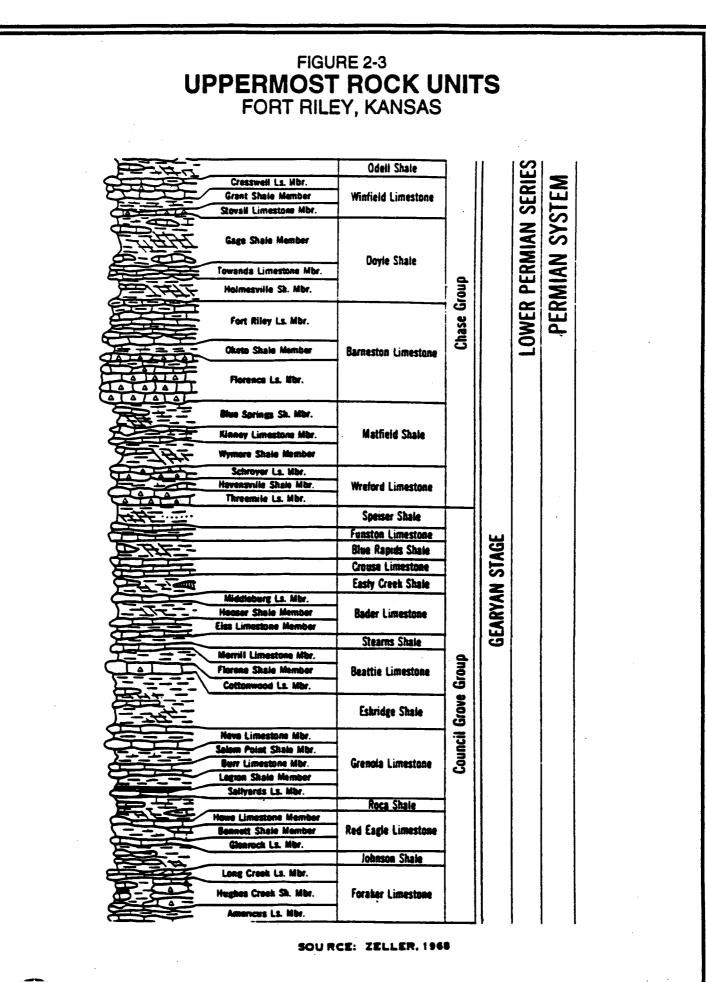
Depending upon location, depth to bedrock ranges from 1 to 30 feet. The area adjacent to the subject site drains into a mixed calcareous/non-calcareous alluvial soil characterized as a silt loam to silty clay loam with medium permeability.

2.2.3 <u>Hydrogeology</u>

The Fort Riley Military Reserve area covers a portion of the watershed for the Republican River, Milford Lake Reservoir and the Kansas River. The area is characterized by poorly developed karst topography in interbedded limestones and shales. The term "karst" refers to topographic and lithologic characteristics associated with carbonate dissolution by the action of ground water. The bedrock is overlain by residual soil, alluvium, and loess.

The former Dry Cleaning Facility is located on the edge of a bluff cut by the Kansas River, approximately 3,000 feet east-northeast of the confluence of the Republican and Smoky Hill Rivers. The


facility is built over residuum and loess underlain by the limestone and shale bedrock. Adjacent to this facility are the alluvial deposits of the Kansas River floodplain.


Ground water can be produced from fractures and solution channels of the limestone and from interstitial spaces in alluvium in the floodplains of the Kansas and Republican Rivers. In the Kansas River basin, the alluvium consists of silt, clay, and very fine sand.

2.2.3.1 <u>Ground Water</u> - The primary source of drinking water for Fort Riley, Junction City and Ogden is the valley fill alluvium (alluvial aquifer) of the Republican and Kansas Rivers (Figure 2-2). Junction City and Fort Riley's water supply wells are within the Republican River floodplain. Ogden's water supply wells are located within the Kansas River floodplain. Depth to water at Fort Riley water supply wells ranges from 15 to 25 feet below the ground surface. Depth to water in Junction City and Ogden water supply wells is approximately 24 and 26 feet below the ground surface, respectively.

The alluvial deposits are capable of yielding more than 14,000 gpm from a single well. This aquifer is recharged through direct infiltration of rain, seepage from limestone and shales, and the adjacent rivers. The Kansas and Republican Rivers are the primary source of recharge to the alluvial aquifer. The regional direction of ground-water flow is generally towards the Kansas River and is influenced by river stage.

Ground water may also be produced, to a limited extent, from solution channels and joints in the limestones and shales of the Permian bedrock (bedrock aquifer). The Fort Riley and Florence limestones, members of the Barneston Limestone Formation (Figures 2-2 and 2-3), are the chief bedrock aquifers, producing a maximum

GOVERNMENT SERVICES BRANCH

flow of 1435 gallons per minute (gpm). Where the soil cover is thick, a perched water table may be found overlying the uppermost shale unit. The expected depth to the water table at the former Dry Cleaning Facility is approximately 40 feet below the ground surface.

Supplies adequate for local drinking water and moderate-scale agricultural activities can be derived from the bedrock wells. Depth and presence of ground water varies depending on local physiographic, geologic, and hydrologic conditions. Wells completed in limestone at Fort Riley are producing from zones approximately 70 feet below the ground surface.

2.2.3.2 <u>Surface Water</u> - Surface waters at Fort Riley generally fall into one of three categories: rivers, streams/drainages, and impoundments.

2.2.3.2.1 Rivers - The major rivers in the vicinity of the sites are the Republican, Smoky Hill, and Kansas River. The Republican River is west of Fort Riley, with flow controlled by Milford Dam. The river flows southeasterly and joins the Smoky Hill River near Junction City to form the Kansas River. The Kansas River eventually drains into the Missouri River at Kansas City.

The Kansas River exhibits high water stages from the last part of February through the first part of June. The lowest river stages occur from late October through January. Prior to the construction of Milford Reservoir and Tuttle Creek Reservoir (on the Big Blue River), major flooding of three to five-day duration occurred approximately every 8 to 10 years.

The Republican River has a mean annual discharge of 1,007 cubic feet per second. The low flow record is 50 cubic feet per second and the high flow record is 13,500 cubic feet per second.

The Smoky Hill River discharges approximately 1,760 cubic feet per second. Flow range extremes are not available.

The Kansas River has a mean annual discharge of 2,750 cubic feet per second, calculated as the combined flow from the Republican and Smoky Hill Rivers. Kansas River level fluctuates between 1.5 feet depth to 12 feet depth, maximum.

Water quality of the Kansas River is greatly influenced by flow rates, but in general is moderate to poor, especially at low flows. The river waters can be generally characterized as: turbid, alkaline, moderately mineralized, well buffered, with good dissolved oxygen content, low organic load, high nutrient levels, and high bacteria numbers.

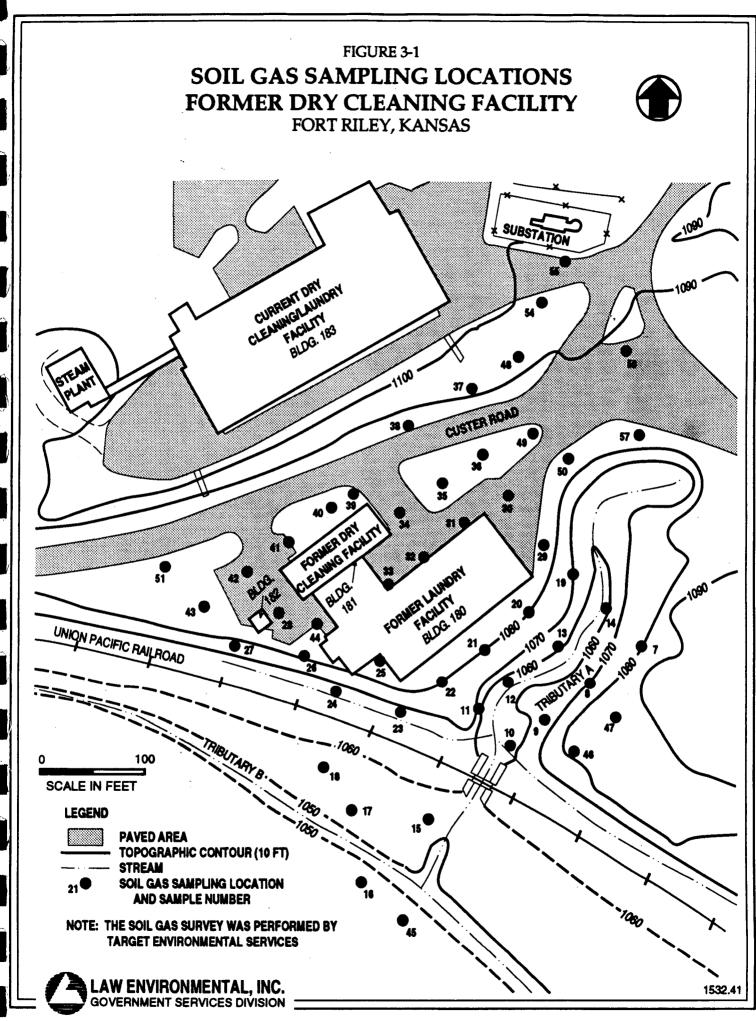
2.2.3.2.2 Streams and Drainages - Almost all of the streams and drainageways at Fort Riley are ephemeral. No reliable data are available for flow rates of these creeks. Water quality is highly variable dependent on the frequency and severity of precipitation events.

2.2.3.2.3 Surface Impoundments - Surface water impoundments at or near Fort Riley include two man-made reservoirs, several oxbow lakes, and several large and many smaller ponds. Tuttle Creek Reservoir is located northeast of Fort Riley and is fed by the Blue River. Milford Reservoir is located west of Fort Riley and is fed by the Republican River. No surface water impoundments are found within the DCF drainage basin upstream of the Kansas River.

3.0 SITE-SPECIFIC CHARACTERIZATION SUMMARY

This section details the site-specific field investigation activities conducted at the former Dry Cleaning Facility. Unless otherwise noted, field investigation activities were performed in accordance with the Well Installation Plan, Work Plan, and the Chemical Data Acquisition Plan and Site Specific Sampling Plan.

3.1 FIELD ACTIVITIES


Field activities included a soil gas survey, shallow soil borings, monitoring well installation, soil, sediment, surface and groundwater sampling, and surveying activities.

3.1.1 Soil Gas Survey

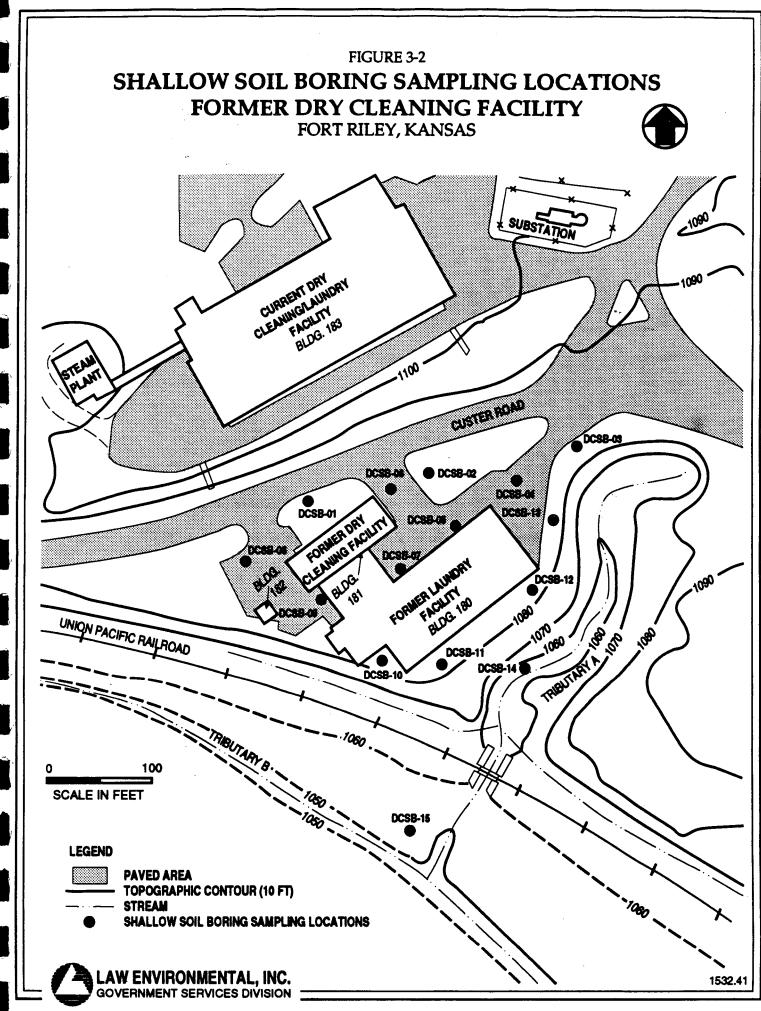
A shallow soil gas survey was conducted at the former Dry Cleaning Facility in October, 1991 by Target Environmental Services. The purpose of this survey were to determine the presence/absence of Stoddard solvent, PCE, or other volatile organic compounds in the soils surrounding the site. This information was used to identify major areas of contamination, and to aid in the placement of soil borings and monitoring wells to assess soil and ground-water contamination beneath the site.

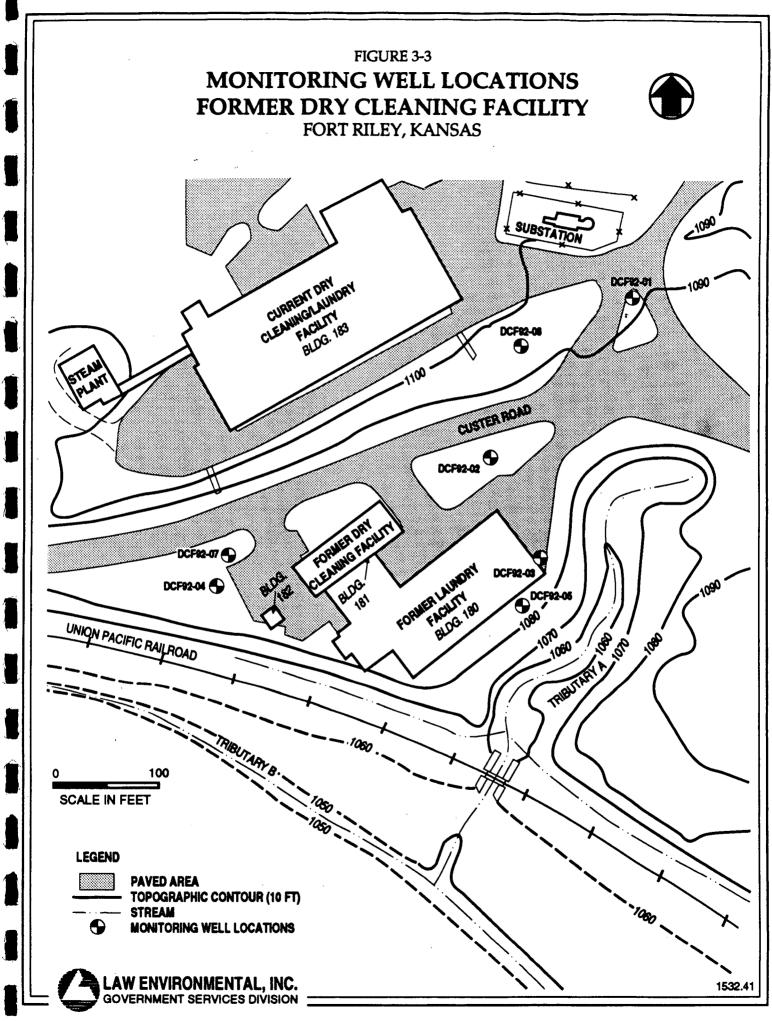
Soil gas samples were collected by driving a probe into the soil above the water table and withdrawing the soil gas by means of a vacuum pump. The soil gas was analyzed at the field laboratory set up at the site. Appendix B contains the methodology and the analytical report submitted by Target.

Soil gas samples were collected at a total of 49 locations at the site (Figure 3-1). The sampling depth varied from 3.5 to 6 feet 1532.23 3-1

below the ground surface. Based upon the findings of the samples collected early in the survey, the soil gas survey was expanded accordingly as field work progressed. The analytical results of the survey will be discussed in the Nature and Extent of Contamination, subsection 4.3.1. Appendix C contains the survey report issued by TARGET.

3.1.2 Soil Borings


Fifteen shallow soil borings were performed at the former Dry Cleaning Facility. The borings were auger drilled to a depth of 15 feet below the ground surface. The locations of the borings were determined by the results of the soil gas survey and accessibility for a truck-mounted drill rig. Figure 3-2 illustrates the locations of the 15 soil borings.


Two soil samples were collected from each boring based on the results of headspace analysis. The soil samples were analyzed for volatile and semi-volatile organic compounds. The analytical results from the soils will be discussed in the Nature and Extent of Contamination, subsection 4.3.2. Appendix D contains HTW logs and Test Boring Records for the borings.

3.1.3 Monitoring Wells

3.1.3.1 <u>Well Drilling/Well Installation</u> - Six monitoring wells were drilled and installed at the former Dry Cleaning Facility (Figure 3-3). Monitoring well DCF92-01 was located upgradient of the site and is the background well for the study. Monitoring wells DCF92-03 and DCF92-05 are located downgradient of the site, and were installed to provide data on soil and ground-water contaminants migrating away from the suspected source. Monitoring wells DCF92-02, DCF92-04, and DCF92-06 were located in areas of contamination determined by the soil gas survey and soil borings.

1532.23

Monitoring wells DCF92-01, DCF92-02, DCF92-04, and DCF92-06 encountered the top of the water table in bedrock. The wells were drilled by first augering through the overburden until bedrock was encountered. The boring was deepened by wash boring an additional two feet into the bedrock. A six-inch diameter surface casing was installed from the ground surface to the bottom of the boring and the casing was cemented into place. The boring was then advanced by coring the bedrock, followed by reaming to expand the borehole diameter. The wells were screened to intercept the top of the water table. The wells were drilled and completed as specified in the Well Installation Plan.

Monitoring wells DCF92-03 and DCF92-05 encountered the top of the water table in the soil overburden, therefore required no surface casing. The borings were advanced by augering to a depth adequate to allow the well screen to intercept the top of the water table. The wells were drilled and completed as specified in the Well Installation Plan.

A seventh monitoring well, DCF92-07, (Figure 3-3) was installed north of DCF92-04 to a depth of 19 feet to test ground-water quality in an area of shallow bedrock. The well was drilled as outlined in Technical Memorandum DCF-003, dated July 29, 1992 (Appendix D). The well was not sampled due to insufficient ground water recovered.

Appendix D contains the HTW boring logs and Soil Test Boring Record for each monitoring well. Monitoring Well Installation Diagrams are contained in Appendix E.

3.1.3.2 <u>Monitoring Well Development</u> - Monitoring wells were initially developed through use of a surge/pump method, in which the monitoring well screens were surged to draw fine particulates into the well for removal by pumping. The surge/pump method was continued until three times the amount of water lost during drilling was recovered and the water clarity achieved a NTU reading

of 30 or less. Several rounds of development were necessary to achieve the NTU criteria, including surging with a rig-mounted surge block. Well development information is contained in Appendix F, as well as the COE letter to Law, dated June 12, 1992, outlining the additional development protocol.

Sampling Activities - During the hollow stem auger 3.1.3.3 drilling process, split spoon samples were collected at 5.0-foot intervals. A representative soil sample from each boring was selected for geotechnical analysis of the overburden material. Appendix G contains the results of the geotechnical analysis. Four soil samples were selected from each boring and analyzed for volatile and semi-volatile organic compounds. The exception was monitoring well DCF92-04, where only two soil samples were collected because bedrock was encountered shallower than anticipated (nine feet below the ground surface).

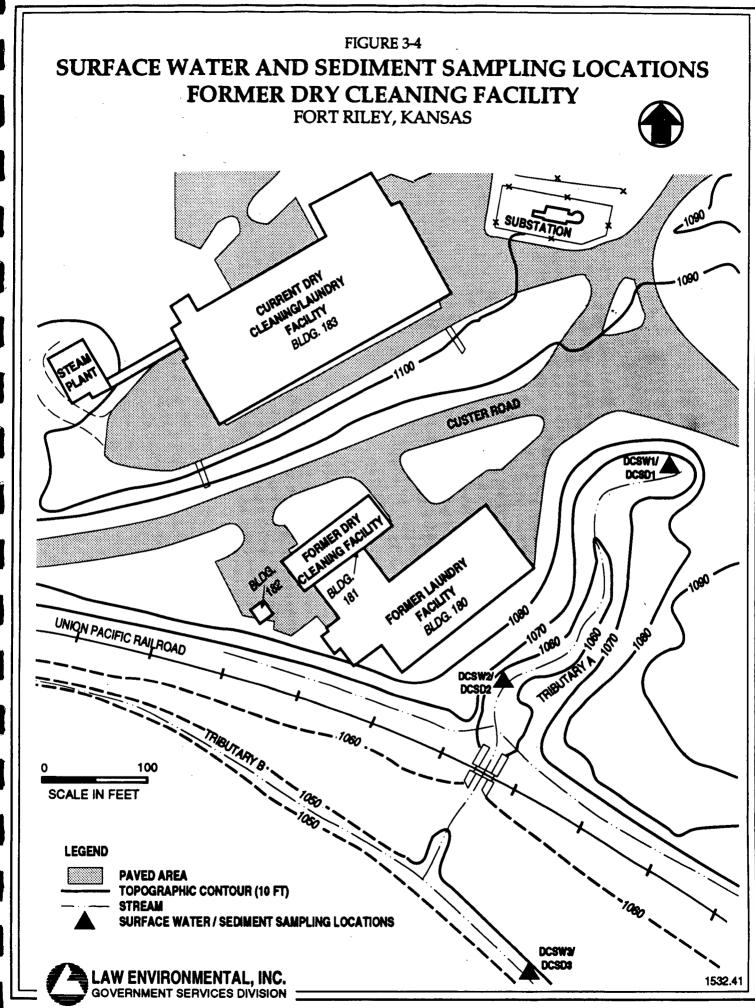
Following development, ground-water samples were collected for analysis of volatile and semi-volatile organic compounds. The protocol for sampling the monitoring wells was changed from dedicated bailers to dedicated bladder pumps in order to meet the 30 NTU criteria prior to sampling. The protocol for sampling is outlined in Technical Memorandum DCF-002, PSF-001, SFL-004, dated July 10, 1992 (Appendix I). The results of the chemical analyses for both soils and ground-water samples are discussed in depth in Section 4.0, Nature and Extent of Contamination, subsections 4.3.2 and 4.3.4.

3.1.3.4 <u>Permeability Testing</u> - Permeability tests scheduled to be performed in the six monitoring wells were not conducted following discussions with representatives of the Kansas City District Corps of Engineers. The Corps decided that since the water table intersected the well screens near the midpoint of the screen, the permeability tests would not represent the true nature of the aquifer.

1532.23

3.1.4 Surface Water and Sediment Sampling

Three surface water and sediment samples were collected near the former Dry Cleaning Facility Site (Figure 3-4). The samples were analyzed for volatile and semi-volatile organic compounds. The analytical results are discussed in the Nature and Extent of Contamination, subsection 4.3.3.


3.1.5 Investigation Derived Waste

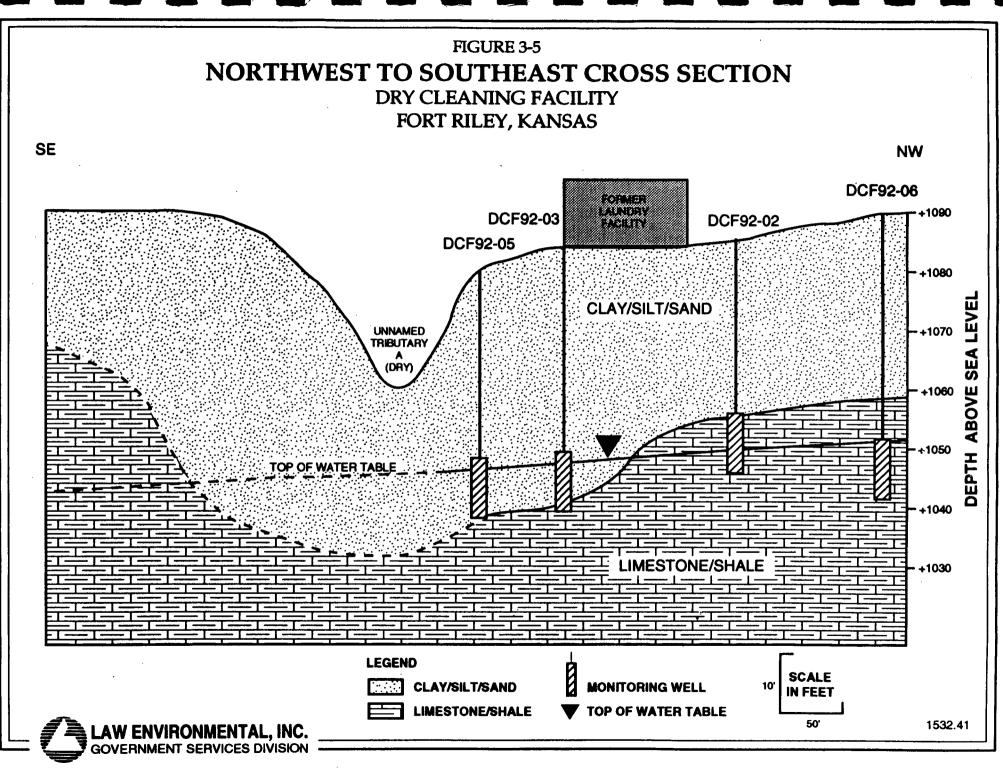
Drill cuttings, drilling fluids, development water, and discarded personal protective clothing were containerized in appropriate drums, labeled, and transported to the Operations Center located at Southwest Funston Landfill.

To determine proper disposal methods of the drums, the analytical results of chemical testing of the soils and ground water will be the Toxicity the regulatory limits set in compared to Characteristic Leaching Procedure (TCLP) designed by EPA to control the disposal of wastes containing potentially hazardous substances. A TCLP analysis need not be performed if a total analysis demonstrates that regulated contaminants are not present or are present in such low concentrations that they could not possibly exceed regulatory thresholds. Analytical results of water are directly compared to TCLP limits. The leachable amount of contaminants in soil is calculated assuming that all contaminants leach completely (worst-case scenario). If any TCLP limits are exceeded, a TCLP analysis should be performed. The disposal of wastes containerized at Fort Riley is the responsibility of the base.

3.1.6 <u>Surveying</u>

Anderson Survey Company completed a site survey at the former Dry Cleaning Facility and prepared a base map for the site. The base

map included buildings, roads, and relevant fixtures. The base map included 2-foot topographic contour intervals. Upon completion of the field investigations, all soil borings, monitoring wells, and sediment and surface water samples were surveyed and included on the base map as specified in the Well Installation Plan. The base map and survey data are included in Appendix H.


3.2 SITE STRATIGRAPHY AND HYDROGEOLOGY

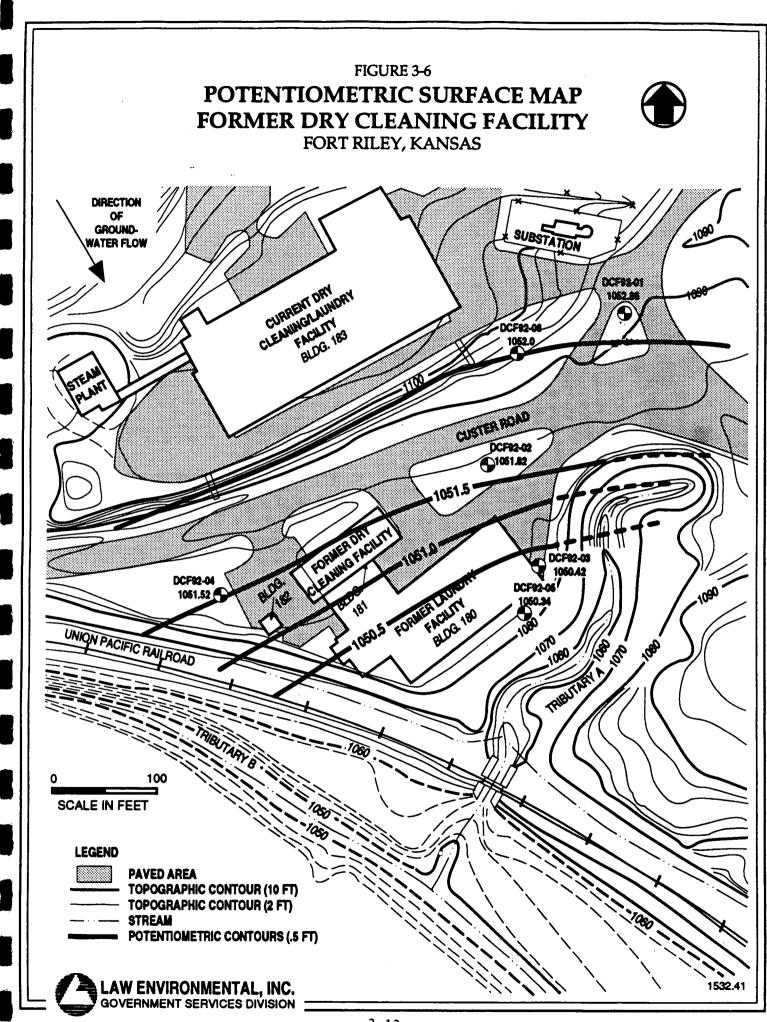
A discussion of site stratigraphy and hydrologic characteristics found during the site investigation is presented below.

3.2.1 <u>Site Stratigraphy</u>

The installation of soil borings and monitoring wells, and the logging records of these borings confirmed the basic regional geology of a thick soil section overlying a bedrock of limestones and shales. To the north of the site, in monitoring well borings DCF92-02 and DCF92-06, the soil profile is approximately 30 feet thick, as illustrated in Figure 3-5. The soil profile thickens to the south to a depth of approximately 40 feet in monitoring well borings DCF92-03 and DCF92-05. The soil profile consists of intermixed sands, silts and clays as illustrated by the Test Boring Records in Appendix D and the geotechnical grain size analysis in Regional geologic studies in the Fort Riley area Appendix G. indicate that the soils are composed of alluvial deposits, residual soils developed from weathered bedrock, and windblown loess of the Pleistocene and Recent age. The soils overlying the bedrock at the former Dry Cleaners appear to be fine to medium-grained alluvial deposits indicative of a low energy depositional environment, and possible loess deposits. To the west of the site, at DCF92-04, the isolated occurrence of bedrock at nine feet below the ground surface indicates that in-place weathering of the bedrock has also occurred because at one time the bedrock had been much higher. The presence of angular chert and limestone fragments in the borings,

1532.23

and the presence of a weathered bedrock zone between the base of the soil horizon and the top of the bedrock adds credibility to this assumption. The weathered bedrock has contributed to the soil horizon in the area, and this process is ongoing.


Below the weathered zone, rock corings revealed that the stratigraphy is comprised of limestone and shale sequences typical of the Fort Riley area. The shales range in thickness from one to five feet and generally exhibit a greenish-gray or reddish-brown color. Limestones varied from competent to fractured and massive to well stratified or vuggy. Limestones varied in color, and consisted of various shades of tans, greens, grays, and black.

3.2.2 Site Hydrogeology

The water table was encountered at the former Dry Cleaning Facility at a depth of 32 to 40 feet below the ground surface. The depth of water in each monitoring well installed at the site is listed below:

Well Number	Static Water Level <u>(8/17/92)</u>	Depth of Water Adjusted to Feet <u>Above Mean Sea Level</u>
DCF92-01	39.20	1052.86
DCF92-02	37.21	1051.82
DCF92-03	36.15	1050.42
DCF92-04	35.85	1051.52
DCF92-05	32.40	1050.34
DCF92-06	40.40	1052.00

Figure 3-6 illustrates the ground-water flow direction at the site. Potentiometric contours of the top of the water table show a descending water table from northwest to southeast. The direction of ground-water flow, therefore, is to the southeast. The ground-

12

water drop over the site is 2.52 feet, a drop so gradual that .5foot contours were used in Figure 3-6 to illustrate the direction of flow. The northwest to southeast ground-water drop can also be seen on Figure 3-5. As the figure shows, the top of the water table is in bedrock north of the site, and in the soil horizon to the south of the site.

Based upon ground-water flow direction at the former Dry Cleaning Facility, the most likely route of contaminant migration present in the ground water is to the southeast.

!/

4.0 NATURE AND EXTENT OF CONTAMINATION

The objective of the field investigation at the former Dry Cleaning Facility was to determine if contaminants are present in the subsurface soils and ground water at the site and to assess the potential for off-site migration. The specific objective for each field task is presented in Table 4-1.

Representative samples of soil gas, ground water, surface water, sediments and soils were collected from the site for chemical analysis. This section discusses the results of the analytical program and the conclusions that can be drawn regarding the presence of contamination at these sites.

4.1 <u>SAMPLING PROGRAM</u>

The field work at the site was conducted between November, 1991 and July, 1992. A brief description of sampling activities performed at the site is provided in this section. Additional detailed information is provided in Section 3.0 of this report, the Final Chemical Data Acquisition Plan (Law, 1992) and the Quality Control Summary Report (Law, 1992b), published as separate documents.

4.1.1 Soil Gas Sampling

Soil gas samples were collected from a total of 49 locations at the site by Target Environmental Services (TARGET). Samples were initially planned to be collected at depths of 6 to 15 feet; however, weather conditions prevented access by TARGET's hydraulic probe van and sampling procedures were modified. The actual sampling depths ranged from 3.5 to 6 feet below the ground surface. Thirty-two shallow soil gas samples were collected by using a drive rod inserted to a depth of 3.5 to 4 feet. The sampling

PROJECT ACTIVITIES AND OBJECTIVES Former Dry Cleaning Facility Fort Riley, Kansas

:

ACTIVITIES	OBJECTIVES
Soil Gas Survey	Delineate volatile contaminant plume and aid in the placement of monitoring wells.
Shallow Soil Borings	Determine presence or abserice of contamination and aid in the placement of monitoring wells.
Install six monitoring weils and perform ground-water sampling	Determine presence or absence of contamination in uppermost bedrock aquifer.
Collect four soil samples from each well boring (24 soil samples)	Determine presence or absence of suspected contaminants within the soil profile.
Collect three surface water and three sediment samples	Determine presence or absence of contamination in surficial waters and sediments.
Perform periodic ground-water sampling	Determine contaminant fluctuations due to seasonal changes in the aquifer.

1532.23

•'

system was purged with ambient air drawn through an organic vapor filter cartridge, and a stainless steel probe was inserted to the full depth of the boring and sealed off from the atmosphere. Seventeen samples were collected using a van-mounted hydraulic probe which advanced a one-inch diameter steel casing to a depth of The sampling system was purged with ambient air drawn 6 feet. through an organic vapor filter cartridge. A teflon line was inserted to the bottom of the casing, and sealed off from atmospheric conditions with an inflatable packer. For both methods, a sample of in-situ soil gas was then withdrawn through the probe and used to purge atmospheric air from the sampling system. A second sample of soil gas was then withdrawn through the probe and encapsulated in a pre-evacuated glass vial at two atmospheres of pressure. Samples were taken to an on-site laboratory and analyzed within 24 hours of collection. The results of this survey were used to determine soil boring and monitoring well placement.

4.1.2 Soil Sampling

Fifteen shallow soil borings and six monitoring well borings were installed at the former Dry Cleaning Facility. Shallow borings were drilled to obtain soil samples and gather information concerning site stratigraphy. Monitoring well borings were installed to obtain soil samples, allow for monitoring well installation, and gather information concerning site stratigraphy. Locations of the shallow soil borings and the monitoring wells are provided in the analytical results discussion later in this section.

The fifteen shallow borings were advanced to a depth of 15 feet using hollow stem augers. Soil samples were collected with a stainless steel split-spoon sampler at five-foot intervals. Soil samples to be analyzed for volatile organic compounds were

1532.23

collected and placed in two 2-oz. wide-mouth soil vials immediately after opening the split spoon. The jars were filled completely, with no headspace between the soil and the lid. The remaining sample was homogenized, then placed in two 8-oz. soil jars with headspace. A headspace screening was performed at each sampling interval using an HNu. The two samples with the highest HNu readings in each boring were selected for laboratory analysis. If headspace readings were zero, samples from depths of 10 and 15 feet below the ground surface were collected for laboratory analysis.

Four samples were collected from each monitoring well boring with the exception of DCF92-04 where only one sample was collected due to the proximity of bedrock to ground surface. Borings in the soil horizon were advanced utilizing hollow stem augers. Soil samples were collected every five feet using a stainless steel split-spoon. Soil samples to be analyzed for volatile organic compounds were collected and placed in two 2-oz. wide-mouth soil vials immediately after opening the split spoon. The jars were filled completely, with no headspace between the soil and the lid. The remaining sample was homogenized and placed in two 8-oz. soil jars with A headspace screening was performed at each sampling headspace. interval using an HNu. The four samples with the highest HNu readings were selected for laboratory analysis. If headspace readings were zero, one sample was collected at the soil/bedrock interface, and the remaining three samples were collected at discrete intervals through the soil section to determine vertical extent of contaminants.

4.1.3 Surface Water and Sediment Sampling

Three surface water samples and three sediment samples were collected from the vicinity of the former Dry Cleaning Facility. The locations for these surface water and sediment samples were chosen to collect representative samples upstream (DCSW-1/DCSD-01)

and downstream (DCSW-2/DCSD-2, DCSW-3/DCSD-3) of the site. Α downstream to upstream sampling priority was used to minimize sediment agitation. Surface waters were collected first, using a pre-cleaned stainless steel beaker. Sediment samples were collected next, and within ten feet of where the surface water sample had been taken. A pre-cleaned stainless steel spoon was used to collect the sediment samples from a depth of approximately 3" to 6" below the creek bed. Sediments for volatile compound analyses were collected immediately after sampling to minimize The remaining sediment sample was placed in a volatilization. decontaminated stainless steel bowl, thoroughly homogenized and placed in appropriate containers.

4.1.4 Ground-Water Sampling

Six ground-water samples were collected from monitoring wells installed in the vicinity of the former Dry Cleaning Facility. The monitoring well locations were selected based upon the results of the headspace screening data collected during the drilling of the shallow soil borings and the results of the soil gas survey. Monitoring well DCF92-01 is located northeast of the site and provides background data. Well DCF92-02 is situated in the area of highest PCE vapor concentrations found during the soil gas survey. Monitoring wells DCF92-03 and DCF92-05 are located to the east and south, respectively, of the former Laundry Facility (Building 180) and are the downgradient wells. Well DCF92-04 is placed in another area of relatively high soil gas concentrations at the west side of the site. Well DCF92-06 is located northeast of the site across Custer Road. The wells were installed to depths ranging from 42 to 46 feet below the ground surface. Monitoring wells DCF92-01, DCF92-02, DCF92-04, and DCF92-06 were screened where the top of the water table intersected the limestone bedrock. Monitoring wells DCF92-03 and DCF92-05 were screened where the top of the water table intersected the soil overburden.

1532.23

The ground-water sampling procedures were modified from the original dedicated teflon bailer sampling method to a system of dedicated stainless steel and teflon bladder pumps. The modification is discussed in detail in the Technical Memorandum of July 10, 1992, located in Appendix I. This modification was necessary to meet the turbidity criteria of 30 NTUs established for the project. Prior to purging the static water level in each well was measured and checked for the presence of floating product. The well was then purged utilizing the bladder pumps until the parameters of pH, temperature, specific conductance and turbidity were stable (readings differing by +/-10 percent between two successive well volumes), removing a minimum of five well volumes. Samples for volatile organic compounds were collected first, slowing the pump flow rate to 150 ml/min during the sampling. The flow rate was checked with a graduated cylinder and a stopwatch. The samples for semi-volatile compound analyses were collected as the next step.

4.2 ANALYTICAL PROGRAM

The following section briefly describes the analytical program for soil gas, soils, sediments, surface water and ground-water samples. Additional details on analytical methods and procedures are provided in the Chemical Data Acquisition Plan (CDAP) and Quality Control Summary Report (QCSR) (Law, 1992).

4.2.1 Analytical Methods

Soil, sediment, surface water and ground-water samples were analyzed in accordance with Environmental Protection Agency (EPA) analytical methods. The methods are published in EPA SW-846 (EPA, 1986). The soil gas samples were analyzed using an on-site laboratory. The analytical methodologies are described below.

4.2.1.1 <u>Soil Gas Analysis</u> - The soil gas samples were analyzed onsite by a modified EPA method 601/602 analysis. The samples were analyzed by gas chromatography (GC) using a electron capture detector (ECD) and a flame ionization detector (FID). The method was modified to allow the use of direct injection instead of purge and trap for sample introduction. Tetrachloroethene was the only analyte standardized for the ECD analysis. The analytes included for the FID analysis were: benzene, toluene, ethylbenzene, xylenes and total FID volatiles. Additional information concerning the analytical procedures is provided in Appendix B.

4.2.1.2 <u>Soil and Sediment Analyses</u> - Soil and sediment samples from the former Dry Cleaning Facility were submitted for laboratory analyses for the following parameters:

- Volatile Organics by EPA Method 8260
- Semi-Volatile Organics by EPA Method 8270/3550

4.2.1.3 <u>Ground-Water and Surface Water Analyses</u> - Ground-water and surface water samples were submitted for laboratory analyses for the following parameters:

- Volatile Organics by EPA Method 8260
- Semi-Volatile Organics by EPA Method 8270/3520

Analytical Methods - The methods identified above were 4.2.1.4 used to analyze soil and ground-water samples for parameters indicative of petroleum and chlorinated solvent contamination. Method 8260 chromatography/mass spectrometry uses gas to quantitatively identify volatile qualitatively and organic compounds including petroleum related and chlorinated volatiles. gas chromatography/mass spectrometry Method 8270 uses to

qualitatively and quantitatively identify semi-volatile organics including phthalates, phenols and polynuclear aromatic hydrocarbons (PAHs).

4.2.1.5 <u>Sample Identification</u> - The sample identification scheme is presented in the following section:

<u>Soil samples</u>: Soil samples collected from shallow borings are identified with the label DCFSB-XXA or DCFSB-XXB where "DCF" refers to the former Dry Cleaning Facility, "SB" refers to a soil boring, "XX" is the soil boring number identified with consecutive integers and "A" or "B" is a letter to differentiate between the two depths collected from each boring.

Soil samples collected from monitoring well borings are identified with the label DCF92-XXZ where "DCF" refers to the former Dry Cleaning Facility, "92" refers to the year in which the well was installed, "XX" is a consecutive numeric well identifier and "Z" is a letter (either A,B,C,D,E) which differentiates between depths collected from each monitoring well boring. Some monitoring well soils were identified as DCF92SB-XXD where the "SB" refers to a soil boring sample.

<u>Sediment Samples</u>: Sediment samples are identified with DCSD-XX where the "DC" refers to the Dry Cleaning Facility, the "SD" represents a sediment sample and the "XX" is a consecutive integer which identifies the sediment sampling location.

<u>Surface Water Samples</u>: Surface water samples are identified with DCSW-XX where the "DC" refers to the former Dry Cleaning Facility, the "SW" represents a surface water sample and the "XX" is a consecutive integer which identifies the surface water sampling location.

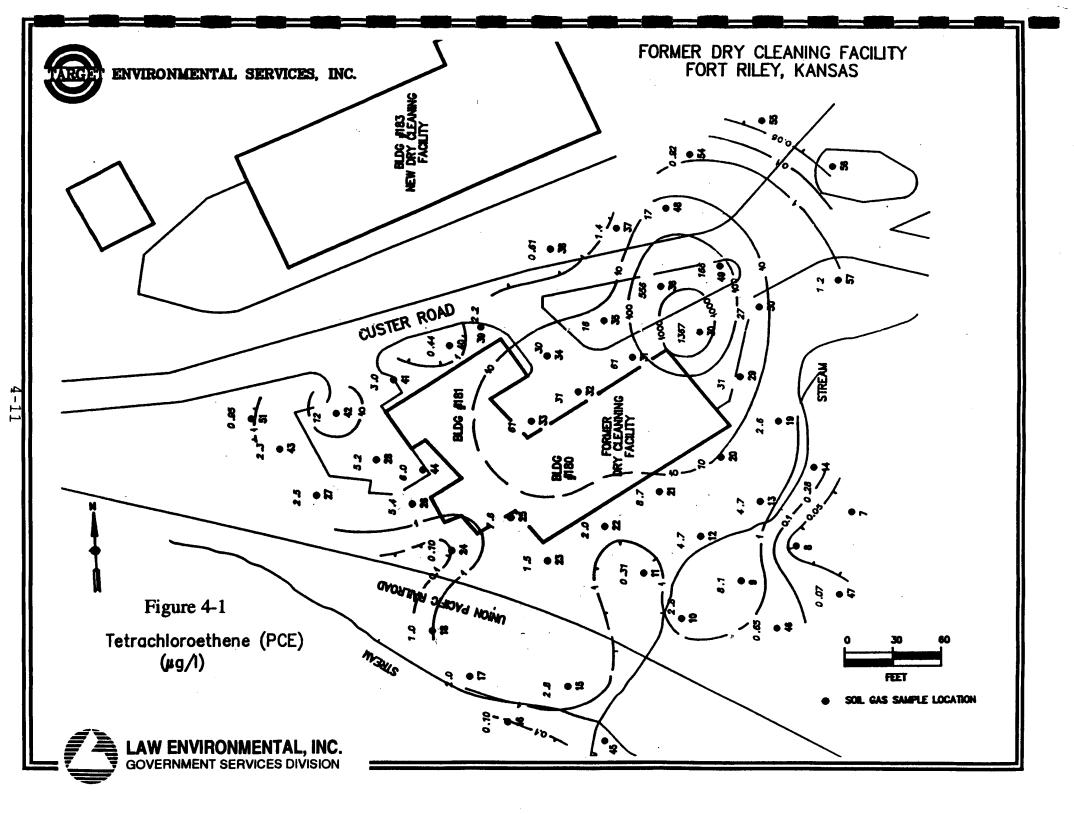
<u>Ground-Water Samples</u>: Ground-water samples submitted for laboratory analysis are identified with the label DCF92-XX where "DCF" refers to the former Dry Cleaning Facility, "92" is the year in which the wells were installed and "XX" is a numeric identifier. The letters "TB" indicates that the sample is a trip blank.

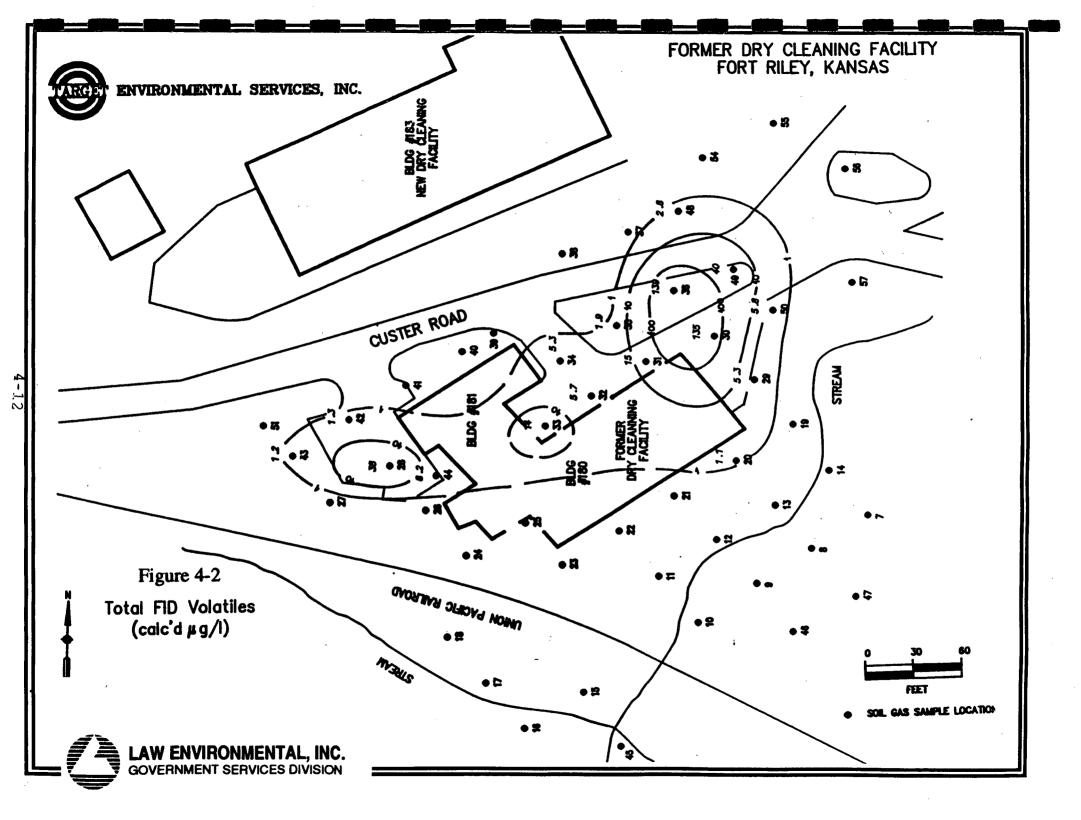
4.3 ANALYTICAL RESULTS

The following sections discuss the results of the analytical program for each site. The discussion focuses on the positive results indicative of petroleum and analvtical solvent Positive results which are the result of common contamination. laboratory contamination based upon evaluation of quality control data will not be discussed. The quality control data evaluated include sample duplicates, matrix spike recoveries and precision, trip blanks, method blanks and surrogate spike recoveries. Quality control issues affecting data interpretation at the sites are discussed in this section. Detailed information regarding the quality control results and a comparison to project data quality objectives is provided in the Quality Control Summary Report (Law, 1992).

All data collected from this site are useable for the PA/SI. As previously discussed the purpose of the PA/SI is to determine the presence or absence of contamination. The quality of the data generated is sufficient to achieve this goal. However, some data must be qualified. The data qualifiers used and the significance of each is provided below:

B - Indicates sample results associated with a method blank which contains the analyte. The "B" flag indicates that the analyte was detected in the sample at a concentration less than ten times that of the method blank. These results may have a positive bias or run the risk of being false positives due to the laboratory contamination. Results should be considered estimated, possible false positives or biased high.


- I Estimated result based on internal standard recovery exceeding control limits. The quantitation of the result is uncertain.
- I2 Estimated result based on low internal standard recoveries and high surrogate recoveries. Result may be biased high.
- T Estimated result, possible cross-contamination during shipping based on trip blank results.
- E Estimated result, possible low bias due to air bubbles noted in volatile vials.


4.3.1 Soil Gas Analytical Results

The GC/ECD analyses of soil gas samples for tetrachloroethene (PCE) revealed the highest levels of PCE at the northeast corner of the former Dry Cleaning Facility (Figure 4-1). The highest level occurred in Sample 30. More moderate levels extended westward to Building 181 and northward across Custer Road. Lower levels existed throughout the site.

The total FID volatile analysis produced the highest levels at the northeast corner of Building 180, where PCE was highest (Figure 4-2). Low levels extended westward beyond Building 181. None of the specific standardized FID analytes were present above the 1 μ g/L detection limit in any of the samples from the site. Sample 28 which is located west of Building 181 was the only sample which may represent low levels of a petroleum-based solvent. The other total FID volatile results primarily consisted of the PCE peak, and no fuel related patterns were noted. Additional information is located in the TARGET report in Appendix C.

1532.23

4.3.2 Soil Analytical Results

The soil samples collected were analyzed for volatile organics and semi-volatile organics. The following volatile organics were detected in the soil at the former Dry Cleaning Facility: 1,1,2 trichloroethane, dibromochloromethane, tetrachloroethene (PCE), carbon disulfide and toluene. The following semi-volatile organics were detected in the soil at the former Dry Cleaning Facility: benzo[a]anthracene, benzo[a]pyrene, chrysene, fluoranthene, phenanthrene, pyrene, 2-methylnaphthalene, and bis(2-ethylhexyl) phthalate. Positive results from the monitoring well borings are presented in Table 4-2. Positive results from the shallow soil borings are presented in Table 4-3.

Volatile Organics - Volatile contamination within the 4.3.2.1 monitoring well soil borings exists to the northeast, east and southeast of the former Dry Cleaning Facility (Figure 4-3). The area of highest volatile organic compound results coincides with the location of an existing sewer line which originates from the current Dry Cleaning Facility and Steam Plant and runs southeast towards unnamed tributary A. Tetrachloroethene was detected in the soils collected from monitoring well borings DCF92-02, DCF92-03 and PCE was detected in DCF92-02 at concentrations ranging DCF92-05. from 9.1 μ g/kg at a depth of four feet to 53 μ g/kg at nineteen feet. The highest concentration of PCE was detected in DCF92-03 at a depth of nine feet where it was detected at a concentration of 120 μ g/kg. Concentrations within this boring ranged from 7.1 μ g/kg to 120 μ g/kg. In addition, PCE was detected once in DCF92-05 at a Toluene was detected twice at low levels in depth of 35 feet. DCF92-01 (5.8 µg/kg) and DCF92-03 (6.8 µg/kg). In addition, 1,1,2trichloroethane and dibromochloromethane were detected once in the soil from DCF92-03 at concentrations of 86 μ g/kg and 190 μ g/kg, respectively, at a depth of four feet. Figure 4-4 provides sampling depths of the soil with positive soil sample results. The

1532.23

POSITIVE HITS SOILS FROM MONITORING WELL BORINGS Former Dry Cleaning Facility Fort Riley, Kansas

PARAMETER DEPT	DCF92SB01A H: 1'	DCF92SB01B 6'	DCF92SB01C	DCF92SB01E 27'	DCF9202A 4'	SAMPLE DCF9202B 9'	DUPLICATE DCF9202E 9'
atile Organics (µg/kg):						` .	
1,1,2-Trichloroethane		'					
Dibromochloromethane							
Methylene chloride	68	60	61	50 (B)	43 (B)	40 (B)	44 (B)
Tetrachloroethene					9.1	10	4.5
Toluene				5.8			
<u>mi-Volatile Organics (µg/kg):</u> Benzo[a]anthracene Benzo[a]pyrene Chrysene						 	
Fluoranthene							
Phenanthrene							
Pyrene	110						
bis(2–Ethylhexyl)phthalate							

-- = Not detected

B = Compound detected in the sample result at less than ten times the amount detected in method blank. Result is estimated.

I = Internal standard recovery is low. Sample quantitation is estimated. Note: Results are calculated using the dry weight of the sample analyzed.

.

POSITIVE HITS SOILS FROM MONITORING WELL BORINGS Former Dry Cleaning Facility Fort Riley, Kanses

PARAMETER DEPTH	DCF9202C : 19'	DCF9202D 24'	D9202E 29'	DC9203A 4'	DC9203B 9'	DC9203C 14'	SAMPLE DC9203E 24'
olatile Organics (µg/kg):							
1,1,2-Trichloroethane				86 (12)			
Dibromochloromethane				190 (12)			
Methylene chloride	44 (B)	31 (B)		43 (B)	36 (B)	30 (B)	37 (B)
Tetrachloroethene	53	'			120 (12)	15	
Toluene				6.8 (l2)			
emi—Volatile Organics (µg/kg): Benzo[a]anthracene	——	·		380			
Benzo[a]pyrene				270			·
Chrysene				300			
Fluoranthene			 `	610			— —
Phenanthrene				610			
Pyrene				530			
bis(2-Ethylhexyl)phthalate							

-- = Not detected

B = Compound detected in the sample result at less than ten times the amount detected in method blank. Result is estimated.
 I2 = Internal standard recovery is low and surrogate recovery is high. Sample results are biased high. Note: Results are calculated using the dry weight of the sample analyzed.

POSITIVE HITS SOILS FROM MONITORING WELL BORINGS Former Dry Cleaning Facility Fort Riley, Kansas

PARAMETER	DUPLICATE DC9203G	DC9203F	DCF92SB03E	DCF92SB04A	DCF92SB05A	DCF92SB05B
DEPTH:	24'	29'	35'	3'	<u>9'</u>	<u> </u>
olatile Organics (µg/kg):						
1,1,2-Trichloroethane					· · <u></u>	
Dibromochloromethane						
Methylene chloride	32 (B)	32 (B)	25	89 (B)	26 (B)	22 (B)
Tetrachloroethene	7.1	7.2	44			
Toluene						
emi-Volatile Organics (µg/kg):	·	,				
Benzo[a]anthracene						
Benzo[a]pyrene						
Chrysene						
Fluoranthene						
Phenanthrene			— —			
Pyrene						
bis(2-Ethylhexyl)phthalate						

-- = Not detected

B = Compound detected in the sample result at less than ten times the amount detected in method blank. Result is estimated.
 I = Internal standard recovery is low. Sample quantitation is estimated.
 Note: Results are calculated using the dry weight of the sample analyzed.

POSITIVE HITS SOILS FROM MONITORING WELL BORINGS Former Dry Cleaning Facility Fort Riley, Kansas

PARAMETER DEPT	DCF92SB05C 1: 24'	DCSB05E 35'	DCF9206A 	DCF9206B	DCF9206C 19'	DCF92SB068 28'
atile Organics (µg/kg):						۰.
1,1,2-Trichloroethane						
Dibromochloromethane						
Methylene chloride	24 (B)	31	37 (B)	46 (B)	32 (B)	50 (B)
Tetrachloroethene		21				
Toluene						
ni—Volatile Organics (µg/kg): Benzo[a]anthracene						
Benzo[a]pyrene						— —
Chrysene						
Fluoranthene					·	
Phenanthrene						
Pyrene						
bis(2-Ethylhexyl)phthalate				2400		

-- = Not detected

B = Compound detected in the sample result at less than ten times the amount detected in method blank. Result is estimated.
 I = Internal standard recovery is low. Sample quantitation is estimated.
 Note: Results are calculated using the dry weight of the sample analyzed.

÷,

POSITIVE HITS SOILS FROM SHALLOW BORINGS Former Dry Cleaning Facility Fort Riley, Kansas

PARAMETER	D PTH:	CFSB01A 10'	DCFSB01B 5'	DCFSB02A 10'	<u>SAMPLE</u> DCFSB02B 15'	DUPLICATE DCFSB02C 15'	DCSB03A 10'	DCSB03B 15'
/olatile Organics (µg/kg);								
Carbon disulfide								
Methylene chloride		28	33 (B)	24	23	24	64 (B)	79 (B)
Tetrachloroethene							32	
Toluene								
Trichloroethene							**** ****	
<u> Semi-Volatile Organics (µg/kg</u>):							
2-Methylnaphthalene		— — [•]						·
Phenanthrene								
bis(2-Ethylhexyl)phthalate								

-- = Not detected

B = Compound detected in the sample result at less than ten times the amount detected in method blank. Result is estimated.

Note: Results are calculated using the dry weight of the sample analyzed.

٩

	T UIL MIEY, KAIBAS										
PARAMETER Di	EPTH:	DCSB04A 10'	SAMPLE DCSB04B 15'	DUPLICATE DCSB04C 15'	DCSB05A 10'	DCSB05B 15'	DCSB06A 10'	DCSB06			
olatile Organics (µg/kg);											
Carbon disulfide		9.2									
Methylene chloride		130	100	55	41	46	39	37			
Tetrachloroethene		7.0									
Toluene											
Trichloroethene			4.2								
emi-Volatile Organics (µg/kg	g):										
2-Methylnaphthalene					. — —	— — .		<u> </u>			
Phenanthrene											
bis(2-Ethylhexyl)phthalate	ł										

POSITIVE HITS SOILS FROM SHALLOW BORINGS Former Dry Cleaning Facility Fort Riley, Kansas

-- = Not detected

B = Compound detected in the sample result at less than ten times the amount detected in method blank. Result is estimated.

Note: Results are calculated using the dry weight of the sample analyzed.

4-19

Page 2 of 5

4

.4

POSITIVE HITS SOILS FROM SHALLOW BORINGS Former Dry Cleaning Facility Fort Riley, Kansas

PARAMETER	DCSB07A I: 10'	DCSB07B 15'	<u>SAMPLE</u> DCSB08A <u>5'</u>	DUPLICATE DCSB08C 5'	DCSB08B	DCFSB09A 10'	DCFSB098
/olatile Organics (µg/kg);							
Carbon disulfide							
Methylene chloride	36	27	33	36	27	27	22
Tetrachloroethene	29	3.7					
Toluene							
Trichloroethene							
<u>Semi-Volatile Organics (µg/kg):</u>							
2-Methylnaphthalene							
Phenanthrene							
bis(2-Ethylhexyl)phthalate	380	460					

-- = Not detected

B = Compound detected in the sample result at less than ten times the amount detected in method blank. Result is estimated.

Note: Results are calculated using the dry weight of the sample analyzed.

Page 3 of 5

POSITIVE HITS SOILS FROM SHALLOW BORINGS Former Dry Cleaning Facility Fort Riley, Kansas

PARAMETER	DEPTH:	DCFSB10A 10'		DCFSB11A		DCFSB12A	DCFSB12B
			15'	10'	15'	10'	15'
<u>Volatile Organics (µg/kg);</u>							
Carbon disulfide				· — —			
Methylene chloride		23	25	25 (B)	124	48 (B)	51 (B)
Tetrachloroethene							
Toluene			·				
Trichloroethene							
<u>Semi-Volatile Organics (µg</u>	/ka):						
2-Methylnaphthalene					·		
Phenanthrene			<u> </u>				
bis(2—Ethylhexyl)phthala	ıte						

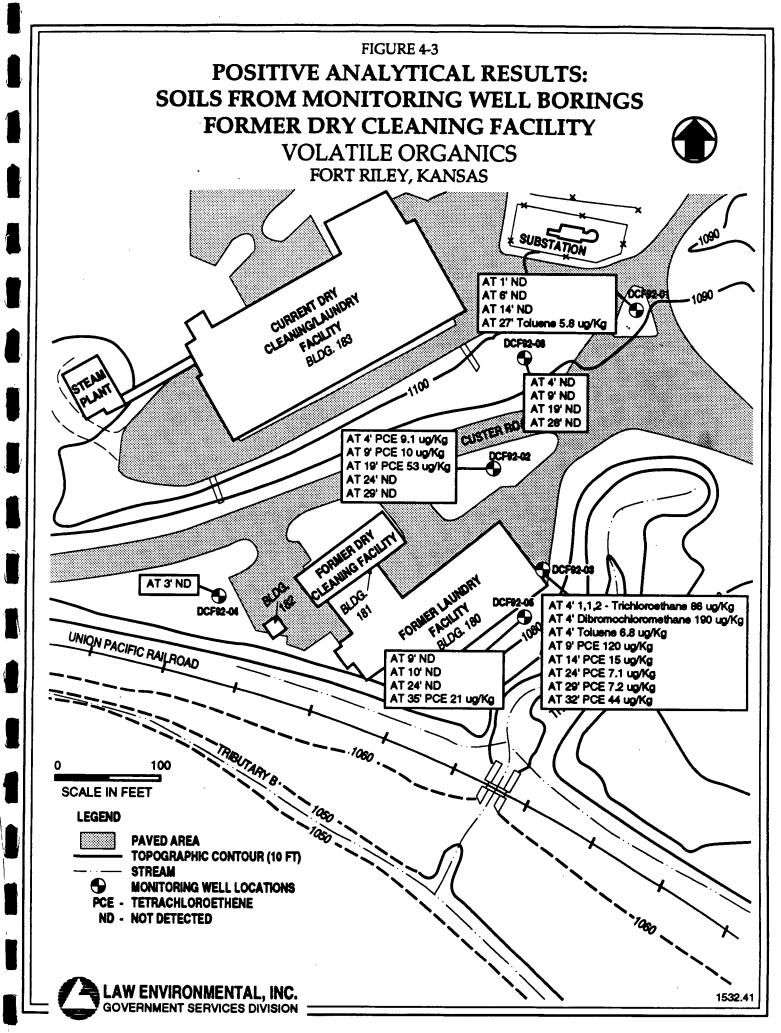
-- = Not detected

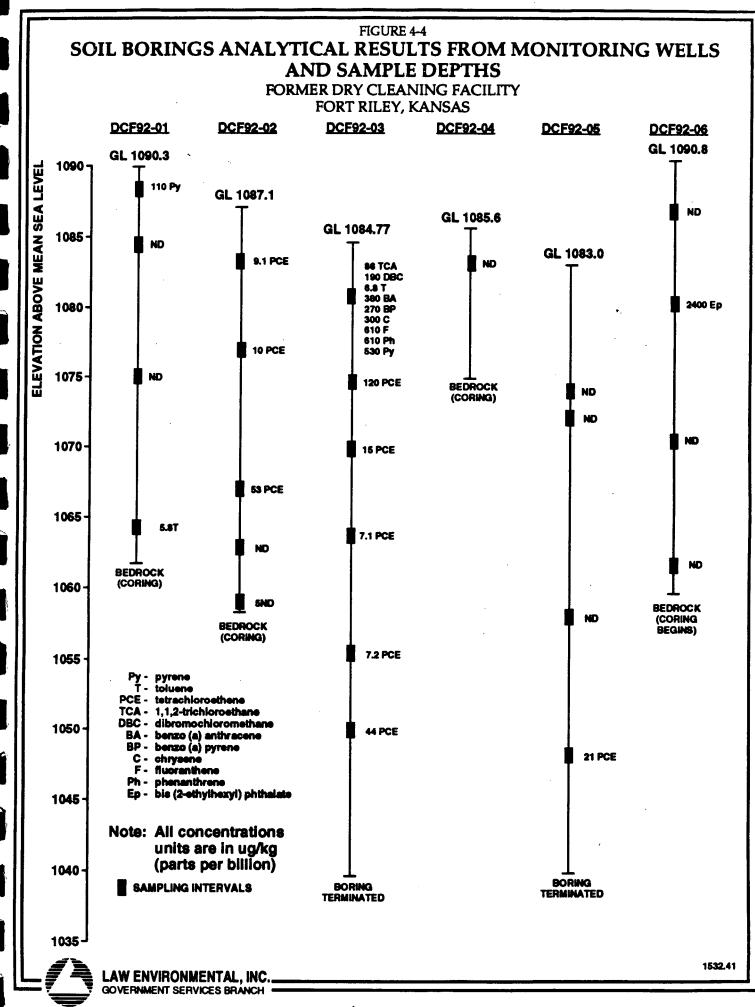
B = Compound detected in the sample result at less than ten times the amount detected in method blank. Result is estimated.

Note: Results are calculated using the dry weight of the sample analyzed.

1532.23

POSITIVE HITS						
SOILS FROM SHALLOW BORINGS						
Former Dry Cleaning Facility						
Fort Riley, Kansas						

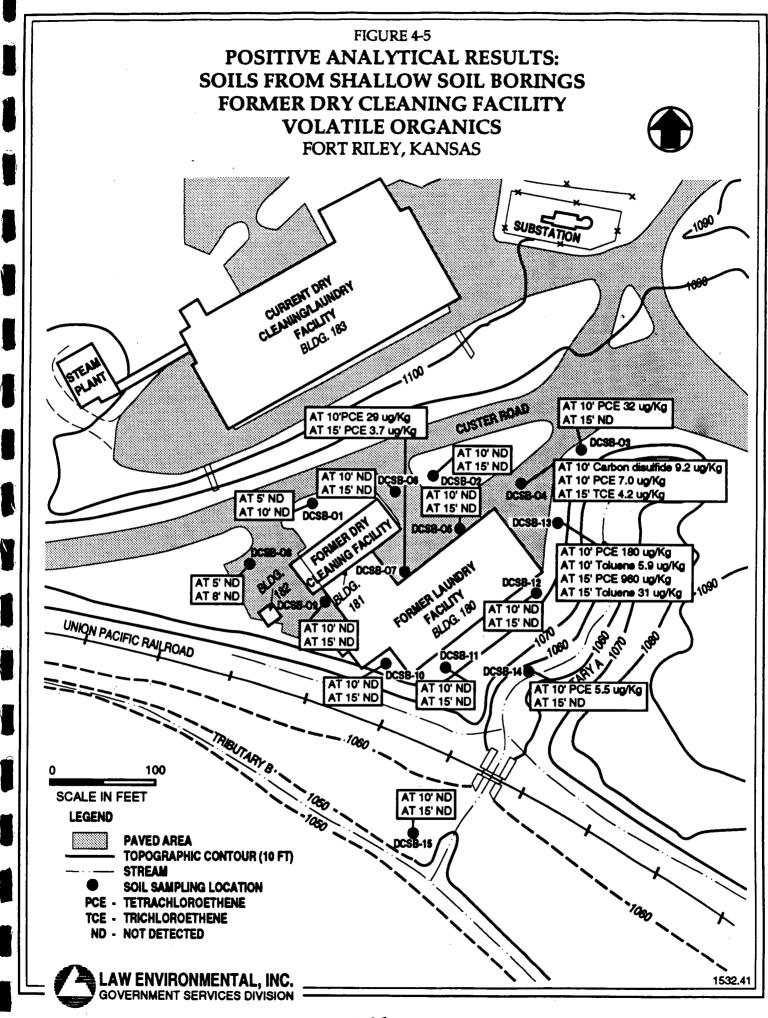

PARAMETER DEPTH	DCSB13A 1: 10'	DCSB13B 15'	DCSB14A 10'	DCSB14B 15'	DCSB15A 10'	DCSB158 15'
olatile Organics (µg/kg);						
Carbon disulfide						
Methylene chloride	98	180	37	93	40	49
Tetrachloroethene	180	960	5.5			
Toluene	5.9	31				
Trichloroethene			. –			
<u>emi–Volatile Organics (µg/kg):</u>						
2-Methylnaphthalene	<u> </u>	220		<u> </u>		
Phenanthrene		290				
bis(2-Ethylhexyl)phthalate				·		

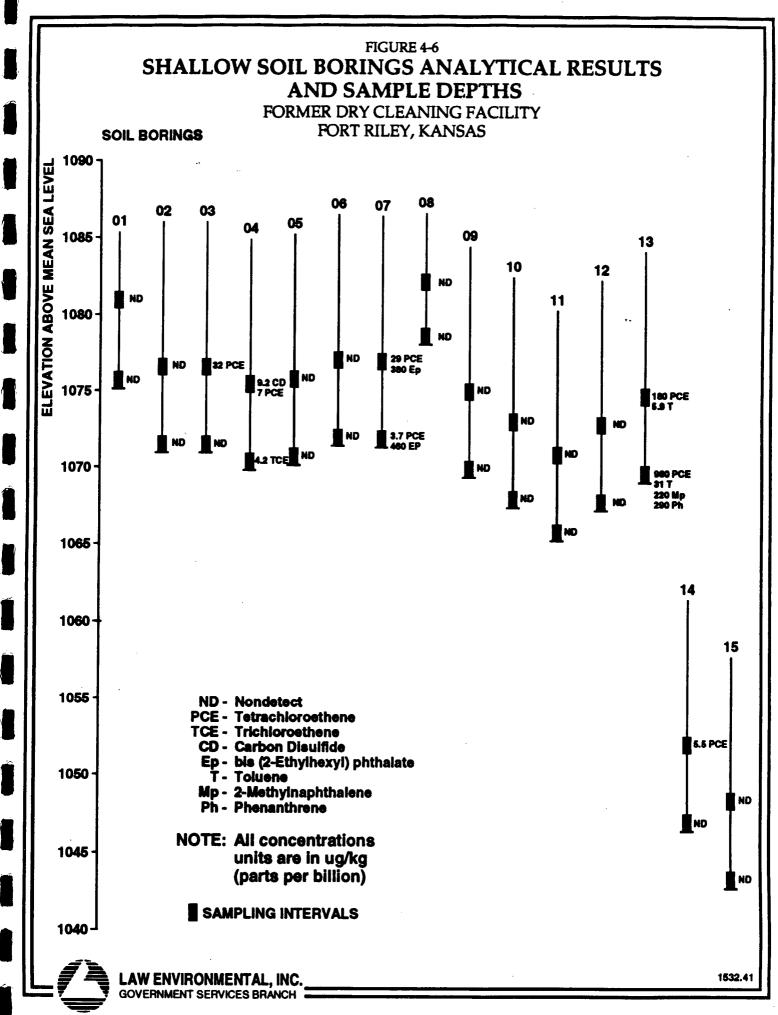

-- = Not detected

B = Compound detected in the sample result at less than ten times the amount detected in method blank. Result is estimated.

Note: Results are calculated using the dry weight of the sample analyzed.

Page 5 of 5



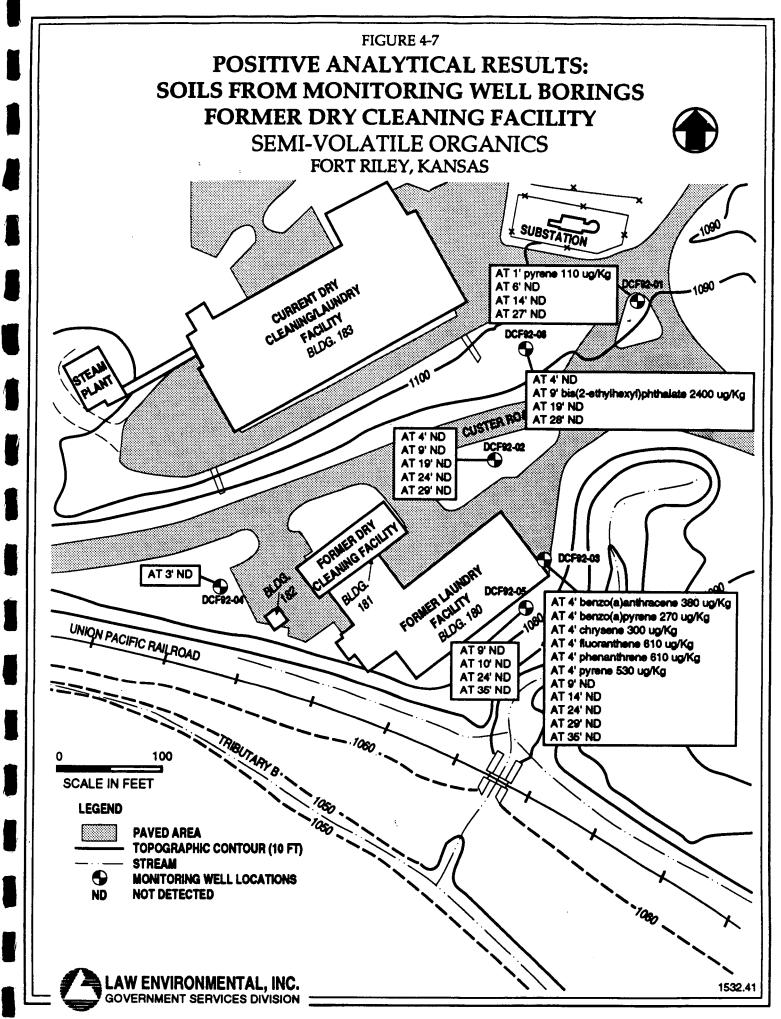

vertical extent of PCE contamination in the area east and southeast of the Dry Cleaning Facility extends from soils near the ground surface to the soil/bedrock interface.

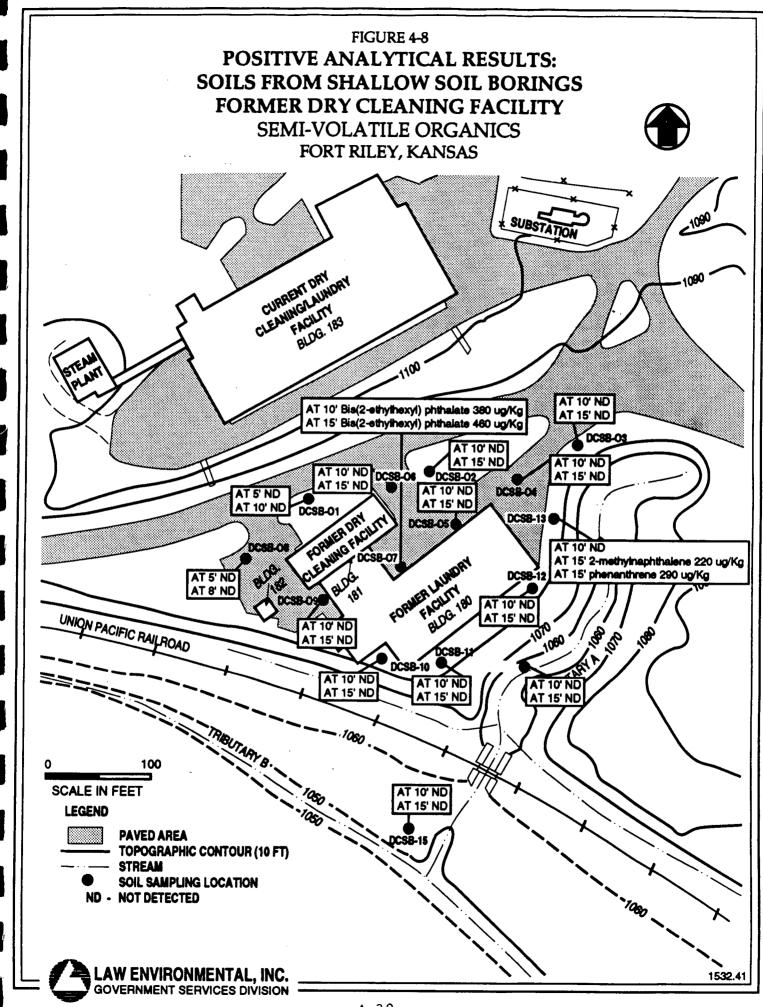
Several volatile organic compounds were detected in the soil samples from shallow borings including PCE, trichloroethene (TCE) and carbon disulfide (Figure 4-5). The PCE was detected to the northeast, east and southeast of the Former Dry Cleaning Facility. The highest concentration was detected in DCFSB-13 at a depth of 15 feet where PCE was detected at 960 μ g/kg. PCE was detected in DCFSB-07 at concentrations ranging from 3.7 to 29 μ g/kg, DCFSB-03 at 32 μ g/kg, DCFSB-04 at 7.0 μ g/kg, DCFSB-14 at 5.5 μ g/kg, and DCFSB-13 at concentrations ranging from 180 to 960 μ g/kg. The compound TCE was detected in DCFSB-04 to the east of Building 181 at 4.2 μ g/kg. Toluene was detected in DCFSB-13 at both 10 and 15 foot depths at concentrations of 5.9 and 31 μ g/kg, respectively. In addition, carbon disulfide was detected in DCFSB-04 at 9.2 $\mu q/kq$. Figure 4-6 provides sampling depths with positive results of chemical analyses of the soil samples. The vertical extent of volatile organic contamination ranges from 1075 to 1050 above mean sea level within the shallow borings.

Based upon chemical analysis results of soil samples from monitoring well borings and shallow soil borings, PCE contamination is indicated to the northeast, east and southeast of the former Dry Cleaning Facility. Other volatiles were also detected including 1,1,2-trichloroethane, dibromochloromethane, carbon disulfide and toluene. The horizontal extent of contamination has not been fully defined to the southeast of the site. The data also indicate that the vertical extent of contamination in the areas east to southeast of the site extends from soils near the ground surface to the soil/bedrock interface based on soils from both monitoring well borings and shallow soil borings.

4.3.2.2 <u>Semi-Volatile Organics</u> - Semi-volatile organics were detected in soils from monitoring well borings to the northeast and

east of the former Dry Cleaning Facility (Figure 4-7). Bis(2ethylhexyl)phthalate was detected in soil from monitoring well DCF92-06 at 2400 μ g/kg at a depth of nine feet. Pyrene was detected in DCF92-01 at 110 μ g/kg at a depth of one foot. In addition, several polynuclear aromatic hydrocarbons were detected in DCF92-03 at a depth of four feet, including benzo[a]anthracene $(380 \ \mu g/kg)$, benzo[a]pyrene $(270 \ \mu g/kg)$, chrysene $(300 \ \mu g/kg)$, fluoranthene (610 μ g/kg), phenanthrene (610 μ g/kg) and pyrene (530 Figure 4-4 provides sampling depth of the soil with $\mu q/kq$). positive results of the chemical analyses of the soil. The semivolatile contamination appears to be limited to the more shallow soils. The depths corresponding with positive results range from one to nine feet.

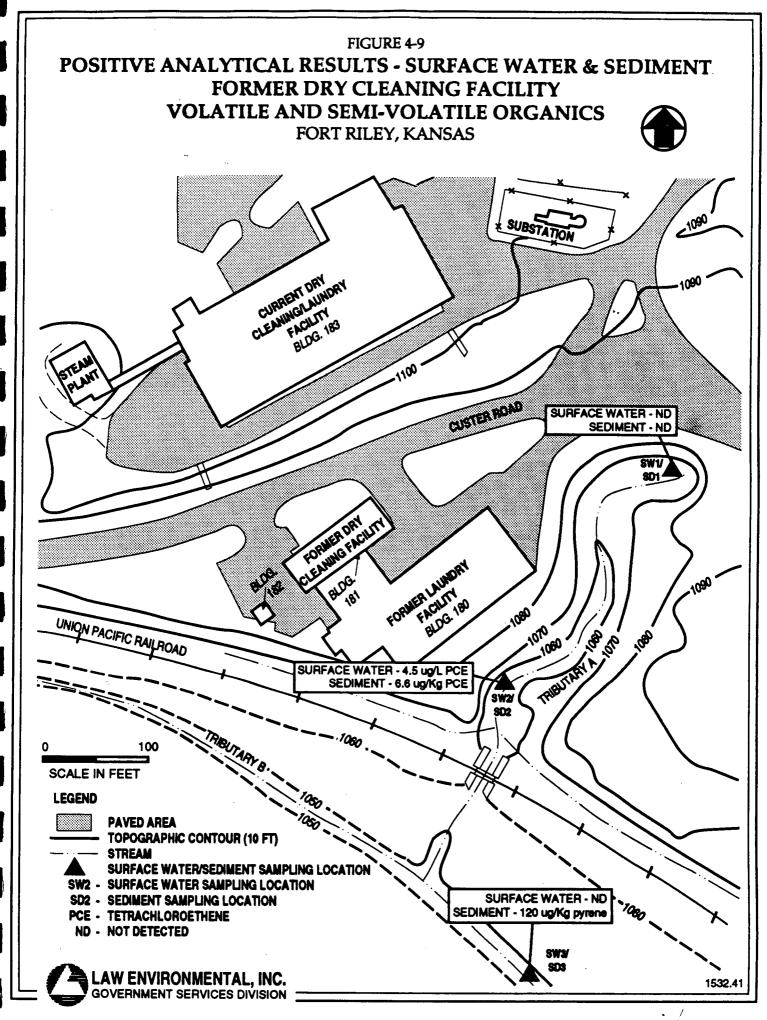

Semi-volatile organics were detected in the soils from shallow borings to the southeast of Building 181 (Figure 4-8). Figure 4-6 provides a depth cross-section of the soil and positive results of the chemical analyses of the soil. Compounds detected include bis(2-ethylhexyl)phthalate, 2-methylnaphthalene and phenanthrene. The 2-methylnaphthalene and phenanthrene were detected in DCFSB-13 at a depth of 15 feet at concentrations of 220 and 290 μ g/kg, respectively. Bis(2-ethylhexyl)phthalate was detected twice in DCFSB-07 at concentrations ranging from 380 to 460 μ g/kg.


Semi-volatile organics were detected in the soil to the northeast, east and southeast of the former Dry Cleaning Facility. Compounds detected include benzo[a]anthracene, benzo[a]pyrene, chrysene, fluoranthene, phenanthrene, pyrene, 2-methylnaphthalene, and bis(2ethylhexyl)phthalate. The extent of contamination of semi-volatile compounds is limited to shallow soils from one to nine feet.

4.3.3 <u>Surface Water and Sediment Analytical Results</u>

Three surface water and three sediment samples were collected for chemical analysis at this site. Results indicate the presence of PCE in surface water and sediment samples and pyrene in the

1532.23



sediment samples only. Figure 4-9 relates positive results to sample locations. Tables 4-4 and 4-5 provide positive results for surface water and sediment samples. The surface water/sediment locations in unnamed tributary A indicate no contamination entering the area. The samples in unnamed tributary A, DCSW-02 and DCSD-02, contain low levels of PCE, 4.5 μ g/L and 6.6 μ g/kg, respectively. The most downstream sample, DCSD-03, contained pyrene at 120 μ g/kg. This sediment was located in unnamed tributary B, and the contamination could be the result of dry cleaning activities or possible migration from sources upstream of tributary B.

4.3.4 Ground-Water Analytical Results

Results of the ground-water analysis indicate the presence of volatile chlorinated organic compounds to the northeast, east, southeast and west of the former Dry Cleaning Facility. Volatile compounds detected include 1,2-dichloroethene (1,2-DCE), PCE and TCE. One semi-volatile compound naphthalene was detected to the west of building 181. Table 4-6 provides positive results for the ground-water samples.

Tetrachloroethene was detected in four of the six monitoring wells sampled (Figure 4-10). The highest concentration of PCE was detected in DCF92-02 at 660 μ g/L. Tetrachloroethene was also detected in DCF92-03 at 80 μ g/L, in DCF92-04 at 9.3 μ g/L, and in DCF92-05 at 160 μ g/L. In addition, TCE, 1,2-DCE and vinyl chloride were detected. These compounds may be the result of anaerobic biodegradation of PCE (Howard, 1990). TCE was detected in monitoring wells DCF92-03 and DCF92-05 at concentrations of 6.8 and 33 μ g/L, respectively. The compound 1,2-DCE was detected in sample DCF92-03 at a concentration of 5.5 μ g/L, in DCF92-04 at 5.0 μ g/L and in DCF92-05 at 69 μ g/L. Vinyl chloride was detected in DCF92-04 at a concentration of 11 μ g/L. Because all downgradient wells contain PCE, the horizontal extent of contamination has not been

POSITIVE HITS SURFACE WATERS Former Dry Cleaning Facility Fort Riley, Kansas

,

PARAMETER	DCSW01	SAMPLE DCSW02	DUPLICATE DCSW04	DCSW03
<u>Volatile Organics (µg/L);</u>	(E)	, ,		
Methylene chloride	22(T)	21(T)	22(T)	20(T)
Tetrachloroethene		4.5	4.6	
<u>Semi-Volatile Organics (µg/L)</u>				- -

-- = Not detected

5

T = Estimated result, possible cross-contamination during shipping, based on trip blank results.E = Estimated result, possible low bias of results due to air bubbles noted in volatile vials.

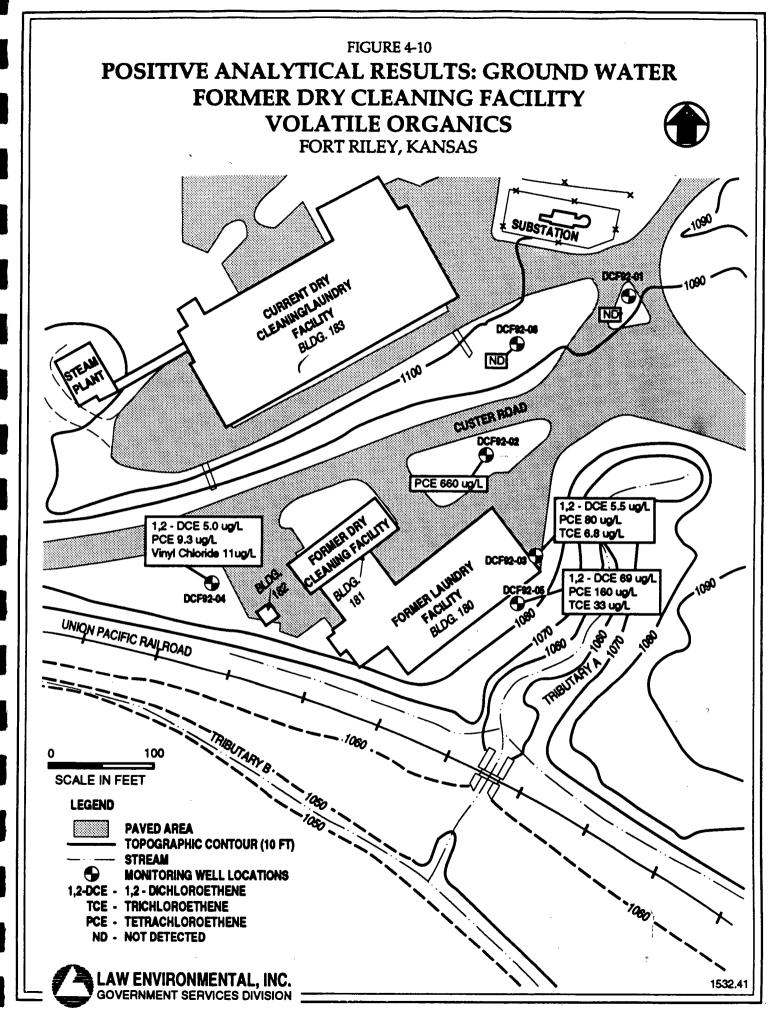
POSITIVE HITS SEDIMENTS Former Dry Cleaning Facility Fort Riley, Kansas

:

.1

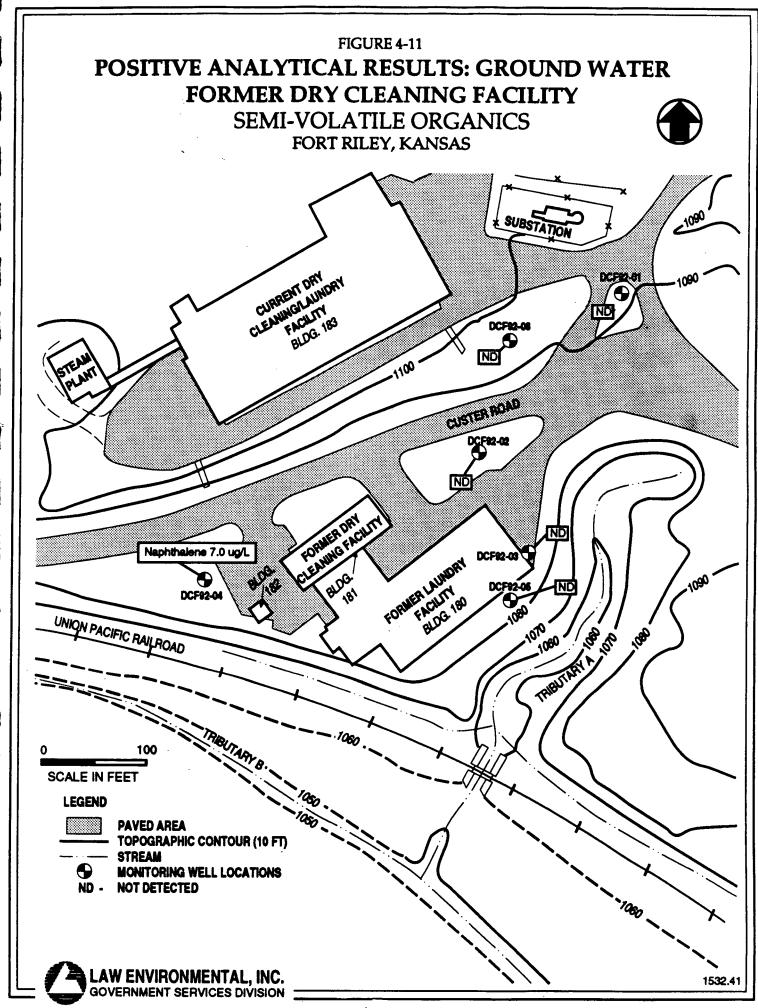
PARAMETER	DCSD01	SAMPLE DCSD02	DUPLICATE DCSD04	DCSD03
<u>Volatile Organics (µg/kg):</u> Methylene chloride Tetrachloroethene	84(B)	80(B) 6.6	85(B)	80(B)
<u>Semi–Volatile Organics (µg/kg):</u> Pyrene				120

-- = Not detected


B = Compound detected in the sample result at less than ten times the amount detected in the method blank. Result is estimated.

POSITIVE HITS **GROUND WATERS** Former Dry Cleaning Facility Fort Riley, Kansas

PARAMETER	DCF92-01	SAMPLE DCF92-02	DUPLICATE DCF92-07	DCF92-03	DCF92-04	DCF92-05	DCF92-06
<u>Volatile Organics (µg/L);</u>	(E)						
1,2-Dichloroethene				5.5	5.0	69	
Tetrachloroethene		660	600	80	9.3	160	
Trichloroethene				6.8		33	
Vinyl chloride					11		
Methylene chloride	5.0	130(B)	110(B)	13	·	14(B)	
<u>Semi-Volatile Organics (µg/L):</u>	(I)						
Naphthalene					7.0	-	


-- = Not detected

I = Internal standard recoveries exceed control limits. Sample quantitation is estimated.E = Estimated result, possible low bias of result due to air bubbles noted in volatile vials.

fully defined. Also, the area north of Building 181 has not been investigated. In addition, since PCE and TCE both have a greater density than water, these compounds tend to migrate downwards under the influence of gravity until a less permeable zone is reached. The vertical extent of contamination within the aquifer has not been defined based upon the nature of the chemical constituents detected.

The only semi-volatile compound detected in the ground-water samples was naphthalene which was detected in DCF92-04 at a concentration of 7.0 μ g/L (Figure 4-11). During monitoring well installation of DCF92-04, a sheen was detected on the water and a sample was collected and sent to the Missouri River Division Laboratory for analysis. It was analyzed by USEPA method 8015 (modified) for fuel identification. The sample contained 243 μ g/L of petroleum hydrocarbons identified as highly weathered gasoline or mineral spirits (Stoddard solvent) residue (Appendix I). In view of the history of the area (suspected oil spill, possible USTs, Stoddard solvent disposal on the ground, deteriorating asphalt), the sheen could be the result of one or more contaminant events.

5.0 EXPOSURE ASSESSMENT

Public health and environmental concerns should be addressed at any potentially contaminated site. This section addresses these concerns through the development of a conceptual site model, which aids in the identification of potential site-specific exposure pathways and receptors.

5.1 <u>CONCEPTUAL SITE MODEL</u>

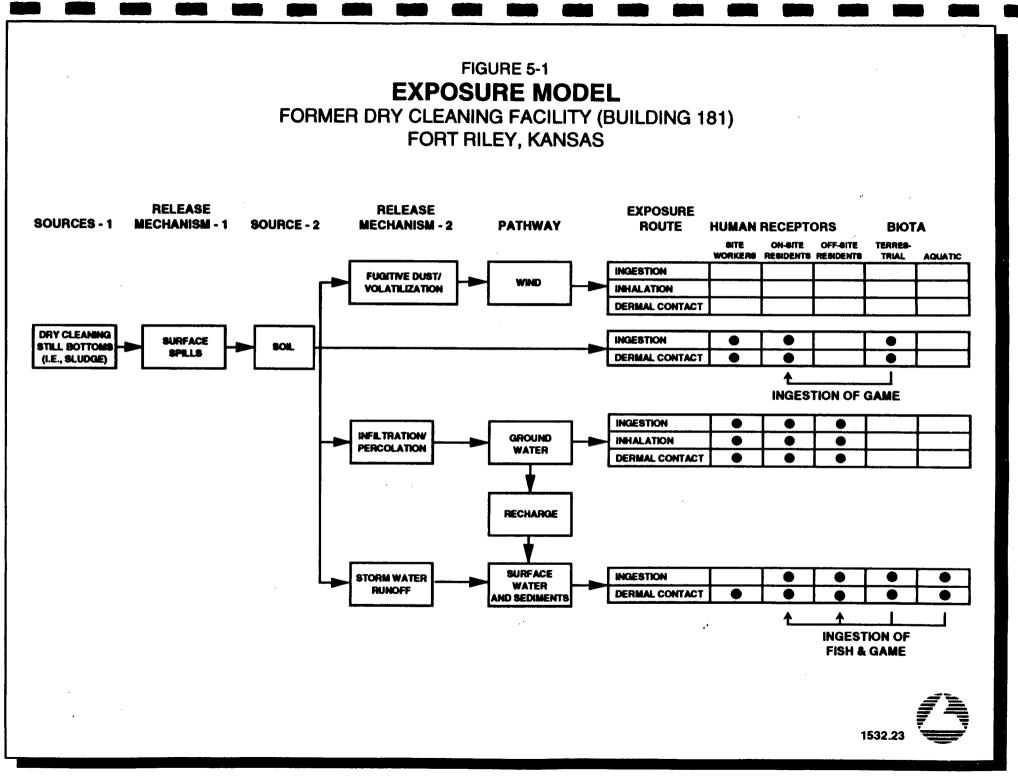
The purpose of a conceptual site model is to identify the possible exposure pathways to human and ecological receptors that may arise from contaminant release(s) at a given site. The objectives of the conceptual site model are to:

- characterize the potential source of contamination
- identify potential migration pathways and exposure pathways by which contaminants may migrate off-site
- identify potential receptors, both human and ecological, which may become exposed to the contaminants.

An exposure pathway is the route a constituent may take from a source to an exposed receptor. For an exposure pathway to be complete, it must consist of the following four elements: (1) a source and a mechanism of release, (2) a transport medium, (3) a point of contact with the contaminated medium, and (4) a route of uptake (e.g., ingestion) at the contact point.

The initial source of contamination at the former Dry Cleaning Facility is the solvent still bottoms or sludges that were generated at the facility. These wastes were reportedly poured

1532.23


onto the soil (the secondary source) outside the rear portal of the DCF. Infiltration and percolation of the wastes into the soil may have resulted in their release to the ground water beneath the site. Run-off from storm water may have carried the constituents to nearby creeks, resulting in contaminated surface water and sediments. Potential transport of constituents via fugitive dust or volatilization of constituents from surface soils is unlikely, as the area immediately surrounding the DCF is paved or covered with vegetation. The sources, release mechanisms, exposure media, exposure routes, and receptors for the former DCF site are shown in Figure 5-1.

5.2 CHEMICALS OF CONCERN

Soil, ground water, surface water, and sediments were sampled and analyzed for volatile organic and semi-volatile organic compounds to identify constituents of concern. The results of this sampling effort are summarized in this section.

5.2.1 Ground-Water Sampling Results

A total of six constituents, including five chlorinated volatile organic compounds, were detected in the ground-water samples collected at the site. Naphthalene, the only non-chlorinated compound detected in the ground-water samples, was detected at a level of 7 μ g/L. Methylene chloride was detected in the samples from four wells, at levels of 5 to 130 μ g/L. 1,2-Dichloroethene (1,2-DCE) was detected in monitoring wells DCF92-03, DCF92-04, and DCF92-05 at concentrations of 5.5, 5.0, and 69 μ g/L, respectively. Tetrachloroethene (PCE) was detected in four of the six wells (DCF92-02, DCF92-03, DCF92-04, and DCF92-05) at concentrations ranging from 9.3 to 660 μ g/L. Trichloroethene (TCE) was detected in two wells: DCF92-03 (6.8 μ g/L) and DCF92-05 (33 μ g/L). Vinyl chloride was detected once in monitoring well DCF92-04 at 11 μ g/L.

5.2.2 Soil Sampling Results

Soil samples were collected from the six monitoring well borings and from fifteen shallow soil boring locations at the DCF site. A total of five volatile organic compounds and seven semi-volatile organic constituents were detected in samples collected from the monitoring well borings.

The soil boring samples collected from the monitoring well boring located east of the facility, DCF92-03, appeared the most heavily contaminated, with ten constituents detected. Tetrachloroethene was consistently detected at concentrations ranging from 7.1 $\mu q/kq$ (at 24 feet) to 120 μ g/kg (at 9 feet). An additional three volatile organic constituents, toluene (6.8 $\mu q/kq)$, 1,1,2trichloroethane (86 μ g/kg), and dibromochloromethane (190 μ g/kg) were detected in this boring at a depth of four feet. Six semivolatile compounds, all polycyclic aromatic hydrocarbons (PAHs) were detected in this boring at the same depth: benzo[a]anthracene $(380 \ \mu g/kg)$, benzo[a]pyrene $(270 \ \mu g/kg)$, chrysene $(300 \ \mu g/kg)$, fluoranthene (610 μ g/kg), phenanthrene (610 μ g/kg), and pyrene (530 $\mu g/kg)$.

PCE was also detected in soil boring samples collected from monitoring wells DCF92-02 and DCF92-05. PCE was consistently detected in the DCF92-02 samples, at concentrations ranging from 9.1 μ g/kg (at 4 feet) to 53 μ g/kg (at 19 feet). PCE was detected in one sample collected from DCF92-05 (21 μ g/kg), at a depth of 35 feet.

Three constituents were detected in the soil boring samples collected from the upgradient well, DCF92-01: toluene 5.8 μ g/kg (27 foot depth), pyrene 110 μ g/kg (1 foot depth), and methylene chloride 60 to 68 μ g/kg (at depths of 1 to 14 feet). Monitoring well soil boring samples from DCF92-04 and DCF92-06 failed to detect contamination, with the exception of one "hit" of bis(2-

ethylhexyl)phthalate at a concentration of 2,300 μ g/kg in soils from DCF92-06 collected at a depth of 9 feet.

Soil samples were also collected from fifteen shallow soil boring locations on the site. Two samples were collected at each location, at two different depths, for a total of thirty samples. Methylene chloride was detected in all samples, at concentrations ranging from 22 μ g/kg (DCFSB-09B) to 180 μ g/kg (DCFSB-13B). It should be noted that methylene chloride was also detected in the blank associated with six of these samples. PCE was detected in seven samples (DCFSB-03A, DCFSB-04A, DCFSB-07A, DCFSB-07B, DCFSB-13A, DCFSB-13B, and DCFSB-14A) at concentrations of 3.7 to 960 µq/kq. Carbon disulfide and TCE were detected at levels of 9.2 μ g/kg and 4.2 μ g/kg, respectively, in samples collected from soil boring DCFSB-04. 2-Methylnaphthalene (220 μ g/kg), phenanthrene (290 μ g/kg), and toluene (5.4 and 31 μ g/kg) were detected in DCFSB-13 soil samples. Samples collected from soil boring DCFSB-07 detected the presence of bis(2-ethylhexyl) phthalate at levels of 380 μ g/kg (10 foot depth) and 460 μ g/kg (15 foot depth).

5.2.3 <u>Surface Water and Sediment Sampling Results</u>

Surface water and sediment were sampled at three locations on the DCF site. Samples from the upgradient location did not contain volatile or semi-volatile organic compounds at detectable levels. However, PCE was detected at levels of 4.6 μ g/L and 6.6 μ g/kg in surface water (DCF92-SW2) and sediment (DCF92-SD2) samples, respectively, that were collected from a downstream location in Unnamed Tributary A. Pyrene was detected at a concentration of 120 μ g/kg in the downgradient sediment sample collected from Unnamed Tributary B, located further downstream.

Based on this evaluation, the following constituents have been identified as chemicals of potential concern at the DCF site:

1532.23

Ground Water

1,2-Dichloroethene Methylene Chloride Tetrachloroethene Trichloroethene Vinyl Chloride Naphthalene Carbon Disulfide Dibromochloromethane Methylene Chloride Tetrachloroethene Toluene 1,1,2-Trichloroethane Trichloroethene Benzo[a]anthracene Benzo[a]pyrene Chrysene Fluoranthene 2-Methylnaphthalene Phenanthrene Pyrene bis(2-ethylhexyl)phthalate

Surface Water Methylene Chloride Tetrachloroethene

Sediment

Methylene Chloride Tetrachloroethene Pyrene

The majority of the contamination at the DCF site appears to be located northeast of the former laundry facility (Building 180). It should be noted that a sewer line runs through this area, and it may be acting as a conduit for the volatile organic contamination detected in the vicinity.

5.3 <u>COMPARISON TO APPLICABLE OR RELEVANT AND APPROPRIATE</u> <u>REQUIREMENTS (ARARS) AND TO BE CONSIDERED (TBC) REQUIREMENTS</u>

This section addresses the requirements of the environmental laws which are determined to be "applicable" or "relevant and appropriate". The identification of the ARARs is done on a site-

specific basis, and involves the comparison of a number of factors, including the types of hazardous substances present (chemicalspecific) and the physical nature of the site (location-specific), to the statutory or regulatory requirements of the relevant environmental laws.

In addition to the ARARS, TBCs may also be used to evaluate the risk associated with the extent of contamination on a given site. The TBCs are non-promulgated advisories or guidance issued by state or federal government that are not legally binding and do not have the status of potential ARARS. Examples of TBCs include health advisories, reference doses (RFDs), guidance policy documents developed to implement regulations, and calculated risk-based levels such as Alternate Concentration Limits (ACLs).

5.3.1 Chemical Specific ARARS and TBCs

Chemical specific ARARs are usually health or risk-based numerical action values or methodologies which, when applied to site-specific conditions, result in the establishment of numerical action values. These values establish the acceptable concentrations of constituents for a particular exposure pathway.

It should be noted that although only a few constituents may be resent in site media at concentrations above ARARs or TBCs, these guidelines are based on each constituent by itself, and not cumulatively. Exposure to receptors can still occur and the cumulative risk of all constituents across all media expected to be contacted should be assessed to verify that there is no threat to the public or the environment.

5.3.1.1 <u>Ground Water</u> - The National Primary Drinking Water Regulations established by the United States Environmental

1532.23

Protection Agency (USEPA) provide Maximum Contaminant Levels (MCLs) and Maximum Contaminant Level Goals (MCLGs) for a number of constituents. By definition, the MCLGs are non-enforceable health goals while the MCLs are the enforceable standards which must be set as close to the MCLGs as feasible. The MCLs combine health effects data on specific chemicals with other concerns, such as analytical detection limits, treatment technology, and economic impact. Relevant state water regulations which set state MCLs for constituents may be more stringent than federal MCLs.

A comparison of the maximum concentrations of the constituents present in the ground water to MCLs and MCLGs are shown in Table 5-1. The concentrations of methylene chloride (130 μ g/L), tetrachloroethene (660 μ g/L), and trichloroethene (33 μ g/L) exceeded the standards (for each: MCL = 5 μ g/L; MCLG = 0 μ g/L) for these constituents. In addition, the level of vinyl chloride detected in the site's ground water (11 μ g/L) exceeds the MCL of 2 μ g/L. 1,2-Dichloroethene was detected at concentrations below MCL and MCLG values. There is no MCL available for naphthalene.

In addition to MCLs, the State of Kansas has developed Kansas Action Levels (KALs), Kansas Notification Levels (KNLs), Alternate Kansas Action Levels (AKALs), and Alternate Kansas Notification Levels (AKNLs). The KNL or AKNL is used to constitute administrative confirmation that ground-water contamination exists. The KAL or AKAL is applied to represent the level at which longterm exposure to contaminant concentrations is unacceptable. The KNL/KAL apply to fresh and usable water aquifers in the state, whereas the AKNL/AKAL apply to alluvial aquifers and/or specific aquifers which surface through springs or seep to become contributors to the surface waters of the state (KDHE, 1988). Discussions with the Kansas Department of Health and Environment indicate that the State of Kansas failed to meet the federally mandated deadline for completing revisions to the drinking water regulations and health advisories. Therefore, by default, the state is required to enforce the federally established MCLs.

1532.23

TABLE 5-1

POTENTIAL APPLICABLE OR RELEVANT AND APPROPRIATE REQUIREMENTS (ARARs) FOR GROUND WATER FORMER DRY CLEANING FACILITY Fort Riley, Kanses

CHEMICAL	MAXIMUM CONCENTRATION DETECTED	FEDERAL MCL *	FEDERAL MCLG •	KANSAS MCL ⁴	KAL '	KNL '
Volatile Organics:						
1,2-Dichloroethene	0.069	0.1 (cis)	0.1 (cis)	NA	0.07	0.007
		0.07° (trans)	0.07° (trans)	NA	0.07	0.007
Methylene Chloride	0.13	0.005 ⁴	NA	NA	0.05	0.005
Tetrachloroethene	0.66	0.005°	0	NA	0.007	0.0007
Trichloroethene	0.033	0.005	0	NA	0.005	0.0005
Vinyl Chloride	0.011	0.002	0	NA	0.002	0.0002
Semi-Volatile Organics:						
Naphthalene	0.007	NA	NA	NA	0.143	0.0143

All concentrations are in mg/L (ppm).

NA - Not available

κ. .

a - Maximum Contaminant Levels and Maximum Contaminant Level Goals (40 CFR 141 Subpart B)

b - Kansas Drinking Water Rules (KAR 28.15), last amended 1 May, 1988

c - National Public Drinking Water Rules for 38 Inorganic and Synthetic Organic Chemicals (January, 1991), Phase II Fact Sheet

d - USEPA (57 FR 31776), 17 July, 1992

 Kansas Action Levels and Kansas Notification Levels (Kansas Department of Health and Environment, memorandum Revised Groundwater Contaminant Cleanup Target Concentrations for Aluminum and Selenium⁴, 5 December 1988).

T - Value is for total 1,2 - Dichloroethene; isomers were not specified.

The KALS and KNLS for constituents detected in the ground-water samples are included in Table 5-1 as TBCs; AKALS and AKNLs are not available for these constituents. In general, the KNL values are one-tenth the KAL values. Both the KNL and KAL were exceeded by methylene chloride, tetrachloroethene, trichloroethene, and vinyl chloride. The maximum detected concentration of total 1,2dichloroethenes exceeded the KNL but not the KAL.

5.3.1.2 <u>Soil</u> - Under the Resource Conservation and Recovery Act (RCRA), action levels have been proposed which are established assuming exposure through ingestion of media contaminated with the constituents of concern (USEPA, 1990). According to the proposed rule (40 CFR Parts 264, 265, 270 and 271), action levels for constituents: (1) are derived in a manner which is consistent with USEPA guidelines for assessing health risk; (2) are based on scientifically valid studies; (3) for carcinogens, represent a concentration associated with an excess upper bound cancer risk of 1 x 10⁻⁶ due to continuous lifetime exposure; and (4) for systemic toxicants, represent a concentration to which the human population could be exposed on a daily basis without appreciable risk of deleterious effects.

For systemic toxicants, the action level is calculated using the oral Reference Dose (RfD), which corresponds to a threshold concentration below which adverse effects are not expected to occur, even in sensitive subpopulations. For carcinogens, the action levels are based on the Carcinogen Slope Factor (CSF), which is the upper 95 percent confidence limit of the slope of the doseresponse curve for each constituent.

The proposed action levels for the constituents present in soil will be considered as TBCs and are found in Table 5-2. All the chlorinated volatile organic constituents detected in site soils were present at concentrations below the proposed RCRA soil action levels. There are no soil action levels for PAHs (see Table 5-2).

1532.23

TABLE 5-2

POTENTIAL TO BE CONSIDERED (TBC) REQUIREMENTS FOR SOILS FORMER DRY CLEANING FACILITY Fort Riley, Kansas

· · ·		
CHEMICAL	MAXIMUM CONCENTRATION DETECTED (mg/kg)	PROPOSED RCRA • SOIL ACTION LEVEL (mg/kg)
Volatile Organics:		
Carbon Disulfide	0.0092	8,000
ibromochloromethane	0.19 2	NA
lethylene Chioride	0.18	90
etrachloroethene	0.96	10
oluene	0.031	20,000
chloroethene	0.0042	60 .
,2-Trichloroethane	0.086 12	100
mi-Volatile Organics:	,	
nzo[a]anthracene	0.38	NA
nzo[a]pyrene	0.27	NA
(2-ethylhexyl)phthalate	2.4	50
rysene	0.3	NA
Ioranthene	0.61	NA
Methylnaphthalene	0.22	NA
enanthrene	0.61	NA
/rene	0.53	NA

All concentrations are in mg/kg (ppm).

NA - Not available

a – RCRA Action Levels – Federal Register, Vol. 55, No. 145, July 27, 1990. pp 30798–30884. Corrective Action for Soild Waste Management Facilities, Proposed Rule.

12 - Internal standard recovery is low. Sample results are biased high.

5.3.1.3 <u>Surface Water</u> - The USEPA has developed Ambient Water Quality Criteria (AWQC) for constituents in surface waters. The AWQC for the protection of aquatic organisms are derived based on two criteria: (1) acute criterion representing the maximum concentrations permissible at any time, and (2) chronic criterion representing the maximum permissible concentration averaged over a 24-hour time period.

The AWQC for the protection of human health accounts for ingestion of contaminated water and/or for the ingestion of contaminated organisms in surface waters (USEPA, 1987). The AWQC for the protection of human health from the ingestion of water and organisms assumes a daily intake of two liters of water and 6.5 grams of fish, while the AWQC for the protection of human health due to the ingestion of fish assumes an intake of 6.5 grams of fish daily. Ambient concentrations corresponding to several incremental lifetime cancer risk levels have been estimated for constituents exhibiting carcinogenic and/or mutagenic effects in laboratory tests and are, therefore, suspected of being carcinogenic to humans. The ambient concentrations which may result in one excess cancer per one million persons (i.e., risk = 1×10^{-6}) are presented as AWQC for constituents known or suspected to be carcinogens.

The State of Kansas incorporates the Federal AWQC for the protection of aquatic life as the State Water Quality Standards by reference (KAR, 1987). Surface water AWQC are relevant for this site because contaminated ground water may discharge to the creeks and rivers surrounding the DCF. Table 5-3 presents the potential ARARs and TBCs for methylene chloride and PCE, the constituents detected in the site's surface water. Federal AWQC for the protection of human health for the consumption of fish and water and the consumption of fish alone were exceeded by both constituents (see Table 5-3).

1532.23

TABLE 5-3

POTENTIAL APPLICABLE OR RELEVANT AND APPROPRIATE REQUIREMENTS (ARARs) REQUIREMENTS FOR SURFACE WATER FORMER DRY CLEANING FACILITY Fort Riley, Kansas

Chemical	Maximum Concentration Detected	FEDERAL AMBIENT WAT For the Protection of Aquatic Life:		TER QUALITY CRITER For the Protection (consum)	of Human Health:	KANSAS STATE WATER QUALITY STANDARDS ☞ For the Protection of Aquatic Life:	
		Acute	Chronic	Water & Fish	Fish only		
Methylene Chloride	22	^{مه} 11,000	NA	0.19 ^{4/}	15.7 ⁴⁴	NA	
Tetrachloroethene	4.6	5,280 °	840 °	0.8 ^r	8.85 ^f	NA	

All concentrations are in μ g/L (ppb), unless indicated otherwise.

NA - Not available

- a USEPA, 1987. Quality Criteria for Water, 1986. EPA 440/5-86-001.
- b Kansas Water Quality Standards (KAR 28.16.28), 1 May, 1987.

c - The State of Kansas has incorporated the Federal AWQC for the protection of aquatic llife as the State Water Quality Standards by reference.

d - Value is for Halomethanes.

e - Insufficient data to develop criteria. Value presented is lowest observed effect level.

f - Human health criteria for carcinogens reported for three risk levels. Value presented in this table is the 10⁻⁶ risk level.

The National Oceanic and Atmospheric 5.3.1.4 Sediments -Administration (NOAA) has established effects-based criteria for contaminants in sediments, which may serve as TBCs. Two effectsbased values, the Effects Range - Low (ER-L) and the Effects Range - Median (ER-M), are usually determined for a given constituent, using a method (Klapow and Lewis, 1979 as cited in NOAA, 1990) similar to that used in establishing marine quality standards for the State of California (NOAA, 1990). This method involves a three-step approach. First, currently available information (reports and studies) which contain estimates of chemical sediment concentrations associated with adverse biological effects are assembled and reviewed. Next, a range is established for a particular constituent based upon a preponderance of evidence, which reflects the concentrations at which biological effects are Lastly, this range is evaluated relative to the sediment noted. chemical data from the National Status and Trends (NS&T) Program. The ER-L and ER-M values are generated as a result of this process. The ER-L is the 10th percentile of this effects range, while the ER-M is the 50th percentile of the reported range of concentrations associated with biological effects.

A description of the relative degree of confidence associated with the ER-L and ER-M values is also provided by NOAA. The ER-L and ER-M values associated with a high degree of confidence were supported by clusters of data with similar concentrations, by data from multiple geographic locations, by data sets that included more than results from an approach, and for chemicals for which the overall apparent effects threshold was similar to or within the range of the ER-L and ER-M values (NOAA, 1990). Values associated with a low degree of confidence were based on data sets without these qualities.

The NOAA effects-based criteria for the constituents detected in site sediments are shown in Table 5-4. NOAA criteria values were not available for the chlorinated constituents (methylene chloride

TABLE 5-4

POTENTIAL TO BE CONSIDERED (TBC) REQUIREMENTS FOR SEDIMENTS FORMER DRY CLEANING FACILITY Fort Riley, Kansas

.

Chemical	Maximum Detected Concentration	ER-L Concentration	ER-M Concentration	Overall Apparent Effects Threshold	Degree of Confidence
VOLATILE ORGANICS:)
Methylene Chloride	85	NA	NA	NA	NA
Tetrachloroethene	6.6	NA	NA	NA	NA
SEMI-VOLATILE ORGANICS:					
Pyrene	120	350	2,200	1,000	Moderate/Moderat

All concentrations are in μ g/kg (ppb).

NA - Not available

Source: National Oceanic and Atmospheric Administration, Technical Memorandum, NOS OMA 52, 1990.

and PCE) detected on-site. The maximum concentration of pyrene detected in site sediments (120 μ g/kg) was below the NOAA ER-L (350 μ g/kg) and ER-M (2,200 μ g/kg) values.

5.3.2 Potential Location-Specific ARARs and TBCs

Location-specific ARARs are restrictions placed on the constituents' concentrations or the activities to be performed at a site because the site occurs in a special location such as floodplains, wetlands, historic places, and fragile ecosystems or habitats. The potential federal requirements for the DCF are listed below:

- Endangered Species Act of 1973 An action to conserve or provide a program to conserve endangered or threatened species.
- Fish and Wildlife Coordination Act Requirements An action to conserve fish and wildlife, particularly those species which are indigenous to the state. Wildlife conservation will be coordinated with other features of water resource development programs.
- Historic Site Buildings and Antiquities Act Provides for the protection, enhancement, and preservation of sites of archaeological or historic significance.

In addition, there are ARARs and TBCs required for the State of Kansas, which include:

• Kansas Surface Water Use Designations - Provides guidelines for approved uses for certain types of waters.

1532.23

- Kansas Designation of Critical Water Quality Management
 Areas Provides for the protection of waters deemed
 critical by state authorities.
- Kansas Historic Preservation Act Provides for the protection preservation of sites and buildings listed on state or federal historic registries.

The former Dry Cleaning Facility is bordered by tributaries that eventually empty into the Kansas River; therefore, state and federal regulations for surface water apply.

The Fish and Wildlife Coordination Act is also a potential ARAR, and is designed to protect fish and wildlife when actions result in the modification of a body of water (i.e., the Kansas River). The Endangered Species Act of 1973 is a potential ARAR. Fort Riley falls within an area that eight federally endangered species and thirteen candidate species for the federal endangerment listings are likely to inhabit. Of these 21 total species, two federally endangered species and eight candidate species are known to occur on Fort Riley (Table 5-5).

The Historic Site Building and Antiquities Act is also a potential ARAR, because the Main Post Area at Fort Riley has been designated as an Historic District and is listed on the National Register of Historic Places. The Historic District encompasses an area of approximately 670 acres and the DCF lies within the Historic District boundaries.

5.4 FATE AND TRANSPORT

This section will provide a brief description of the environmental fate and transport for the constituents detected at the DCF site. For purposes of this report, chemically similar constituents will be grouped together and evaluated as one category.

TABLE 5-5

ENDANGERED AND THREATENED SPECIES (AND ASSOCIATED HABITATS) COMMON TO FORT RILEY AREA FORMER DRY CLEANING FACILITY Fort Riley, Kansas

SPECIES	HABITAT
Piping Plover	Open unvegetated beach or sandbar
Least Tern	Sparsely vegetated sandbars in a wide channel with good visibility
Baid Eagle	Near water bodies (rivers, lakes, etc.) utilizing riparian forest
Peregrine Falcon	Large river or waterfowl management areas, cropland, meadows and prairies, river bottoms, marshes, and lakes
Whooping Crane	Wetland, riverine base sandbars, shallow water, slow river flow
Eskimo Curlew	Wet meadows, fields, pastu res, drier parts of salt and brackish marshe s
Western Prairie Fringed Orchid	Tallgrass prairie and sedge meadow (fire adapted)
Prairie Mole Cricket*	Tallgrass prairie, ungrazed or unmowed native tallgrass with silt—sandy loam soils
Regal Fritillary Butterfly*	Prairie meadows (wet), moist tallgrass prairie, virgin grassland where violets act as host plants
Sturgeon Chub*	Areas of shallow strong currents and gravel bottoms, turbulent areas where shallow water flows across sandbars
Texas Horned Lizard*	Dry-flat areas with sandy, loamy, or rocky surfaces with little vegetation
Loggerhead Shrike*	Grassland or shrubby fields with scattered woody vegetation for perching and nesting
Long-billed Curlew*	Great Plains grasslands, marshes, mud flats, sandbars
White-faced Ibis*	Small ponds with stands of cattail or bulrush
Western Snowy Plover*	Unvegetated riverine
Eastern Spotted Skunk*	Open level cultivated farmland, upland sites with preference for fallen logs and brushpiles
Topeka Shiner*	Turbulent areas in rivers where shallow water flows across sand bar
American Burying Beetle	Tallgrass prairie, ungrazed or unmowed native tallgrass with silt—sandy loam soils
Black Tern*	Wetland areas
Henslow's Sparrow*	Native grassland with few trees
Hairy False Mallow*	Rocky outcrops and dry areas in prairies

Species in BOLDFACE type are known to occur on Fort Riley.

* Candidate species for federal endangerment listing.

5.4.1 Volatile Organic Compounds

Nine volatile organic compounds (VOCs) were detected in DCF samples, including seven chlorinated compounds (PCE, TCE, 1,1,2trichloroethane, 1,2-dichloroethene, methylene chloride, dibromochloromethane, and vinyl chloride), toluene, and carbon disulfide. In general, VOCs released to the atmosphere exist in vapor phase and, because they are water soluble, are subject to wet The VOCs are degraded in the atmosphere by reaction deposition. with photochemically induced hydroxyl radicals. If released to surface water, VOCs will volatilize to the air; bioconcentration and adsorption to sediments are not important removal processes. The VOCs released to soil tend to volatilize, but leaching to ground water may also occur (Howard, 1990). The chlorinated ethenes (PCE, TCE, and 1,2-dichloroethene) may slowly biodegrade in soil or ground water via sequential dehalogenation to lesser chlorinated compounds such as vinyl chloride and chloroethane. (Barrio-Lage et al, 1986). Toluene biodegrades readily in soil and water, while carbon disulfide does not (Howard, 1990).

5.4.2 Polycyclic Aromatic Hydrocarbons (PAHs)

Eight PAHs were detected in the DCF site media, as follows: benzo[a]anthracene, benzo[a]pyrene, chrysene, fluoranthene, 2methylnaphthalene, naphthalene, phenanthrene, and pyrene. The PAHs released to the atmosphere are subject to short- and long- range transport, dependent on molecule size, and are subject to wet and dry deposition. In surface waters, PAHs may volatilize, oxidize, photodegrade, biodegrade, bind to particulates, or accumulate in aquatic organisms. Removal of PAHs in surface water is primarily through volatilization. In sediments, PAHs may biodegrade or bioaccumulate in aquatic organisms or plants. PAHs can enter the ground water and be transported within an aquifer (ATSDR, 1989).

5.4.3 Bis(2-Ethylhexyl)Phthalate

Bis(2-ethylhexyl)phthalate (BEHP) present in the atmosphere tends to strongly adsorb to atmospheric particulates and is able to be transported long distances in the troposphere. BEHP is removed from the atmosphere by both wet and dry deposition. When released to water, BEHP adsorbs strongly to suspended particulates and sediments. Likewise, if spilled onto the ground, BEHP is not expected to volatilize, but will adsorb to soil particles. However, percolation of BEHP through the soil to ground water may occur during times of rapid infiltration or in the presence common organic solvents. Biodegradation of BEHP in water will occur within three weeks under aerobic conditions, and will also occur in soil at a slower rate. Bioconcentration of BEHP has been observed in aquatic and terrestrial organisms (ATSDR, 1991).

5.5 POTENTIAL RECEPTORS

Potential receptors are organisms engaged in activities (working, swimming, foraging, etc.) which bring the organism into contact with a constituent at an exposure point. Examples of receptors are humans, animals, or vegetation.

Potential receptors are determined by a complete pathway from the exposure medium to the receptor. Potential receptors for the DCF site include human and biota receptors. Human receptors include Fort Riley personnel (site workers), on-site residents, and offsite residents. Biota receptors include terrestrial animals, aquatic species, and plants that live on- and off-site.

The most likely human receptors to potential contamination at the DCF are on-site workers. These individuals may contact constituents in the sediment and surface water at the site through routine landscaping and regrading. Potential exposures to these

media are expected to be primarily dermal, but the possibility for incidental ingestion also exists. The potential for exposure to soil, either directly or through the inhalation of fugitive dust, The area immediately surrounding the DCF is covered is unlikely. with pavement, and the adjacent non-paved area (the ravine located east of the building) is covered by dense vegetation. Therefore. exposure to site soils is not expected unless excavation of these In addition, on-site workers and on-site residents areas occurs. may be exposed to constituents detected in the ground water at the site, since wells supplying Fort Riley with potable water are located less than 1.5 miles to the west. Exposure to constituents in the ground water is possible via ingestion of drinking water, inhalation of volatile emissions, and dermal contact.

Although access to Fort Riley is uncontrolled, it is unlikely that off-site residents will come in direct contact with any possible soil or sediment contamination, because the former DCF and surrounding area is unlikely to be frequented by visitors. However, the potential for off-site exposure via the drinking water, and to contaminated surface waters downstream of the site are possible. The residents of Ogden, Kansas (population 1,500) obtain their drinking water from three wells located approximately 3.5 miles downstream of the DCF (Law, 1992). Therefore, Ogden residents have the potential for exposure to ground water through ingestion, inhalation of vapor emissions from volatile compounds, and dermal contact.

The drainageways located adjacent to the DCF, Unnamed Tributary A and Unnamed Tributary B, eventually discharge to the Kansas River. Unnamed Tributary A receives runoff from the site before combining with Unnamed Tributary B. Off-site exposure to constituents detected in surface water may occur through recreational activities (wading, swimming), and through the consumption of food chain organisms (i.e., fish and small game) that may have had contact with contamination.

Ecological receptors (i.e., vegetation, terrestrial, and aquatic organisms) may also contact potential contamination at the site. Vegetative receptors may become contaminated through the potential uptake of constituents from the soil, surface water, ground water, and sediment. Terrestrial receptors have the potential for exposure to soil via incidental ingestion and dermal contact. Potential surface water and sediment exposures may occur via incidental ingestion, dermal contact, ingestion of food chain organisms, and inhalation of fugitive dust or vapor emissions released to the air. Ingestion of surface water, burrowing in soils, foraging and migration patterns, swimming, and predatory behaviors are some of the types of activities that terrestrial species may engage in which have the potential to result in exposure to constituents present in site media.

Aquatic and benthic receptors have the potential for exposure to surface water and sediments through incidental ingestion, dermal contact, and ingestion of food chain organisms. Swimming, water uptake, and predatory behaviors are some of the activities aquatic species engage in that may result in exposure to contaminated media.

5.6 ENVIRONMENTAL IMPACTS

Potential environmental impacts for the DCF site include effects on the ground water, surface water, soils, and sediments. Environmental impacts from the soil will affect the flora and fauna which may contact the constituents detected in site soils. These soil impacts have the potential to affect the food chain, possible endangered or threatened species, and critical habitats. Potential environmental impacts from the ground water may occur if contaminated water is drawn from wells in the underlying aquifer and used as drinking water, irrigation water for commercial crops, watering of commercial livestock, or industrial processes.

Potential surface water effects include the possibility of constituents entering tributaries, streams, and eventually the Kansas River via surface runoff. These surface water impacts may affect sport fishing and hunting, recreational water use, potential surface water intakes used for the public water supply, endangered or threatened flora and fauna, and critical habitats in the vicinity.

6.0 SUMMARY AND CONCLUSIONS

The Preliminary Assessment/Site Investigation performed at the former Dry Cleaning Facility detected the presence of volatile and semi-volatile contaminants in the soils and ground water beneath the site. These contaminants, migrating through the soil and ground-water media, could impact human health and the environment as the contamination is transferred from the media to the receptor.

6.1 <u>SITE INVESTIGATION/CHARACTERIZATION</u>

Several intrusive methods were incorporated during the study.

- 1) The soil gas survey was performed by Target Environmental Services (TARGET) from October 29 through November 2, 1991. Sample analysis was performed on 49 separate samples using an on-site laboratory supplied by TARGET. The results of laboratory analysis revealed high levels of PCE at the northeast corner of the former Dry Cleaning Facility.
- 2) Fifteen shallow soil borings were drilled to a depth of 15 feet. The locations of the borings were determined by the soil gas results, and the accessibility for a truck-mounted drill rig. Two soil samples were collected from each boring and analyzed for volatile and semi-volatile organic compounds.
- 3) Six monitoring wells were drilled and installed based on the results of the soil gas survey and the 15 soil borings. A seventh well was installed, but was not sampled due to the low volume of ground water in the well. Four soil samples were collected from each of the six borings. Ground-water samples were collected after well development. Soil and ground-water samples were analyzed for volatile and semi-volatile organic compounds.

- 4) Borings at the site revealed that the geology consists of a 30- to 40-foot thick soil horizon overlying the regional limestone/shale bedrock. The soil is thickest south of the site and thins to the north. The soil is composed of loess, alluvial deposits, and weathered bedrock. A continuous zone of weathered bedrock is situated between the base of the soil horizon and the top of the bedrock.
- 5) Ground water was encountered at the site at depths between 35 to 40 feet below the ground surface. The ground-water flow is discrete, dropping only 2.52 feet from northwest to southeast. Ground-water flow direction is to the southeast.

6.2 ANALYTICAL SUMMARY

Analytical results of the ground-water samples collected during the investigation revealed the presence of volatile and semi-volatile organic compounds beneath the site. Those compounds identified in the ground water include trichloroethene, tetrachloroethene, 1,2dichloroethene, vinyl chloride, and naphthalene. The horizontal extent of contamination has not yet been fully defined. However, the contamination is most pronounced to the northeast, southeast and west of Building 181. The vertical extent of contamination has not been fully delineated during this study.

The analytical results of the soil samples collected indicate the presence of volatile and semi-volatile organic compounds at the site. Those compounds identified include 1,1,2-trichloroethane, dibromochloromethane, toluene, tetrachloroethene, carbon disulfide, pyrene, bis(2-ethylhexyl)phthalate, benzo[a]anthracene, benzo[a]pyrene, chrysene, fluoranthene and phenanthrene. The volatile organic contamination was detected from the northeast to the southeast of Building 181. The horizontal extent of contamination has not been fully defined. Volatile organic

contamination exists from the near surface soils (4 feet) to soils at the top of bedrock. Semi-volatile organic compounds were detected from the northeast to the southeast of Building 181. The semi-volatile contaminants were detected at depths of one to 15 feet, indicating a more shallow extent of contamination than the volatile organic contamination.

6.3 EXPOSURE ASSESSMENT SUMMARY

The results of the exposure assessment identified possible public health and environmental concerns for the DCF site. Off-site (Ogden) residents, on-site workers, and Fort Riley personnel may be exposed to constituents detected in the ground water via ingestion of drinking water, inhalation of volatile emissions, and dermal contact. Ogden's drinking water wells are located approximately 3.5 miles downstream of the DCF, while Fort Riley's potable water supply wells are located approximately 1.5 upgradient miles west of the site. The denser chlorinated compounds detected in the ground water, such as tetrachloroethene (PCE) and trichloroethene (TCE), tend to sink downward in water, and are expected to accumulate along less permeable strata and move along them (in pure phase) under the influence of gravity gradients. Therefore, it is possible (although perhaps not probable) for PCE and TCE to travel along fissures in bedrock to distantly located potable water supply wells.

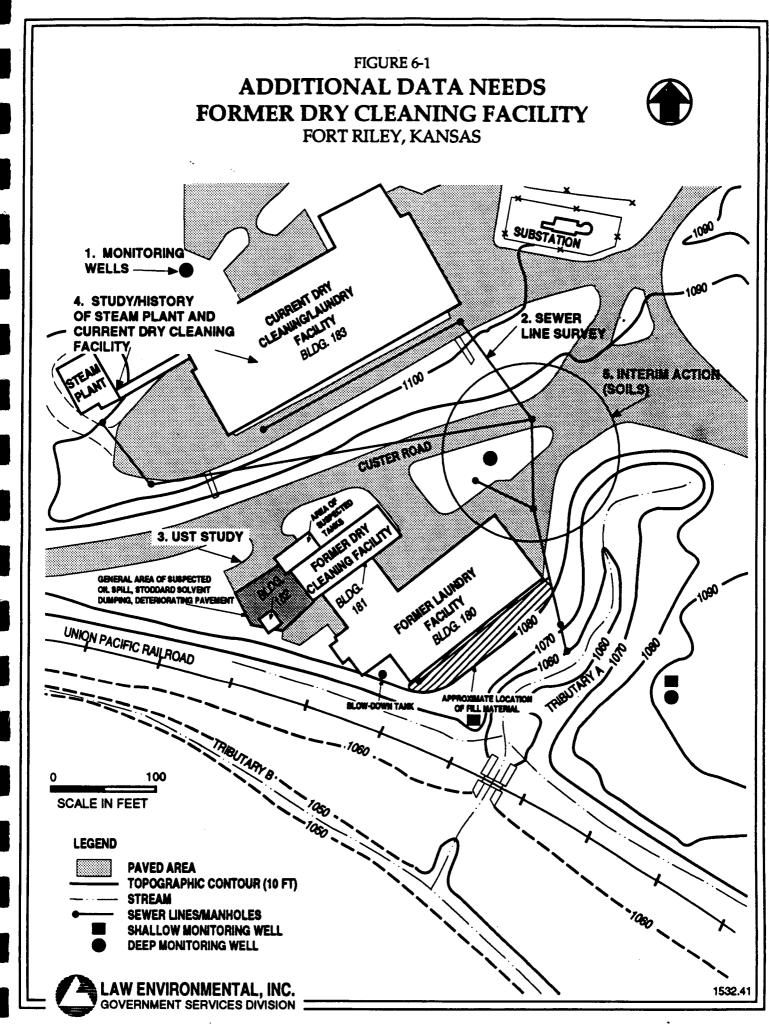
On-site workers may also be exposed to constituents detected in site sediments and surface water by dermal contact through routine landscaping and regrading. Exposure to constituents detected in site soils is not expected to occur, since the area immediately surrounding the DCF is either paved or covered by vegetation. Offsite exposure to constituents detected in surface water may occur through recreational activities, and through the consumption of food chain organisms (i.e., fish and small game) that may have had contact with contamination.

Ecological receptors that may be exposed to the constituents detected in site media include the aquatic and benthic biota indigenous to the surface waters of the area and the terrestrial fauna which may utilize the area for drinking water, hunting, and foraging. Vegetative receptors may also become contaminated, through the potential uptake of constituents from the soil, surface water, ground water, and sediment. The exposure of ecological receptors to site constituents may be important because Fort Riley falls within an area that eight federally endangered species and thirteen candidate species for the federal endangerment listings are likely to inhabit. Of these 21 total species, two federally endangered species and eight candidate species are known to occur on Fort Riley.

The exposure assessment also identified potential environment impacts for the DCF site. Soil constituents may affect the food chain, possible threatened or endangered species, and critical habitats. Contaminants detected in ground water may impact drinking water supplies, crops and livestock (if the ground water is used for irrigation), or industrial processes. Potential surface water impacts include the limitation of sport fishing, hunting and recreational water use, the effect on critical habitats and endangered or threatened flora and fauna in the vicinity of the site.

6.4 <u>RECOMMENDATIONS</u>

Several obvious data gaps/action items have tentatively been identified for further consideration at the former Dry Cleaning Facility site. These have been summarized below, along with the logic for the recommended actions.


1) Monitoring Wells - The extent of contamination has not been established, either in the vertical or horizontal direction.

1532.23

6-4

More monitoring wells are needed to accurately assess the extent of contamination. Figure 6-1 illustrates the possible locations of additional wells in the area. Two additional shallow wells would be installed. The first well would be located southeast of the ravine containing tributary A. The well is necessary to determine if ground-water contamination exists southeast of DCF92-05. The well would be designed to test the level of contamination in the soils above the bedrock, and the ground-water quality in the upper part of the A second well would be installed northeast of aquifer. tributary B to also test the soils above bedrock and the ground-water quality in the upper part of the aquifer. Three deep monitoring wells will be installed to a depth of 100 to 200 feet to test ground-water quality deeper in the aquifer. The suggested locations of the wells are shown on Figure 6-1.

- 2) Sewer Line A more in-depth study of the area around the sewer line is needed. This would be accomplished by a soil gas survey along the sewer lines.
- 3) Underground Storage Tanks The issue of the location and number of USTs has still not been resolved. More detailed analysis is needed to resolve the data gaps of where the tanks had been located.
- 4) Steam Plant and Current Dry Cleaning Facility A study/history is needed to establish waste practices at the two buildings.
- 5) Interim Action The soil vapor extraction project might be plausible at the site.

REFERENCES

- ATSDR, 1989. Toxicological Profile for Polycyclic Aromatic Hydrocarbons. The Agency for Toxic Substances and Disease Registry, U.S. Public Health Service. October, 1989.
- ATSDR, 1991. Toxicological Profile for Di(2-ethylhexyl)phthalate. The Agency for Toxic Substances and Disease Registry, U.S. Public Health Service. October, 1991.
- Barrio-Lage, G. et al., 1986. Sequential Dehalogenation of Chlorinated Ethenes. Environmental Science Technology, Volume 20, pp. 96-99.
- Environmental Services and Engineering, Inc., 1984. Installation Assessment of Fort Riley, KS, Report No. 341.
- EPA, 1986. <u>Test Methods for Evaluating Solid Waste</u>, Third Edition, SW-846. U.S. Environmental Protection Agency, Office of Solid Waste and Emergency Response, November 1986 (Revised March 1987).
- EPA, 1990. RCRA Action Levels, Federal Register Volume 55, No. 145, July 27, 1990. Corrective Action for Solid Waste Management Facilities, Proposed Rule. Pages 30798-30884.

Fort Riley Environmental Files

- Howard, Philip H., 1990. Handbook of Environmental Fate and Transport for Organic Chemicals, Volume II: Solvents. Lewis Publishers, Chelsea, MI.
- KAR, 1987. Kansas Water Quality Standards. Kansas Administrative Regulations, Title 28, Department of Health and Environment, Article 16 - Water Pollution Control, Chapter 28. Last amended 1 May, 1987.

- KAR, 1988. Kansas Drinking Water Rules. Kansas Administrative Regulations, Title 28, Department of Health and Environment, Article 15-Application for Permits; Domestic Water Supply. Last amended 1 May, 1988.
- KDHE, 1988. Memorandum entitled Revised Groundwater Contaminant Cleanup Target Concentrations for Aluminum and Selenium. Kansas Department of Health and Environment. 5 December, 1988.
- Law, 1992. Draft Modified Work Plan, Monitoring Well Installation Plan, Chemical Data Acquisition Plan, Site Safety and Health Plan for Preliminary Assessment/Site Investigation, Former Dry Cleaning Facility, Fort Riley, Kansas. Law Environmental, Inc., Government Services Branch, Kennesaw, GA, May 1992.
- Law, 1992. Quality Control Summary Report for Preliminary Assessment/Site Investigation, Former Dry Cleaning Facility, Fort Riley, Kansas, Law Environmental, Inc. Government Services Division, Kennesaw, GA, September, 1992.
- NOAA, 1990. The Potential for Biological Effects of Sediment-Sorbed Contaminants tested in the National Status and Trends Program. National Oceanic and Atmospheric Administration, Technical Memorandum NOS OMA 52.
- USEPA, 1987. Quality Criteria for Water 1986. U.S. Environmental Protection Agency, Office of Water Regulations and Standards. USEPA Publication No. EPA/440/5-86-001.
- USEPA, 1989a. Risk Assessment Guidance for Superfund, Volume I, Human Health Evaluation Manual. USEPA Publication No. 540/1-89/002.

R-2

APPENDIX A

SCOPE OF SERVICES

SCOPE OF WORK FOR PRELIMINARY ASSESSMENT/SITE INVESTIGATION DRY CLEANING FACILITY FORT RILEY, KANSAS

DATE: 8 May 1991 REVISED: 18 JUNE 1991

1.0 OBJECTIVE. The objective of this investigation is to evaluate the extent of chemical contamination at the Dry Cleaning Facility, Building No. 180 (formerly Building No. 109).

2.0 AUTHORITY. This work is authorized by advice of authorization dated 1 May 1989, Directive No. 1, Control No. 89-262.

3.0 DESCRIPTION OF WORK: The A-E will provide professional services necessary to safely conduct field and office investigations and collect and analyze potentially hazardous materials. The work covered under this Scope of Work (SOW) involves the professional services necessary to accomplish the following work:

3.1 Revise and re-submit work plans in accordance with comments received from EPA Region VII, DEH Fort Riley, and Corps of Engineers, Kansas City District (comments are attached). References to the Pesticide Storage Facility will be removed from the Work Plans. If the A-E indicates that ambiguity still exists as to the disposition of any of the comments, the A-E will request clarification from the Corps of Engineers. The A-E's request will be in writing. The Corps of Engineers will respond in writing within 5 working days.

3.2 Perform a Preliminary Assessment/Site Investigation. Perform the necessary site investigations to determine the presence or absence of contamination, from the area. Collect soil, sediment and groundwater samples. The A-E will reevaluate location and number of wells to be installed, requirement for additional borings, and necessity of a soil gas survey at the site. These recommendations will be included with the proposal received from the A-E.

3.3 Prepare a Site Investigation Report which analyzes the results and presents conclusions for the site.

4.0 BACKGROUND. The Dry Cleaning Facility, Building No. 180 (formerly No.109) was located in building 109 from the early 1940's to 1983. The dry cleaning solvent used until from 1940 to 1966 was Stoddard solvent; from 1966 to 1983, tetrachloroethylene was used. Both solvents were distilled and recycled. Tetrachloroethylene still residue was reportedly disposed of by pouring it on the ground behind the building.

of notice to proceed. The Corps will review and return comments to the A-E within 21 days of receipt of the Working Draft. The A-E will make corrections/revisions as a result of review by the Corps of Engineers and submit the DRAFT WORK PLANS within 14 days of receipt of comments from the Corps. Distribution of the Draft Work Plans submittal shall be made by the A-E directly to the reviewing offices with the required number of copies as indicated on the Document Distribution Listing. The A-E can expect to receive regulators' comments within 45-60 days of submittal. The A-E will prepare and submit annotated responses comments within 10 calendar days of receipt of the comments.

8.1.2.2 A review conference will be held in the Kansas City District Corps of Engineers offices 7 calendar days after submission of annotated responses. The A-E will be prepared to discuss all comments and response to comments and make recommendations as to disposition of the comments. The A-E will prepare minutes of the meeting and forward the minutes with the revised work plans within 21 days of the completion of the meeting.

8.1.3 DRAFT FINAL - WORK PLANS. The Draft Final Work Plans will be submitted within 21 days of completion of the review conference stated above. Distribution of the Draft Final Work Plans submittal shall be made by the A-E directly to the reviewing offices with the required number of copies as indicated on the Document Distribution Listing (Copies being forwarded to the State of Kansas and EPA Region VII will be forwarded 2-3 days after all other copies are distributed.) The Draft Final Work Plan will serve as the Final Work Plan if EPA, the State of Kansas, or DEH Fort Riley do not invoke dispute resolution regarding the document within 30 days.

8.1.4 FINAL WORK PLANS. OPTIONAL. The A-E will make corrections to the Draft Final Work Plan based on comments received and resubmit in the quantities indicated for the Draft Final Work Plan within 14 days of receipt of comments.

8.2 TASK 2 - Field Investigation. All field work approved in the Work Plans will be implemented and completed within 90 days of receiving confirmation of approval of Final Work plan from COE in writing.

8.3 TASK 3 - Draft PA/SI Report. The Draft PA/SI Report shall include, but limited to, all information gathered during the site investigation, all analytical results, and a discussion on public health and environmental concerns.

8.3.1 The following submissions will be made under Task 3:

8.3.1.1 WORKING DRAFT - PA/SI REPORT. Distribution of the Working Draft PA/SI submittal shall be made by the A-E directly to the reviewing offices with the required number of copies as indicated on

18-Jun-91

the Document Distribution Listing. The Working Draft will be submitted no later than 30 calendar days after completion of the field work. from the completion of the The Working Draft PA/SI will be reviewed by DEH Fort Riley and the Corps of Engineers. Comments will be returned to the A-E within 30 calendar days of receipt of submittal.

8.3.1.2 ANNOTATED RESPONSES to comments will be submitted by the A-E within 14 calendar days of receipt of comments.

8.3.1.3 A review conference will be held in the Kansas City District Corps of Engineers offices 7 calendar days after submission of annotated responses. The A-E will be prepared to discuss all comments and responses to comments and make recommendations as to disposition of the comments. The A-E will prepare minutes of the meeting and forward the minutes with the revised work plans within 14 days of the completion of the meeting.

8.3.1.4 DRAFT PA/SI REPORT. The Draft PA/SI will be submitted within 14 days of completion of the review conference stated above. Distribution of the Draft PA/SI submittal shall be made by the A-E directly to the reviewing offices with the required number of copies as indicated on the Document Distribution Listing. The A-E can expect to receive regulators' comments within 45-60 days of submittal. The A-E will prepare and submit annotated responses comments within 10 calendar days of receipt of the comments.

8.3.1.5 A review conference will be held in the Kansas City District Corps of Engineers offices 7 calendar days after submission of annotated responses. The A-E will be prepared to discuss all comments and response to comments and make recommendations as to dispostion of the comments. The A-E will prepare minutes of the meeting and forward the minutes with the revised work plans within 21 days of the completion of the meeting.

8.3.1.6 DRAFT FINAL PA/SI REPORT. The Draft Final PA/SI will be submitted within 21 days of completion of the review conference stated above. Distribution of the Draft Final PA/SI submittal shall be made by the A-E directly to the reviewing offices with the required number of copies as indicated on the Document Distribution Listing. The Draft Final PA/SI will serve as the Final PA/SI if EPA, the State of Kansas, or DEH Fort Riley do not invoke dispute resolution regarding the document within 30 days.

8.3.1.7 FINAL PA/SI REPORT. OPTIONAL. The A-E will make corrections to the Draft Final Remedial Investigation Report based on comments received and resubmit in the quantities indicated for the Draft Final Work Plan within 14 days of receipt of comments.

9.0 COMPLETION SCHEDULE: The A-E shall complete the work and services as stated in paragraph 10 above. Should the start of each

4

phase or portions thereof be delayed more than 6 months by causes other than the A-E's negligence, the remaining fee and time schedule may be renegotiated at the A-E's request.

10.0 GENERAL REQUIREMENTS AND STANDARDS:

10.1 Project Manager:

10.1.1 The A-E shall assign a principal or key employee to serve as the Project Manager. The Project Manager shall oversee the coordination of the entire project and shall be capable of administering all instructions from the Kansas City District Office and obtaining answers to all questions from the Kansas City District Office during and after PA/SI work.

10.1.2 During the prosecution of the work under the contract, the A-E shall keep in close liaison with the Corps of Engineers' Project Manager, who will coordinate work with all other agencies. All requests made to the A-E by other agencies shall be referred to the Corps of Engineers PM.

10.2 Review Comments.

10.2.1 The A-E as part of this scope shall interface and utilize the Corps of Engineers Automated Review Management System (ARMS) for this proejct. The A-E will receive one copy of CESPK-PAM 1110-1-2, Architect/Engineer Response Package (User's Manual) describing the communications software, optimum hardware requirements and access procedures. The necessary software is included with the manual. Minimum equipment requirements are an IBM-XT or compatible computer system running DOS 3.0, or later, with ;640 Kilobyte RAM, at least a 20 Megabyte hard disk and a 1200 or higher baud Hayes-compatible modem. Assistance can be received via a telephone Hotline at (916) 551-3126.

10.2.2 All review comments and responses will be electronically transmitted from CE by ARMS. Comments can be received at a personal computer in the A-E's office by use of ARMS software and modem over telephone lines. The comments reside on the Missouri River Division (MRD) computer. The A-E can then download the review comments, respond to the comments, upload the comments back to the MRD computer and forward responses to the Corps of Engineers Project Manager. All comments will be resolved to the satisfaction of the CE Project Manager.

10.2 Review of Progress and Technical Adequacy: At appropriate times, representatives of the Contracting Officer may review the progress and technical adequacy of the work. Such review will not relieve the A-E from performing all contract requirements.

18-Jun-91

be made immediately prior to the site visits. Notification by phone is sufficient.

11.0 CONFERENCES/MEETINGS.

11.0 The A-E shall be represented by personnel familiar with all aspects of the work submitted.

11.1 Additional Conferences: Payment for furnishing the services of technically qualified representatives to attend additional conferences, when so requested in writing by the Contracting Officer, will be made at a rate per hour for the discipline involved plus travel expenses computed in accordance with Government Joint Travel Regulations in effect at the time travel is performed and actual cost of transportation.

11.2 The A-E shall be responsible for taking notes and preparing the minutes for all conferences. Conference minutes will be prepared in typed form, signed by the A-E Project Manager, and submitted in triplicate to the CE Project Manager within five (5) days after date of the conference.

11.3 These minutes shall include the date, place, and a list of attendees, including organization and telephone number. Comments made during the conference, or decisions affecting criteria changes, must be recorded in the basic conference minutes. Any augmentation of written comments should be documented by the conference minutes.

11.4 Confirmation Notices: The A-E will be required to provide a record of significant discussions, verbal directions, and telephone conversations participated in by the A-E and/or his representatives on matters relative to this contract and work, irrespective of whom the other participants may have been. These records, entitled "Confirmation Notices," will be numbered sequentially and shall fully identify participating personnel, subject discussed, and any conclusions reached.

12.0 METHOD OF PAYMENT: The A-E shall prepare and submit to the U.S. Army Engineer District, Kansas City, partial payment estimates in accordance with "Instructions for Completion of ENG Form 93." All partial payments shall be based on work completed as of the 15th day of the report month and shall be submitted to the office of the Contracting Officer by the 18th days of the month. The U.S. Army Engineer District, Kansas City, will prepare supporting payment documents after obtaining necessary approvals and forward all documents to the US Army Engineer District, Omaha, for issuance of the payment check. All questions regarding payments shall be directed to the U.S. Army Engineer District, Kansas City. Payment under this contract, for which property or services are provided in a series of partial executions or deliveries, will be made within 30 days after receipt of an invoice which as been properly executed by the A-E.

Addressee	A	в	с	D	E	F	G	Н
Commander U.S. Army Engineer District, Kansas City Attn: CEMRK-ED-TP 601 E. 12th Street Kansas City, MO 64106-2896	4	4	4	4	5	5	3	3
U.S. Army Corps of Engineers Missouri River Division ATTN: CEMRD-EP-C 2945 South 132nd Street Omaha, NE 68144	5	5	5	5	5	5	0.	0
U.S Army Corps of Engineers Missouri River Division Laboratory ATTN: CEMRD-ED-GL 420 S. 18th Street Omaha, NE 68101	1	1	1	1	1	1	0	0
Directorate of Engineering & Housing Environmental & Natural Resources Division ATTN: Janet Wade Building 408 Fort Riley, Kansas 66442-6000	6	6	6	6	6	6	6	0
Commander U.S. Army Toxic & Hazardous Materials Agency ATTN: CETHA-IR-A Aberdeen Provding Ground, MD 21010-5401	0	3	3	3	3	3	0	0
Cecilia Tapia Waste Management Division, EPA Region VII 726 Minnesota Avenue Kansas City, Kansas 66101	0	3	3	3	3	3	0	0
Marvin Glotzbach Section Chi ef, Remedial Section Bureau of Environmental Remediation Kansas Department of Health & Environment Forbes Field, Building 740 Topeka, Kansas 66620-7500	0	3	3	3	3	3	0	0

08 May 91

FORMER DRY CLEANING FACILITY PA/SI CONTRACT MODIFICATION SCOPE OF WORK

APRIL 16, 1992 DACW41-89-D-0124 D.O. 34

REVISED: 2 JUNE 92

1. Reference Written Order No. 1-POOOO1, dated 19 March 92, issued by USAED, Kansas City, to Law Environmental, Inc., and the RI/FS original Scope of Work, dated 18 June 91.

2. This document represents the "Contract Modification - Scope of Work" associated with the "Work and Services" portion of the referenced written order.

3. SERVICES TO BE PERFORMED BY THE ARCHITECT-ENGINEER: The A-E shall perform and shall assume all responsibility for the accuracy and completeness of the following work and services in accordance with the criteria and instructions specified both below and in the <u>SOW, dated 18 June 91</u>. The Government reserves the right to exercise options for work and services which are identified as being optional.

3.1 Task 1 - Monitor Well Installation, Sample Analysis.

- a. Well installation Install 2- (two) 3 (three) intermediate wells to approximate depth of 45-50 feet. Obtain one groundwater sample and four soil samples from each well. Install one shallow well screened from 9 to 19 ft. at DCF92-04, total depth shall be 19 ft. Install an additional shallow well termed 7th well. Install following sampling of the other wells.
- b. Well Development The AE shall develop all monitor wells (3 original and 2-additional 3 additional) until ground-water turbidity values of 30 NTUs or less are obtained.
 (NOTE: Original SOW for 4 wells required 4 hrs each of development time. This well development effort is not to be included in the cost proposal for this modification.) Two wells DCF92-02 and DCF92-04 will be developed for an additional 80 hrs beyond the initial 10 hours of development in an attempt to recover 3X the volume of water lost during development. DCF well #92-05 will be developed an additional 10 hrs

beyond the initial 10 hrs of development in an attempt attain the required turbidity. Distilled water will be introduced into the well during the additional development. Three times the volume introduced will be removed.

e.——Chemical Analysis— Perform chemical analysis-of-the samples obtained from-the-new monitor wells.— Utilize existing SOW chemical parameters and project-"CDAP".

Task 2 - Pilot Hole Study MOBILIZATION & DEMOBILIZATION COSTS ONLY

THE FOLLOWING ACTIVITY WAS NOT PERFORMED DO NOT SUBMIT COST PROPOSAL

A pilot hole study shall be performed to determine construction details of monitoring wells, design well screen and sand pack capable of producing clear (30 NTUs or less) groundwater samples, produce data necessary to select proper sand pack grain size / screen slot width. The following activities are required:

- One hole will be drilled to the top of bedrock. One continuous soil boring will be collected using a rotary drill equipped with hollow stem augers and a 3 inch CME continuous sampling device. The complete interval shall be logged, soil samples of the intervals to be screened shall be placed in jars and sent to a geotechnical laboratory.
- Conduct sieve analysis on soil collected from each well zone to be screened. Particle size distribution curves will be developed and used, in selecting appropriate filter pack gradation coefficients and screen slot size.
- Perform all work in accordance with the previously submitted & approved "Health and Safety Plans", "Work Plans".
- Submit a report detailing the proposed "Well Design" for review and approval.

Task 3 - Quarterly Sampling

The AE shall perform "Sampling & Analyses" events of both the existing and newly installed groundwater monitoring wells as described below:

2

Baseline: A sampling event of 6 wells will be performed and analyzed in accordance with the project CDAP. A data package containing only the "RAW" data will be submitted to the COE immediately upon receipt of the data from the lab. A more thorough "QCSR" will be furnished by the AE and will be utilized in determining what additional sampling efforts may be required. (Distribution of the data will be to: CEMRK, KDHE, EPA, and Fort Riley)

- Quarterly: The AE shall perform quarterly (Seasonal Analytical) sampling of the wells for a minimum of (3) three rounds. Each sample will be analyzed and the data submitted (Raw & QCSR) in manner described above (Baseline). The exact time frame that sampling is to be performed will be established by the Kansas City District Office.
- OPTIONAL: If determined necessary by the CO an additional round of sampling will be performed. This activity will be a PRICED OPTION and will be performed in accordance with the Baseline task previously described.

Task 4 - Work Plans / Document Distribution

The AE shall utilize the following document distribution listing in conjunction with the original document listing "Paragraph 14.0" SOW, dated 18 June 92. NOTE: Documents titled A,B,C,E,G and H remain unchanged. The requirement of Aa, Bb, and Cc represents new documents and D and F are revised in quantity only.

CEMRK	Aa 5	Bb 3	Cc 4	D 4	F 5
MRD-EP	0	0	1	5	5
MRD-ED	0	0	1	1	1
DEH	2	3	10	10	10
CETHA	0	0	1	3	3
EPA	0	3	3	3	3
KDHE	0	2	2	2	3
	7	11	22	28	30
orig con	0	0	0	25	26

3

TT 314

Document Annotation for "<u>Modified</u>" plans: Aa - Working Draft Work Plans Bb - Draft Work Plans Cc - Draft Final Work Plans

a) NOTE: Submittal of the modified plans are to be in accordance with the project IAG currently detailed for documents A,B and C. Therefore, it is possible that the submission of the Draft Work Plans would become the Draft Final Work Plans, provided no comments are generated. In the event that this occurred the covers of the (11) Bb documents would be replaced and an additional (11) reports would be required. A contract modification would be processed to reflect this reduction in scope. (A total of 22 documents in-lieu of 33, Bb and Cc)

b) The AE is required to submit a "Preliminary Site Characteristics Summary", PSCS, in accordance with the RI/FS Guidance, dated Oct 88, EPA/540/G-89/004, CERCLA

Task 5 - Record Search / SOW Preparation / Conference Call/ Survey

- The AE shall perform a project record search and interview retired military personnel, former employees and other local community personnel. This task is designed to obtain a history profile of the site and will be utilized during the preparation of the PA/SI reports.

- The AE shall assist in the preparation of the contract modification SOW. The input provided should identify areas of the original contract which are potentially lacking in either technical detail or require revisions as a result of more current information being made available.

- The AE shall participate in a weekly conference call with representatives of: Fort Riley, CEMRK, EPA (Reg 7), KDHE. The purpose of the call is to coordinate project related work effort being conducted (field and office) and to answer/address any concerns. A representative of the AE firm must be sufficiently familiar with the project to enable the call to be productive.

- A minor amount of survey work is required to be performed by the AE. Existing MW's and other landmarks will be located on a site map.

- END OF MODIFICATION SCOPE OF WORK -2 JUNE 92

REVISED SCOPE OF WORK

F. 2. 2 V: 7/17/9

івнов расы сыт, гни#елатчаатізча

DRY CLEANING FACILITY

FORT RILEY, KANSAS

Modify SOW dated 8 May 91 (PSF) to add the design and installation of dedicated sampling pumps, and associated tubing for purging and sampling each well. Also, the contractor will provide and dedicate to Fort Riley a total of two control systems for the three sites (DCF,PSL,SFL) to use in operating the pumps. The contractor will need to furnish a Technical Memorandum to the sampling plan to incorporate the use of sampling pumps. The entire pumping system must meet the requirement of purging 3x the well volume in a timely fashion, provide laminar flow at 100 ml/minute for sampling, and

APPENDIX B

INTERVIEW/BACKGROUND INFORMATION

a professional engineering and earth science consulting firm		
		Distribution Priority:
		Rout
	CONTACT FORM	
Contact made by: Art Whallon	Date: 2,25,92 Time: 1130 A	_Project/Proposal Related: 🛛 Yes 🖾
	Project/Proposal No:	_
IF NEW CONTACT: Provide all information in this	section or attach copy of business card.	
Mr. Bob Krause	FT. R. Ley Do	L-CCR
Person Contacted		19-6551
· · · · · ·	Title	Phone
Street Address (include P.O.B)	City State	Zip Code
"KNOWN BY" (Law Environmental employees wh	o know contact) in priority order:	
1)		Potential Client Other
2)	"STATUS":	Private
e)	_	
3)		
	Received Denone Call Detter DSOO D	Proposal CRFP C in person v
Other. explain:	pa Dry Cleaning Blag (#182)	lean ATA to the
SUMMARY: 0 Mr. Krausi Merage	in orgenerating and a creating	mo.): unula
mid 1980's. Themps	CD THEY WAR CAMILLES -	<u> </u>
froude PCE by	pumping from the delivery t	
and cleaning mach	line and minite 1-3 bas	rels (55gallon) up
eving month.	Houd pumps would fill machine	from burrels
. Kiter cartridges on		from burrels
	1 1 1 - 2 - 1 1 · · ·	of studge unule
 Kilter cartridges on be removed from 	Stapprofinately 1-2-gallens	of studge unules
 Kiter cartridges ou be remained from material was put a 	the distiller every 3 m the distiller every 3 m in the dismission - up to se	of studge wanted.
 Killer cartridges ou be removed from material was put a Loter they was 	the distiller every 3 m the distiller every 3 m in the distiller every 3 m in the dumpster - up to se le transport this waste to	of studge wanted.
 Kiter cartridges on be removed from material was put a Loter they wave Bidy (# 98) (who wavel fate 	the distiller wery 3 m the distiller wery 3 m in the dumpster - up to 20 loc transport this waste to it off post.	of studge waved. withs. Install, the o 1bs at one time. City the Pice
 Kilter cartridges ou be removed from material was put a Loter they want Bidy(#AS) who would fate Bidy(#AS) (who would fate Bidy(#AS) (who would fate 	is approximately 1-2 gallens the distiller every 3 m in the distiller every 3 m in the dismposter - up to 20 low transport this waste to it off post. after ground by Bildy 1F2-uncertain of co	of studge wanted withs. Insteally the O 165 at one time. Contraction the Pice
 Kilter cartridges on be removed from material was put a Loter they wan Bidy(#AS) (who waved faile Ricall's cil slick type ination Will Check into res 	the distiller wery 3 m the distiller wery 3 m in the dumpster - up to 20 loc transport this waste to it off post. alon ground by Bilg 162-uncertain of or moval adde of 3 tanks	1) sludge wande withs. Install, the O 165 at one time. Citizen the Pirce igin - cit ev KE sludge.
 Kilter cartridges on be removed from material was put a Loter they want Bidy(#AD) who would fate mails cil slick type inaline Will Check into res Said the 2 above 9 	in the distiller every 3 m the distiller every 3 m in the distiller every 3 m lin the dismoster - up to 2e la transport this waste to it off post. I but ground by Bildy 182-uncertain of or moval adde of 3 tenks recent tenks in the brick bildy ce	of studge wanted withs. Insteal, the o 1bs at one time. Contraction the Prop igin - cil ev NE sludge. seed to store sludg for
 Killer cartridges on be removed from maderial was put a Loter they want Bidy(#ASP) who would fate Ricall's cil slick type inaline Will Check into res Said the 2 above 9 	in the distiller wery 3 m the distiller wery 3 m in the dumpster - up to 20 la transport this waste to it off post. altern ground by Bilg 162-uncertain of or maval acite of 3 tanks recent tenks in the brick bilds we is were remained when a pop	of sludge waved. souths. Install, the o 165 at one time. Citizen the Pirch igin - cil ev NE sludge. sed to store sludg fr er shreider was install
 Killer cartridges on be remained from maderial was put a Loter they want Bidy(# ASP) who wanted fate Bidy(# ASP) who wanted fate Bidy(# ASP) who wanted fate Will check into res Will check into res Said the 2 above 9 	in the distiller every 3 m the distiller every 3 m in the distiller every 3 m part to distiller every 3 m in the distiller every 40 20 part transport this waste to it off post. if off post. if off post. alter grand by Bidg 182-uncertain of or moval adde of 3 tanks recent tanks in the brick bidg in is evere remeved when a post	of sludge wanted roths. Install, the o 1bs at one time. Contraction the Pre- rigin - cil ev NE sludge. Seed to store sludg for per shreider was installed.
 Kiter certridges ou be removed from material was put a Loter they wave Bildy (# F150) who would faite • Ricall's cit slick type inalise • Ricall's cit slick type inalise • Will Check into res • Said the 2 above g Clarifier operation • Dry channe aperate 	in the distiller wery 3 m the distiller wery 3 m in the distiller wery 6 20 la transport this waste to it off post. If off post. alon yound by Bilg 182-uncertain of or moval acte of 3 tonks period tenks in the brick bilds a since remained when a post ion manual to new cleaning 1	of studge waved roths. Install, the o 1bs at one time. Contraction the Prop igin - cil ev NE sludge. Seed to store studg for per shreider was install bida.
 Kiter cartridges and be remailed from mailerial was put a Loter they wain Bidy (# F152) who waves faiture Micall's cit slick lype ination Will Check into res Said the 2 above g Clarifiar operation Dry channes aperation 	the approximately 1-2 gallens the distiller every 3 m in the distiller every 3 m in the dismposter - up to 20 la transport this waste to it off post. alon ground by Bidg 162-uncertain of an maral acts of 3 tents recent tents in the brick bidg and is ever remembed when a post ion manual to new Cleaning 1 on manual to new Cleaning 1	1) <u>sludgi wawed</u> proths. <u>Initially the</u> 0 1bs at one time. Citation the Picy igin - cil ev NE sludge. sed to store sludg fi per shreider was installed. I have some
 Killer cartridges on be remained from material was put a Loter they wain Bidy (# ASO) who would faile ⁿicall's cillslick type inaline Will Check into res Said the 2 above g Clarifier operation Dry channe aperation 	in the distiller wery 3 m the distiller wery 3 m in the distiller wery 6 20 la transport this waste to it off post. If off post. alon yound by Bilg 182-uncertain of or moval acte of 3 tonks period tenks in the brick bilds a since remained when a post ion manual to new cleaning 1	1) <u>sludgi</u> wande proths. <u>Initially this</u> 0 1bs at one time. Citation the Prop igin - cil ev NE sludge. sed to store sludg fr per shreider was install pidg.
 Killer cartridges on be remained from material was put a Loter they wain Bidy (# ASO) who would faile ⁿicall's cillslick type inaline Will Check into res Said the 2 above g Clarifier operation Dry channe aperation 	the approximately 1-2 gallens the distiller every 3 m in the distiller every 3 m in the dismposter - up to 20 la transport this waste to it off post. alon ground by Bidg 162-uncertain of an maral acts of 3 tents recent tents in the brick bidg and is ever remembed when a post ion manual to new Cleaning 1 on manual to new Cleaning 1	1) <u>sludgi</u> wande proths. <u>Initially this</u> 0 1bs at one time. Citation the Prop igin - cil ev NE sludge. sed to store sludg fr per shreider was install pidg.
 Kiter cartridges on be remained from maderial was put a Loter they wan Bidy (# F192) who would failed "Picalis cil slick lype inaline Will Check into res Said the 2 above g Clarifier operation Dry claning operation Dry claning operation 	the approximately 1-2 gallens the distiller every 3 m in the distiller every 3 m in the dismposter - up to 20 la transport this waste to it off post. alon ground by Bidg 162-uncertain of an maral acts of 3 tents recent tents in the brick bidg and is ever remembed when a post ion manual to new Cleaning 1 on manual to new Cleaning 1	of sludge waved proths. Initially the O Ibs at one time. Citation the Pipp igin - cil ev NE sludge. sed to store sludg fr per shreider was install bildg.

.

2

LAW ENVIRONMENTAL. INC. a professional engineering and earth science consulting firm		Attachments: □ Yes □ No Distribution Priority: □ Rush	
	CONTACT FORM		
Contact made by: <u>Cook</u> Law	Date: 2/25/92 Time: //39 FDCProject/Proposal No:	Project/Proposal Related: XYes D No	
If yes, Project/Proposal Name: H. Kiley		If yes. I New I Existing	
IF NEW CONTACT: Provide all information in this sector.		2	
Ft. Riley	(UST, water /u	and water hog Mur	
Street Address (include P.O.B)	City S	ate Zip Code	
"KNOWN BY" (Law Environmental employees who kr 1) 2) 3)	iow contact) in priority order: "TYPE":		
Other explain: SUMMARY: Iller. look asked removal of li for process blow- approximately 1989 his files indicat one solvast to removed in 70 an employee of His. Nor. Suiton Mane of Bak also says that 9 4) four cist (along up multiple Vent pipes up	Mrs. Sinton about STS at any Clean 2 USTS mean St lowen where rem Mrs. Sinton all 2 Such) that they and at DC and 2 Mrs. Sinton CAW named Was not able to Mrs. Sinton 5 1935 map sho enus where they le e usut pipes) [Po steam (mes (?)]	/	
Action needed? Yes No. If so by whom?	What is needed?		
DISTRIBUTE COPIES TO: DBase Entry, Project file	/		
Date of Distribution By	DBase date	вуРС	
FORM #88-1 Rev. 2		I	
		•	

		1 07 -	5
A LAW ENVIRONMENTAL. INC.		Attachments: 🗆 Yes 🗇 N	40
a professional engineering and earth science consulting firm		Distribution Priority: 🗆 Rus	sh
			ne
	CONTACT FORM	······································	_
M 0 4 113 11			
Contact made by M. The CON		e: 0930 roject/Proposal Related: X Yes D N	40
If yes. Project/Proposal Name:	Fi. Riley_ Project/Proposal N	o: Enter in DBase: □ Yes □ N If yes. □ New □ Existin	
<u></u>	FPC		-
IF NEW CONTACT: Provide all information in this s	ection or attach copy of business ca	rd. All Marine	
Mr. Jeremiah Mu	Ilally Former	, Dry Cleaning Mig.	-
205 South Bunk	er Hill	Phone	_
Turation Pitte	augas 66441	Phone	
Street Address (include (-0.8)	_(44444) <u>66777</u> City	State Zip Code	-
"KNOWN BY" (Law Environmental employees who	know contact) in priority order: 4/	IA	
1)		nactive Client 🖾 Potential Client 🗆 Other	-
2)	"STATUS": 🗆 Open 🗆 Prior	Authorization	
3)	-		-
	ceived	🗆 SOQ 💷 Proposal 🗆 RFP 🔀 In person visi	it
MEANS OF COMMUNICATION: D Initiated D Re	ceived		
Other. explain:	7	ul Mrs. J. mullelly	-
SUMMARY: The khallon 9	Mr. Look net	w MG. J. Mullelly	-
to discuss operation	practices a	und physical feature	<u>u</u>
of the Dry Cleaning	, facility (Bi	dg 180) Fort Killey.	-
Tur. Mullally was	manager of	the Dry cleaning	-
facility wearly 31	years intil	his seterement	_
in 1971. The ball	ming is a	list of facts	-
and/or observation	promolet lot	during the in-	_
terview.			_
- These are	three tan	to along the worth	_
- ide et	+le "ald" or	I logista bldg. dt	is .
	it when the	and still shope	H
	I II I HARD	+ 11 + 11 ma tank	=~[
is tur. M	unally's Histoge	C That Fully , may	
dre still	there.		-
	2500 gallon 7	rauk	-
	1900 "	A State C.e	Ŧ
ر،	500 "		
Action needed? Yes No. If so, by whom?	Wh	at is needed?	-
\sim		//	۲.
		/ <u>}/</u>	-\
DISTRIBUTE COPIES TO: DBase Entry. Project file	/	/	- `
		/	-
Date of Distribution By	OBase date	By AKC	_
PORM e86-1 Rev. 2		0	

.

.

•

LAW ENVIRONMENTAL. INC.		Attachments: 🗆 Yes 🗇 No
a professional engineering and earth science consulting firm		Distribution Priority: 🗆 Rush
		C Routine
	CONTACT FORM	
ntact made by	Date: Time:	Project/Proposal Related:
es. Project/Proposal Name:	Project/Proposal No:	Enter in DBase: DYes DNo If yes, DNew DExisting
EW CONTACT: Provide all information in this se	ection or attach copy of business card.	
Person Contacted	Comp	eny Name
Tin	1	Phone
Street Address (include P.O.B)	City	State Zip Code
OWN BY" (Law Environmental employees who		, ,
	"STATUS": 🗆 Open 🛛 Prior Authoria	ation 🗆 Private
······································	-	
ther. explain:		Proposal RFP In person visit Stoddard Solvent Less than Loron in 5 ane "storing"
(y flash	point stred	
iher. explain: IMARY: The UST: (4) flash	souly stored paint slightly hely these tanks clarification	
nor. explain: MARY: The UST: (uf flash	south stred	
her. explain: MARY: - The UST: (up flach * - It is lus courstic possibly pipes - chy 1971	souly stored paint slightly hely these tanks clarification	Stoddard Solvent less than koros un s are "storing" solutions and were no fill
ther. explain: IMARY: - The UST: (up flash # - It is lus caustic possibly pipes c - che 1971 switched	s only stored paint s/ightly hely these tanks clarification solvents. These	Stoddard solvent less than koros us and "storing" solutions and were no fill
ther. explain: IMARY: - The UST: (up flash * - It is lus courstic possibly pipes - chy 1971	s only stored paint s/ightly hely these tanks clarification solvents. These	Stoddard solvent less than koros us and "storing" solutions and were no fill
er. explain: MARY: - The UST: (4) flash # - It is III counstic possibly pipes 1 - che 1971 Switched	souly stored paint slightly hely these tanks clarification 50/vents. These is when any clean from the store	Stoddard solvent less than koros us and "storing" solutions and were no fill
ther. explain: IMARY: - The UST: (up flash # - It is lus caustic possibly pipes c - che 1971 switched	souly stored paint slightly hely these tanks clarification 50/vents. These is when any clean from the store	Stoddard solvent less than koros us and "storing" solutions and were no fill
ther. explain: IMARY: - The UST: (up flash # - It is lus caustic possibly pipes c - che 1971 switched	souly stored paint slightly hely these tanks clarification 50/vents. These is when any clean from the store	Stoddard Solvent less than known same "storing" solutions and were no fill ing process idand solvents inside the agle SS gallon
ner. explain: MARY: - The UST: (4) flash # - It is Its caustic possibly pipes 1 - che 1971 Switched	souly stored paint slightly hely these tanks clarification 50/vents. These is when any clean from the store	Stoddard Solvent less than known same "storing" solutions and were no fill ing process idand solvents inside the agle SS gallon
ner. explain: MARY: - The UST: (4) flash # - It is Its caustic possibly pipes 1 - che 1971 Switched	souly stored paint slightly hely these tanks clarification 50/vents. These is when any clean from the store	Stoddard Solvent less than known same "storing" solutions and were no fill ing process idand solvents inside the agle SS gallon
ther. explain: IMARY: - The UST: (up flash & - It is lus caustic possibly pipes 1 - che 1971 switched to PCE * - The PCE Store bl drum. How III at any	souly stored paint slightly hely these tanks clarification 50/vents. These is when any clean from the store	Stoddard Solvent less than know wing Solutions and were no fill ing process Idand Solvents inside the gle SS gallon mus) on hand ecause of drive weig soming (mit.
ther. explain: IMARY: - The UST: (up flash \$ - It is lis caustic poises - che 1971 switched to PCE \$ - The PCE Store bl drum Ham IIC at any PCE was st	souly stored paint slightly hely these tanks clarification 50/vents. These is when only clean from the Store from the Store dg in a sin There was never gallons (2 dru one time . & tored near & Dry Clean	Stoddard Solvent less than know wing Solutions and were no fill ing process Idand Solvents inside the gle SS gallon mus) on hand ecause of drive weig soming (mit.
ther. explain: IMARY: - The UST: (4) flash \$ - It is lis caustic poipes - che 1971 switched to PCE \$ - The PCE Store bl drume. Than 110 at any PCE W20 ST	souly stored paint slightly hely these tanks clarification 50/vents. These is when only clean from the Store from the Store dg in a sin There was never gallons (2 dru one time . & tored near & Dry Clean	Stoddard Solvent less than know wing Solutions and were no fill ing process Idand Solvents inside the gle SS gallon mus) on hand ecause of drive weig soming (mit.
er. explain: MARY: - The UST: (4) flach - It is lis caustic possibly pipes - che 1971 switched to PCE * - The PCE Stone bl drawy PCE was st	souly stored paint slightly hely these tanks clarification 50/vents. These is when only clean from the Store from the Store dg in a sin There was never gallons (2 dru one time . & tored near & Dry Clean	Stoddard Solvent less than know wing Solutions and were no fill ing process Idand Solvents inside the gle SS gallon mus) on hand ecause of drive weig soming (mit.

6

.

LAW ENVIRONMENTAL. INC. a professional engineering and earth science consulting firm		
· · · · · · · · · · · · · · · · · · ·	CONTACT FO	DRM
Contact made by:	Date:	Time:
If yes. Project/Proposal Name:	Projec	t/Proposal No:

Person Contacted		Company Nan		
Title			Ph	one
Street Address (include P.O.B)	City	State	Ζίρ	Code
"KNOWN BY" (Law Environmental employees who kn				
1)	"TYPE": CActive Clien	I Inactive Client	Potential Client	C Other
2)	"STATUS": 🗆 Open	Prior Authorization	🗆 Private	
3)				

Time:

_ Project/Proposal No:___

of 5

Attachments: 🗆 Yes 🗇 No Distribution Priority: C Rush

Routine

More Space Over

3

___Project/Proposal Related: 🖸 Yes 🗔 No

Enter in DBase:
Yes
No
If yes,
New
Existing

Denne Call Letter DOO Proposal DRFP Din person visit MEANS OF COMMUNICATION:
Initiated
Received

Other. explain: moide 7a 5 two altor There 2200 SUMMARY: ح $\langle \mathcal{O} \rangle$ al blog the 100 mis s usec materia H Pho 1A in cor disch angea 001 - C an sa odte The E Solu Studdan mechan 1.50 earth PAA austu an na 1 caustic 4 la In A d Soldara solor

Action needed? 🗆 Yes 🗆 No. If so. by whom?_ What is needed? DISTRIBUTE COPIES TO: DBase Entry, Project #C By By. DBase date Date of Distribution FORM #88-1 Rev. 2

0

02

Attachments: □ Yes □ No Distribution Priority: □ Rusn

Routine

CONTACT FORM

Contact made by:	Date: Time:	Project/Proposal Related: Yes No
f yes. Project/Proposal Name:	Project/Proposal No:	Enter in DBase: D Yes D No. If yes. D New D Existing
F NEW CONTACT: Provide all information is	in this section or attach copy of business card.	ť
Person Contacted	Company	tame
	Tizle	Phone
Street Address (include P.O.B	B) City S	zte Zip Code
KNOWN BY" (Law Environmental employed	es who know contact) in priority order:	
)		t 🛛 Potential Client 🗆 Other
)		n 🗆 Private
)		
		<u> </u>
EANS OF COMMUNICATION: 🗆 Initiated	Received Phone Call Letter SOQ	D Proposal D RFP D In person visit
		,
Other. explain:	estimated that mo	t of the.
UMMARY: 11 Mulldlug	ust males may no	
monthly los	1) of Stadand EOlu	art - vearly
1500 gallon	s/nouth - was vapo	n loss unty
1500 gallou	of mouth - was vapor	n loss . unty
ISOO gallou 	s/mouth - was vapor not to disposed.	allow per
1500 gallou 15ttle was la - multally lo	stimated that 55 g	allous per
1500 gallou 15ttle was le - multally les monthe of	1. 21 1. 1. 20	allous per five (vayor)
1500 gallou 15tthe was la - multally la month of 1000	stimated that 55 g	allous per five (vapor)
1500 gallou 15ttle was le - multally le month of 1055. * - My Multall	stimated that 55 g	allous per live (vapor) was never
1500 gallou 15ttle was la - multally la monder of 1025. t - Ma Multall auro Setur	stimated that 55 g	allous per live (vayor) was never ide the bldg.
1500 gallou 12tthe was le - multally le mondu of 1035. * - Min Multall aug Selvi Us did Sa	stimated that 55 g	allous per allous per ine (124107) was never ide the b/dg. oceous eat ai
1500 gallou 15ttle was he - multally le mondu of 1055. t - Mu Multall aury solut 4 e did sa	timated that 55 g RE was encopored by said that these ent depropring outs. by that the diates	1 - 14
1500 gallou 12ttle was 10 - multally la mondu of 1025 * - Min Multall aury solut 42 did 50 (filter mat	stimated that 55 g	allous per ine (124107) was never ide the bldg. occous eat an t. This fitor
1500 gallou 15the was le - multally le mondu of 1055. * - Min Multalle aug Selve 4e did Sa (filter material u	timated that 55 g RE was encopored by said that these ent depropring outs. by that the diates	1 - 14
1500 gallou 15the was he - multally le month of 1055. * - Min Multalle aug Sola 5 He did 5a (filter math material u Southwest 5	timated that 55 g RE was encopored by said that these ent depropring outs. by that the diates	1 - 14
1500 gallou 15ttle was he - multally la month of 1055. ₹ - Min Multalla aury solw He did sa (filter math material u Southwest S - Bldg 182 0	timated that 55 g RE was encopored by said that these ent depropring outs. by that the diates	1 - 14
1500 gallou 15the was he - multally la month of 1035. t - My Multally any Solvi 4 did Sa (filter mat material u Southwest S - Blog 1820 and minor	timated that 55 g RE was encopored by said that these ent depropring outs. by that the diates	t. This fitter ill " along to g) stored cills
1500 gallou 15the was he - multally lo mondu of 1035. # - Min Multally aug Selvi 44 did Sa (filter mat material u Southused S - Bidg 182 (and minor	timated that 55 g RE was encopored by said that these ent depropring outs. by that the diates	1 - 14
1500 gallou 15the was la - multally es month of (055. * - Min Multalla aung Sola & He did Sa (filter mat material u Southwest S - Ridg / gr (and minor	timated that 55 g RE was evapored by said that there ent depressing outs. y that the diateur mil) was broad cas vas also used as "f stope. (webt of DC-brick bla un-named solvents.	t. This fiter ill " along the g) stored cills
1500 gallou 15the was he - multally le month of (055. * - Min Multally any solut He did sa (filter mat material u Southusest s - Blag 182 (and minor tion needed? [] Yes [] No. It so. by whom?	timated that 55 g RE was evapored by said that there ent depressing outs. y that the diateur mil) was broad cas vas also used as "f stope. (webt of DC-brick bla un-named solvents.	t. This fiter ill " along the g) stored cills
1500 gallou 15the was he - multally le march of 1055. t - Min Multalle any solut 41e did Sa (filter nat material u Southused S - Blag /BC (and minor tion needed? I Yes I No. It so. by whom?	timated that 55 g RE was evapored by said that there ent depressing outs. y that the diateur mil) was broad cas vas also used as "f stope. (webt of DC-brick bla un-named solvents.	t. This fiter ill " along the g) stored cills
	stringted that SS g RE was encryption by said that there ent depressing outs. by that the diater and) was broad can vas also used as "f stope. (webt of DC-brick bla un-named solvents.	t. This fiter ill " along the g) stored cills
ISOO gallou Isttle was la - multally lo martin of (055. ¥ - Min Multalla aung Soluta He did Sa (filter mat material 4 Southwest 5 - Ridg / gr (and minor stribute COPIES TO: Delase Entry Project	stringted that SS g RE was encryption by said that there ent depressing outs. by that the diater and) was broad can vas also used as "f stope. (webt of DC-brick bla un-named solvents.	ill " along the
	stringted that SS g RE was encryption by said that there ent depressing outs. by that the diater and) was broad can vas also used as "f stope. (webt of DC-brick bla un-named solvents.	t. This fitor ill " along the g) stored cills

LAW ENVIRONMENTAL. INC. a professional engineering and earth science consulting firm 5 of 5 Attachments: □ Yes □ No

Distribution Priority:

Routine

CONTACT FORM

Contact made by:	Date:	1 ime:	Project/Proposal Related: Yes N
If yes. Project/Proposal Name:	Project/P	roposal No:	Enter in DBase: 🛛 Yes 🗔 N If yes. 🗔 New 🗇 Existing
IF NEW CONTACT: Provide all information in this section	on or attach copy of bus	iness card.	· ·
Person Contacted		Company Name	
Title			Phone
Street Address (include P.O.B)	Cit	y State	Zip Code
KNOWN BY" (Law Environmental employees who kno	w contact) in priority on	der:	
)	"TYPE": D Active Clie	nt 🛛 Inactive Client	D Potential Client D Other
2)	"STATUS": 🗆 Open	Prior Authorization	Private
3)			
	<u> </u>		
MEANS OF COMMUNICATION:	ed 🛛 🗆 Phone Call		Proposal 🖾 RFP 🖾 In person visit
Other. explain:			
SUMMARY: There was a	bailer ,	zoon (b	asement) in
Stone bldg -	boiler	was fin	ied by natura
gas (no fue	oil au	don hud	oil tanks).
- m. nullally	is sussies	las une	ase) why
"higher " SE	and the	at worth	east corner
- Stars a th	ta un h	Ida .	
- Prick bldg wa			<u>.</u>
Eta hila a	in De	y Cheaning	use
Stone blog h	ino un	y change	<u> </u>
- oue	UNAN		
	cc . Il.		and to unit
- oue	55 gallou	drune	next to mit
- oue	55 gallon	drume	nest to unit
- oue	<u>ES gallou</u>	dnunu	nest to unit
- oue	<u>CS gallou</u>	<u>dourus</u>	nest to suit
- oue	es gallou	<u>douru</u>	nent to mit
- oue	55 gallou	dourue	nent to suit
- oue	es gallou		nent to int
ction needed? Yes No. If so, by whom?	ES gallou		nent to unit
ction needed? Yes No. If so, by whom?	s gallou		nent te uni
- orce	es gallou AlC		nend to mit
ction needed? Yes No. If so. by whom?	s gallou JtC		nend to unit
	s gallou		nent to unit

FORM #88-1 Rev. 2

E LAW ENVIRONMENTAL, INC.		Attachments: 🗆 Yes 🗆 No
a professional engineering and		Distribution Priority: 🗆 Rush
earth science consulting firm		Routine
•	CONTACT FORM	
Co- will offer l	Date: 2/24/92 Time: 3:00 P	
oniact made by ART Whallon	Date: Time: Time:	Project/Proposal Related: No
yes, Project/Proposal Name:		If yes. I New I Existing
NEW CONTACT: Provide all information in this sect	tion or attach copy of business card.	Denn and affina
Mr. COMPTON Person Consecut	FT. Rilly - Livilla	n Persennel Office
Title		9-2535 Prices
Rivert Address linclude P.O.B.	City Star	e Zip Code
NOWN BY" (Law Environmental employees who kn	now contact) in priority order:	
	"TYPE": Active Client Inactive Client	Potential Client Other
	"STATUS": COpen CPrior Authorization	Private
on Ft. Riley: Bob		6458
Mr. Compton Sail his Ampton 25 - Civilian c	Krause × 9-6551 Skeridan - Director of Logis	4cs · 9-200
on Ft. Riley: Bob Bob Who might he keig Mr. Compton Said his employees - civilion e at the Function LF.	Khause × 9-6551 Skeridan - Director of Logis fuil. office did not have reco or military - that would	4cs · 9-200
on Ft. Riley: Bob Bob Who might he keig Mr. Compton Said his employees - civilion e at the Function LF.	Khause × 9-6551 Skeridan - Director of Logis fuil. office did not have rece or military - that would	4cs · 9-200
on Ft. Erley: Bob Bob Who might he keig Mc. Compton Said his employees - civilion e at the Function LF.	Khause × 9-6551 Skeridan - Director of Logis fuil. office did not have rece or military - that would	4cs · 9-200
on Ft. Riley: Bob Bob Who might he keig Mr. Compton Said his employees - civilion e at the Function LF.	Khause × 9-6551 Skeridan - Director of Logis fuil. office did not have rece or military - that would	4158 4105 · 9-200 1 have worked 1 josticide Storage
on Ft. Riley: Bob Bob Who might he keig Mr. Compton Said his employees - civilion c et the Funston EF.	Krause × 9-6551 Sheridan - Director of Logis ful. office did not have reci or military - that would formir dry cleanir or the	4cs · 9-200
on Ft. Riley: Bob Bob Who might he keig Mc. Compton Said his amployees - civilion c at the Funston LF. bldg.	Krause × 9-6551 Sheridan - Director of Logis ful. office did not have reci or military - that would farmir dry cleanir or the	4158 4105 · 9-200 1 have worked 1 josticide Storage
on Ft. Riley: Bob Bob Who might be keig Mr. Compton Sail his amployees - civilion c at the Funston EF. bidg.	Krause × 9-6551 Sheridan - Director of Logis ful. office did not have reci or military - that would farmir dry cleanir or the	4158 4105 · 9-200 1 have worked 1 josticide Storage
on Ft. Biley: Bob Bob Who might be leavy Mr. Compton Sail his amployees - civilion c at the Function EF. bldg.	Krause × 9-6551 Sheridan - Director of Logis ful. office did not have reci or military - that would farmir dry cleanir or the	4158 4105 · 9-200 1 have worked 1 josticide Storage
on Ft. Biley: Bob Bob Who might be leavy Mr. Compton Sail his amployees - civilion c at the Function EF. bldg.	Krause × 9-6551 Sheridan - Director of Logis ful. office did not have reci or military - that would farmir dry cleanir or the	4158 4105 · 9-200 1 have worked 1 josticide Storage
on Ff. Biley: Bob Bob Who might he king Mr. Compton' Sail his angloyees - Civilian c at the Funston EF, b/dg.	Krause × 9-6551 Sheridan - Director of Logis ful. office did not have reci or military - that would farmir dry cleanir or the	4158 4105 · 9-200 1 have worked 1 josticide Storage
on Ft. Riley: Bob Bob Who might he king Mr. Compton: Sail his amployels - Civilion c Bt the Funston EF, b/dg.	Krause × 9-6551 Sheridan - Director of Logis ful. office did not have reci or military - that would farmir dry cleanir or the What is needed?_	GUSE Gis · 9-200 More Seese Over Dimone Seese Over
on Ft. Riley: Bob Bob Who might he king Mrc. Compton' Sail his employees - Civilion c et the Function EF. bidg.	Krause × 9-6551 Sheridan - Director of Logis ful. office did not have reci or military - that would farmir dry cleanir or the What is needed?_	GUSE Gis · 9-200 More Seese Over Dimone Seese Over

Manual Edition Date: January, 1992

7-11-11 11:11AL

DRAFT
Regular Army: X
Army Reserve: Army National Guard:

		ECAS INDIVIDUAL FINDING	SHEET			
(items	in	boxed area are mandatory)	Page	1	of	

Section (CAA, RCA-C, Noise, etc.): CUA Duration (Additive or Negative): <u>NEG</u> Duration Number: <u>BUG_101</u> Type of Finding (Positive or Negative): <u>NEG</u> Duration Number: <u>BUG_101</u> <u>BUG_101</u> If Nestions (Guard, specific site:							
Class 1 (out of compliance)	If Tenant Organization energies: NEG	Building Number or Location: Bing 183					
CONDITION (What did you find?) Two large compressor units are old and have had chronic oil leak problems. The leaking oil is in proximity to a floor drain used to receive compressor cooling water discharge. Indications that oil was entering this drain were observed at the time of the assessment. CRITERIA (What is the actual requirement?) Provide Finding (ECAS, NOV, etc)? ECAS Provide Finding (ECAS, NOV, etc)? ECAS UGGESTED SOLUTION(S): The compressor units should be replaced with new units that do not have leaking problems, and the cooling water drain system should be reconfigured to replace the open floor drain with a closed drain system. SAMPLING RESULTS (mandatory only if mathematical sampling was used): Universe:	Class 1 (out of compliance) Class II (will be out of compliance) Class III (Management Practice)	Check only if finding requires immediate action due to threat or risk					
Two large compressor units are old and have had chronic oil leak problems. The leaking oil is in proximity to a floor drain used to receive compressor cooling water discharge. Indications that oil was entering this drain were observed at the time of the assessment. CRITERIA (What is the actual requirement?) Image: continual finding? Provide finding (ECAS, NOV, etc)? ECAS Continual finding? NOV Number (if applicable): Image: continual finding? SUGGESTED SOLUTION(S): The compressor units should be replaced with new units that do not have leaking problems, and the cooling water drain system should be reconfigured to replace the open floor drain with a closed drain system. SAMPLING RESULTS (mandatory only if mathematical sampling was used): Universe:	Basis of Finding (Citation or Regulation):						
proximity to a floor drain used to receive compressor cooling water discharge. Indications that oil was entering this drain were observed at the time of the assessment. CRITERIA (what is the actual requirement?) Provide Finding (ECAS, NOV, etc)? _ECAS	Two large compressor units are old and have had chro	onic oil leak problems. The leaking oil is in					
Oll was entering this drain were observed at the time of the assessment. CRITERIA (what is the actual requirement?) Provide Finding (ECAS, NOV, etc)? ECAS Continual Finding? NOV Number (If applicable): SUGGESTED SOLUTION(S): The compressor units should be replaced with new units that do not have leaking problems, and the cooling water drain system should be reconfigured to replace the open floor drain with a closed drain system. SAMPLING RESULTS (mandatory only if mathematical sampling was used): Universe: Sample Size: Number of Discrepancies: Percentage of Discrepancies: PREPARED BY: Ross Pickford DATE: 5/12/92	proximity to a floor drain used to receive compresso	or cooling water discharge. Indications that					
CRITERIA (what is the actual requirement?) Provide Finding (ECAS, NOV, etc)? ECAS Continual Finding? NOV Number (if applicable): SUGGESTED SOLUTION(S): The compressor units should be replaced with new units that do not have leaking problems, and the cooling water drain system should be reconfigured to replace the open floor drain with a closed drain system. SAMPLING RESULTS (mandatory only if mathematical sampling was used): Universe:	oil was entering this drain were observed at the time of the another discharge. Indications that						
NOV Number (if applicable): SUGGESTED SOLUTION(S): The compressor units should be replaced with new units that do not have leaking problems, and the cooling water drain system should be reconfigured to replace the open floor drain with a closed drain system. SAMPLING RESULTS (mandatory only if mathematical sampling was used): Universe: Sample Size: Number of Discrepancies: Percentage of Discrepancies: PREPARED BY: Ross Pickford DATE: 5/12/92		RAAS					
cooling water drain system should be reconfigured to replace the open floor drain with a closed drain system. SAMPLING RESULTS (mandatory only if mathematical sampling was used): Universe: Sample Size: Number of Discrepancies: Percentage of Discrepancies: PREPARED BY: Ross Pickford DATE: 5/12/92	NOV Number (if applicable):						
Universe: Sample Size: Number of Discrepancies: Percentage of Discrepancies: PREPARED BY: Ross Pickford DATE: 5/12/92	cooling water drain system should be reconfigured to	replace the open floor drain with a closed					
Universe: Sample Size: Number of Discrepancies: Percentage of Discrepancies: PREPARED BY: Ross Pickford DATE: 5/12/92							
DATE: 5/12/92	Number of Discrepancies: Per	de Size:					
	PREPARED BY: Ross Pickford	DATE: 5/12/92					

Manual Edition Date: January, 1992

----ORM

tali filale lea avela

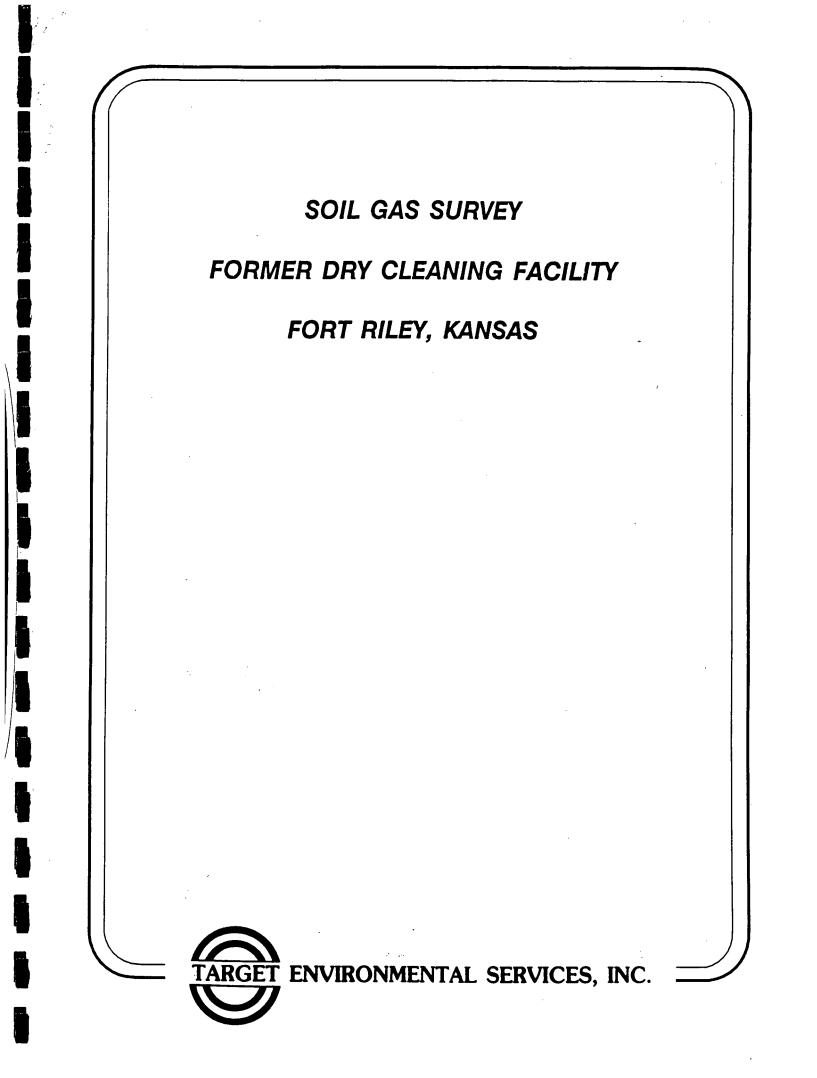
Army Reserve: **Army National Guard:**

ECAS INDIVIDUAL FINDING SHEET (Items in boxed area are mendatory) Page 1 of _____

.. _...

.....

· · · -


. . .

Class I (out of compliance) immediate Class II (Will be out of compliance)	only if finding requires ate action due to threat or risk							
CONDITION (What did you find?) Drums of Perchloroethylene and various dyes and detergents are pro- room equipped with a floor drain. According to operating personni sanitary sewer system. In addition, drums of Therminol oil are s is also near floor drains for the washer units.								
Drums of Perchloroethylene and various dyes and detergents are pro- room equipped with a floor drain. According to operating personn sanitary sever system. In addition, drums of Therminol oil are s is also near floor drains for the washer units.								
Drums of Perchloroethylene and various dyes and detergents are pro- room equipped with a floor drain. According to operating personn sanitary sewer system. In addition, drums of Therminol oil are s is also near floor drains for the washer units.	· · · · · · · · · · · · · · · · · · ·							
room equipped with a floor drain. According to operating personn sanitary sewer system. In addition, drums of Therminol oil are s is also near floor drains for the washer units.	CONDITION (What did you find?) Drums of Perchloroethylene and various dyes and detergents are presently stored in a designated							
sanitary sewer system. In addition, drums of Therminol oil are s is also near floor drains for the washer units.	room equipped with a floor drain. According to operating personnel, this drain empties into the							
is also near floor drains for the washer units.	sanitary sewer system. In addition, drums of Therminol oil are stored near the boiler system which							
CRITERIA (What is the actual requirement?)								
Provide Finding (ECAI, NOV, Helf ECAS Continual Finding?								
NOV Number (if applicable):								
SUGGESTED SOLUTION(S): The floor drain in this room should be sealed to prevent spilled or leaked materials from entering								
sanitary sewer system. All liquids should also be stored in area that will provide containment and								
prevent accidental spills or leaks from entering the sewer system.								
SAMPLING RESULTS (mandatory only if mathematical sampling was used): Universe: Sample Size: Number of Discrepancies: Percentage of Discrepancies:								
PREPARED BY: Ross Pickford								
COMMENTS:								
	DATE: 5/12/92							

DRAFT

APPENDIX C

SOIL GAS SURVEY

SOIL GAS SURVEY

FORMER DRY CLEANING FACILITY

CUSTER ROAD

FORT RILEY, KANSAS

PREPARED FOR

LAW ENVIRONMENTAL, INCORPORATED

10100 NORTH EXECUTIVE HILLS BOULEVARD, SUITE 350 KANSAS CITY, MISSOURI 64153

PREPARED BY

TARGET ENVIRONMENTAL SERVICES, INC.

9180 RUMSEY ROAD

COLUMBIA, MARYLAND 21045

(301) 992-6622

NOVEMBER 1991

÷ ...

APPENDIX D

HTW LOGS/TEST BORING RECORDS

EXECUTIVE SUMMARY

On October 29 through 31 and November 2, 1991, TARGET Environmental Services, Inc. (TARGET) conducted a soil gas survey at the Former Dry Cleaning Facility, Custer Road, Fort Riley, Kansas. Samples were analyzed by GC/FID for petroleum hydrocarbons and by GC/ECD for tetrachloroethene (PCE).

GC/ECD analysis revealed high levels of PCE at the northeast corner of the former dry cleaning facility (Building #180). More moderate levels extended westward to Building #181 and northward across Custer Road. Low levels extended throughout the site.

The Total FID Volatiles were relatively low at the northeast corner of Building #180, where PCE was highest. Low levels extended westward beyond Building #181. None of the standardized FID analytes were present above the 1 μ g/l detection limit in any of the samples from the site. The FID chromatogram signatures of the majority of the samples with detectable levels of Total FID Volatiles are dominated by the peak representing PCE. Small, lateeluting peaks which may represent low levels of a petroleum based solvent were observed in one sample from west of Building #181.

Map patterns and chromatographic data indicate that PCE is present in the subsurface throughout most of the surveyed area. The occurrence appears to be limited to the survey area.

i

Introduction

Inc. contracted TARGET Law Environmental, Environmental Services, Inc. (TARGET) to perform a soil gas survey at the Former Dry Cleaning Facility, Custer Road, Fort Riley, Kansas. The purpose of the survey was to determine the presence and extent of subsurface contamination by tetrachloroethene (PCE) and stoddard solvents. PCE and stoddard solvents have been used at this site in the past. Based on information available for other portions of Fort Riley, ground water is thought to be 15 feet below grade and the soils are thought to be largely loess with little or no cobbles. A new dry cleaning facility, Building #183, is located to the north of the site, across Custer Road. The site is bordered on the east, south and west by wooded areas. The field phase of the soil gas survey was conducted on October 29 through 31 and November 2, 1991.

Detectability

The soil gas survey data presented in this report are the result of precise sampling and measurement of contaminant concentrations in the vadose zone. Analyte detection at a particular location is representative of vapor, dissolved, and/or liquid phase contamination at that location. The presence of detectable levels of target analytes in the vadose zone is dependent upon several factors, including the presence of vapor-phase hydrocarbons or dissolved or liquid concentrations adequate to facilitate volatilization into the unsaturated zone.

Terminology

In order to prevent misunderstanding of certain terms used in this report, the following clarifications are offered:

The term "feature" is used in reference to a discernible pattern in the contoured data. It denotes a contour form rather than a definite or separate chemical occurrence.

The term "occurrence" is used to indicate an area where chemical compounds are present in sufficient concentrations to be detected by the analysis of soil vapors. The term is not indicative of any specific mode of occurrence (vapor, dissolved, etc.), and does not necessarily indicate or suggest the presence of "free product" or "phase-separated hydrocarbons."

The term "anomaly" refers to an area where hydrocarbons were measured in excess of what would normally be considered "natural" or "background" levels.

The term "analyte" refers to any of the hydrocarbons standardized for quantification in the chromatographic analysis.

The term "vadose zone" represents the unsaturated zone between the ground water table and the ground surface.

The term "indicates" is used when evidence dictates a unique conclusion. The term "suggests" is used when several explanations of certain evidence are possible, but one in particular seems more likely. As a result, "indicates" carries a higher degree of confidence in a conclusion than does "suggests."

The terms "elevated" and "significant" are used to describe concentrations of analytes which indicate the existence of a potential problem in the soil or ground water.

Field Procedures

Soil gas samples were collected at a total of 49 locations at the site, as shown in Figure 1. The sampling depth varied from 3.5 to 6 feet (see Table 1). Although samples were to be collected at depths of 6 to 15 feet at some locations, poor weather conditions prevented access by **TARGET's** hydraulic probe van and forced a change in the sampling plan to manual collection at a 4 foot depth at many of the locations. Based on the findings of the early samples, the sample grid was expanded to include additional samples.

Thirty-two (32) shallow soil gas samples were collected by using a drive rod to produce a 1/2 inch hole to a depth of approximately 3.5 or 4 feet. The entire sampling system was purged with ambient air drawn through an organic vapor filter cartridge, and a stainless steel probe was inserted to the full depth of the hole and sealed off from the atmosphere.

Seventeen (17) deep soil gas samples were collected using a van-mounted hydraulic probe to advance connected 3 foot sections of 1 inch diameter threaded steel casing down to a depth of 6 feet. The entire sampling system was purged with ambient air drawn through an organic vapor filter cartridge. A teflon line was inserted into the casing to the bottom of the hole, and the bottomhole line perforations were isolated from the up-hole annulus by an inflatable packer.

For both sampling methods, a sample of in-situ soil gas was then withdrawn through the probe and used to purge atmospheric air from the sampling system. A second sample of soil gas was

withdrawn through the probe and encapsulated in a pre-evacuated glass vial at two atmospheres of pressure (15 psig). The selfsealing vial was detached from the sampling system, packaged, labeled, and stored for laboratory analysis.

Prior to the day's field activities all sampling equipment, slide hammer rods, and probes were decontaminated by washing with soapy water and rinsing thoroughly. Internal surfaces were flushed dry using pre-purified nitrogen or filtered ambient air, and external surfaces were wiped clean using clean paper towels.

Field control samples were collected at the beginning and end of each day's field activities and after the twentieth soil gas sample on the second day. These QA/QC samples were obtained by filtering ambient air through a dust and organic vapor filter cartridge and collecting in the same manner as described above. The low levels of tetrachloroethene (PCE) reported in Field Control Samples 4 and 5 are the result of carryover in the sampling equipment following the collection of Samples 47 and 44, respectively.

Laboratory Procedures

All of the samples collected during the field phase of the survey were subjected to dual analyses. One analysis was conducted according to EPA Method 601 (modified) on a gas chromatograph equipped with an electron capture detector (ECD), but using direct injection instead of purge and trap. Tetrachloroethene (PCE) was standardized for the ECD analysis.

The second analysis was conducted according to EPA Method 602 (modified) on a gas chromatograph equipped with a flame ionization detector (FID), but using direct injection instead of purge and trap. The analytes selected for standardization in this analysis were:

benzene toluene ethylbenzene meta- and para- xylene ortho-xylene

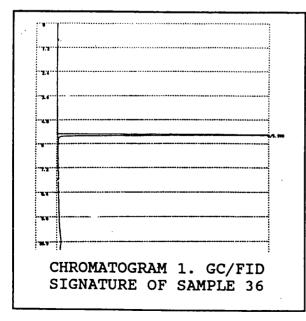
These compounds were chosen because of their utility in evaluating the presence of fuel products, or petroleum based solvents.

The analytical equipment was calibrated using an instrumentresponse curve and injection of known concentrations of the above standards. Retention times of the standards were used to identify the peaks in the chromatograms of the field samples and their response factors were used to calculate the analyte concentrations.

The Total FID Volatiles values were generated by summing the areas of all chromatogram peaks and calculated using the instrument response factor for toluene. Injection peaks, which also contain the light hydrocarbon methane, were excluded to avoid the skewing of the Total FID Volatiles (Totals) values due to injection distur-

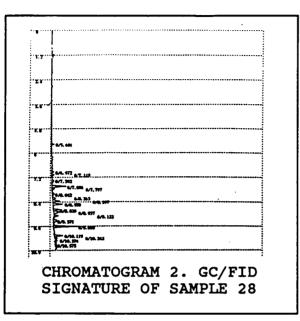
bances and biogenic methane. For samples with low hydrocarbon concentrations, the calculated Total FID Volatiles concentration is occasionally lower than the sum of the individual analytes. This is because the response factor used for the Total FID Volatiles calculation is a constant, whereas the individual analyte response factors vary with concentration. It is important to understand that the Total FID Volatiles levels reported are relative, not absolute, values.

The tabulated results of the laboratory analyses of the soil gas samples are reported in micrograms per liter (μ g/l) in Table 2. Although "micrograms per liter" is equivalent to "parts per billion (v/v)" in water analyses, they are not equivalent in gas analyses, due to the difference in the mass of equal volumes of water and gas matrices. The xylenes concentrations reported in Table 2 are the sum of the m- and p-xylene and o-xylene concentrations for each sample.


For QA/QC purposes, a duplicate analysis was performed on every tenth field sample. Laboratory blanks of nitrogen gas (99.999%) were also analyzed after every tenth field sample.

Discussion and Interpretation of Results

In order to provide graphic presentation of the results, individual data sets in Table 2 have been mapped and contoured to produce Figures 2 and 3. Map sample points with no data shown indicate that the analyte concentrations in the sample were below the detection limit. Dashed contours are used where patterns are extrapolated into areas of less complete data, or as auxiliary contours.


GC/ECD analysis revealed high levels of tetrachloroethene (PCE, Figure 2) at the northeast corner of the former dry cleaning facility (Building #180). The highest level occurred in Sample 30. More moderate levels extended westward to Building #181 and northward across Custer Road. Low levels extended throughout the site.

The Total FID Volatiles map (Figure 3) revealed relatively low levels at the northeast corner of Building #180, where PCE was highest. Low levels extended westward beyond Building #181. None of the standardized FID analytes were present above the 1 μ g/l

detection limit in any of the samples from the site. The FID chromatogram signatures of the majority of the samples with detectable levels of Total FID Volatiles are dominated by the peak representing PCE, as exemplified by Chromatogram 1, Sample 36. Small, late-eluting

peaks which may represent low levels of a petroleum based solvent were observed only in Sample 28 from west of Building #181 (Chromatogram 2).

Detectable levels of PCE were observed in two field control samples, indicating carryover in the sampling equipment. Careful examination of the sampling order and analytical data suggests that some component of the reported PCE concentrations (up to approximately 0.80 μ g/l) may be the result of carryover rather than a

reflection of conditions in the soil vapor. This level of carryover, if present, would not affect the overall survey results except to reduce the lateral extent of the PCE occurrence in the outermost samples, where very low levels of PCE were observed.

Map patterns and chromatographic data indicate that PCE is present in the subsurface throughout most of the surveyed area. The occurrence appears to be limited to the survey area.

TABLE 1

SAMPLING DEPTH

SAMPLE	FEET
7	4
8	4
8 9 10	4
10	4
11	4
12 13 14	4
13	4
14	4
15 16 17 18 19 20	4
17	4
18	4
19	4
20	6
21	6
22 23	6
23	6
24	6 6 4 6 4 6 6
25	6
27 28 29	4
28	6
30	6
31	6
32	6 6 6
33	6
34	6
35	6
36 37	6
37	4
38 39	3.5
39	4
40 41	3.5
41 42	4
42	6 6
44	6
45	6 4 4
46	4
46 47	4
48	4
49	4 4 4 4 4 4
50	4
51	4
54 55	4
55 56	4
57	4
	*

TABLE 2

ANALYTE CONCENTRATIONS (µg/l)

$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	SAMPLE	BENZENE	TOLUENE	ETHYL- BENZENE	XYLENES	TOTAL FID VOLATILES	PCE*
8 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <	7	<1.0	<1.0	<1.0	<1.0	<1.0	<0.05
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	8	<1.0	<1.0				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	9	<1.0	<1.0				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	10	<1.0	<1.0				
12 41.0	11	<1.0	<1.0				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	12	<1.0	<1.0				
14 $< 1, 0$ $< 1, 0$ $< 1, 0$ $< 1, 0$ $< 1, 0$ $< 1, 0$ $< 1, 0$ $< 1, 0$ $< 1, 0$ $< 1, 0$ $< 1, 0$ $< 1, 0$ $< 1, 0$ $< 1, 0$ $< 1, 0$ $< 1, 0$ $< 1, 0$ $< 1, 0$ $< 1, 0$ $< 1, 0$ $< 1, 0$ $< 1, 0$ $< 1, 0$ $< 1, 0$ $< 1, 0$ $< 1, 0$ $< 1, 0$ $< 1, 0$ $< 1, 0$ $< 1, 0$ $< 1, 0$ $< 1, 0$ $< 1, 0$ $< 1, 0$ $< 1, 0$ $< 1, 0$ $< 1, 0$ $< 1, 0$ $< 1, 0$ $< 1, 0$ $< 1, 0$ $< 1, 0$ $< 1, 0$ $< 1, 0$ $< 1, 0$ $< 1, 0$ $< 1, 0$ $< 1, 0$ $< 1, 0$ $< 1, 0$ $< 1, 0$ $< 1, 0$ $< 1, 0$ $< 1, 0$ $< 1, 0$ $< 1, 0$ $< 1, 0$ $< 1, 0$ $< 1, 0$ $< 1, 0$ $< 1, 0$ $< 1, 0$ $< 1, 0$ $< 1, 0$ $< 1, 0$ $< 1, 0$ $< 1, 0$ $< 1, 0$ $< 1, 0$ $< 1, 0$ $< 1, 0$ $< 1, 0$ $< 1, 0$ $< 1, 0$ $< 1, 0$ $< 1, 0$ $< 1, 0$ $< 1, 0$ $< 1, 0$ $< 1, 0$ $< 1, 0$ $< 1, 0$ $< 1, 0$ < 1	13	<1.0	<1.0				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		<1.0	<1.0				
16<1.0<1.0<1.0<1.0<1.0<1.0<1.00.1017<1.0	15	<1.0	<1.0				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	16	<1.0	<1.0				
18<1.0<1.0<1.0<1.0<1.0<1.0<1.0<1.019<1.0	17	<1.0					
19 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 2.6 20 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 <t< td=""><td>18</td><td><1.0</td><td></td><td></td><td></td><td></td><td></td></t<>	18	<1.0					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	19						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	20						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	21						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$							
$\begin{array}{cccccccccccccccccccccccccccccccccccc$							
$\begin{array}{cccccccccccccccccccccccccccccccccccc$							
$\begin{array}{cccccccccccccccccccccccccccccccccccc$							
$\begin{array}{cccccccccccccccccccccccccccccccccccc$							
$\begin{array}{cccccccccccccccccccccccccccccccccccc$							
$\begin{array}{cccccccccccccccccccccccccccccccccccc$							
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$							
31<1.0<1.0<1.0<1.0<1.0<1.0<1.0<1.0<1.0<1.032<1.0							
32<1.0<1.0<1.0<1.0<1.0 5.7 31 33 <1.0							
$\begin{array}{cccccccccccccccccccccccccccccccccccc$							
$\begin{array}{cccccccccccccccccccccccccccccccccccc$							
$\begin{array}{cccccccccccccccccccccccccccccccccccc$							
$\begin{array}{cccccccccccccccccccccccccccccccccccc$							
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$							
$\begin{array}{cccccccccccccccccccccccccccccccccccc$							
$\begin{array}{cccccccccccccccccccccccccccccccccccc$							
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$							
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$							
$\begin{array}{cccccccccccccccccccccccccccccccccccc$							
$\begin{array}{cccccccccccccccccccccccccccccccccccc$							
$\begin{array}{cccccccccccccccccccccccccccccccccccc$							
$\begin{array}{cccccccccccccccccccccccccccccccccccc$							
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$							
$\begin{array}{cccccccccccccccccccccccccccccccccccc$							0.05
49 <1.0							
50 <1.0 <1.0 <1.0 <1.0 5.8 27 51 <1.0			<1.0				
51 <1.0							
54 <1.0 <1.0 <1.0 <1.0 0.92 55 <1.0							0.05
55 <1.0 <1.0 <1.0 <1.0 <0.05 56 <1.0							
56 - <1.0 <1.0 <1.0 <1.0 <0.05							
	51	NI.U	<1.U	<i.u< td=""><td><1.0</td><td><1.0</td><td>1.2</td></i.u<>	<1.0	<1.0	1.2

* PCE was analyzed via GC/ECD; all others via GC/FID

.

2.

-

¹CALCULATED USING THE SUM OF THE AREAS OF ALL INTEGRATED CHROMATOGRAM PEAKS AND THE INSTRUMENT RESPONSE FACTOR FOR TOLUENE

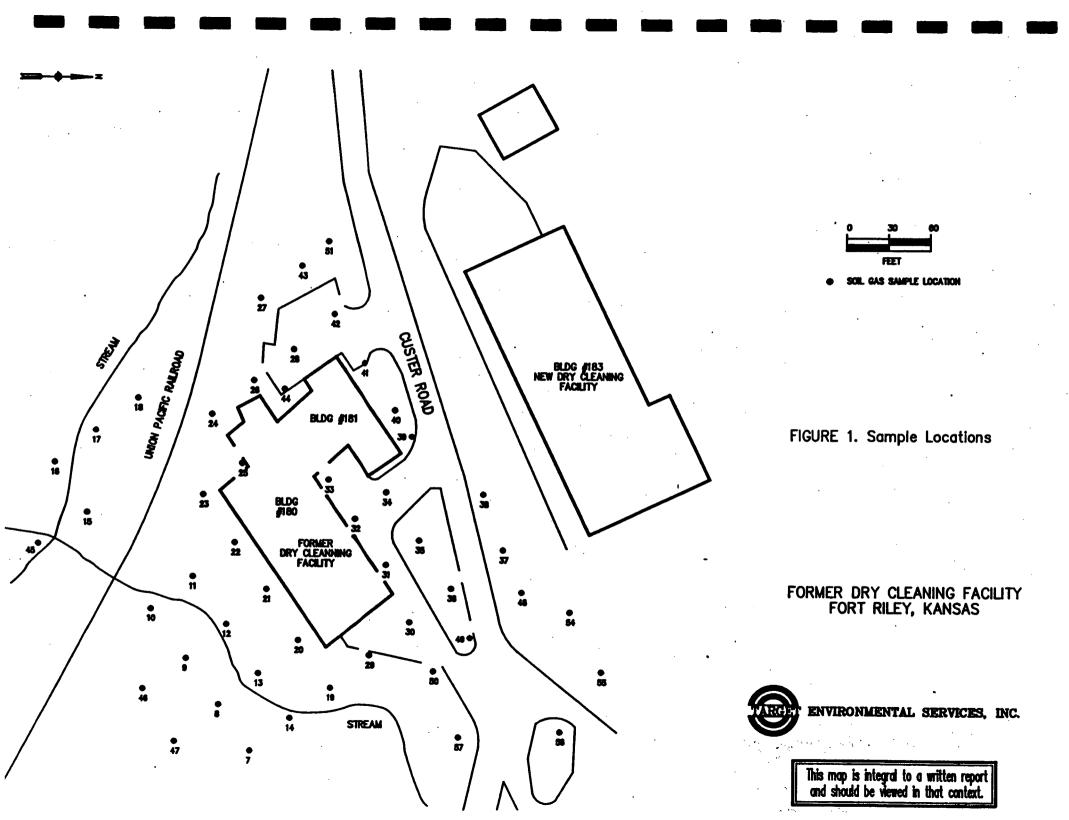
,

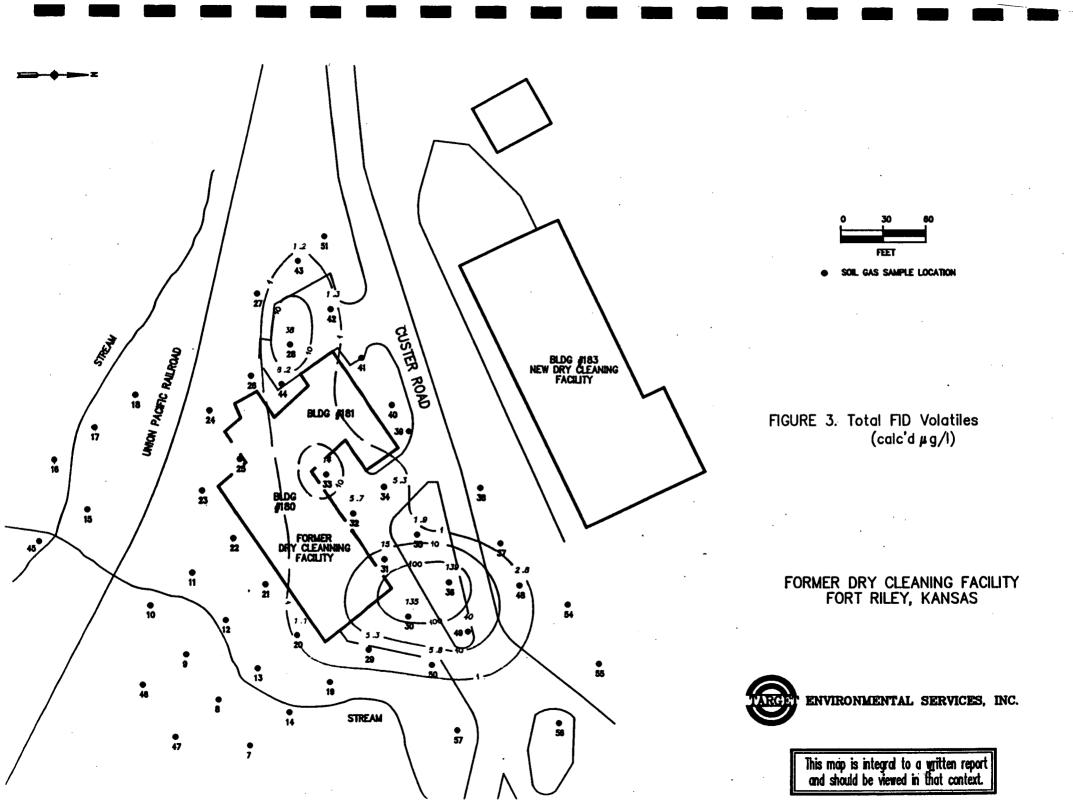
2. 10

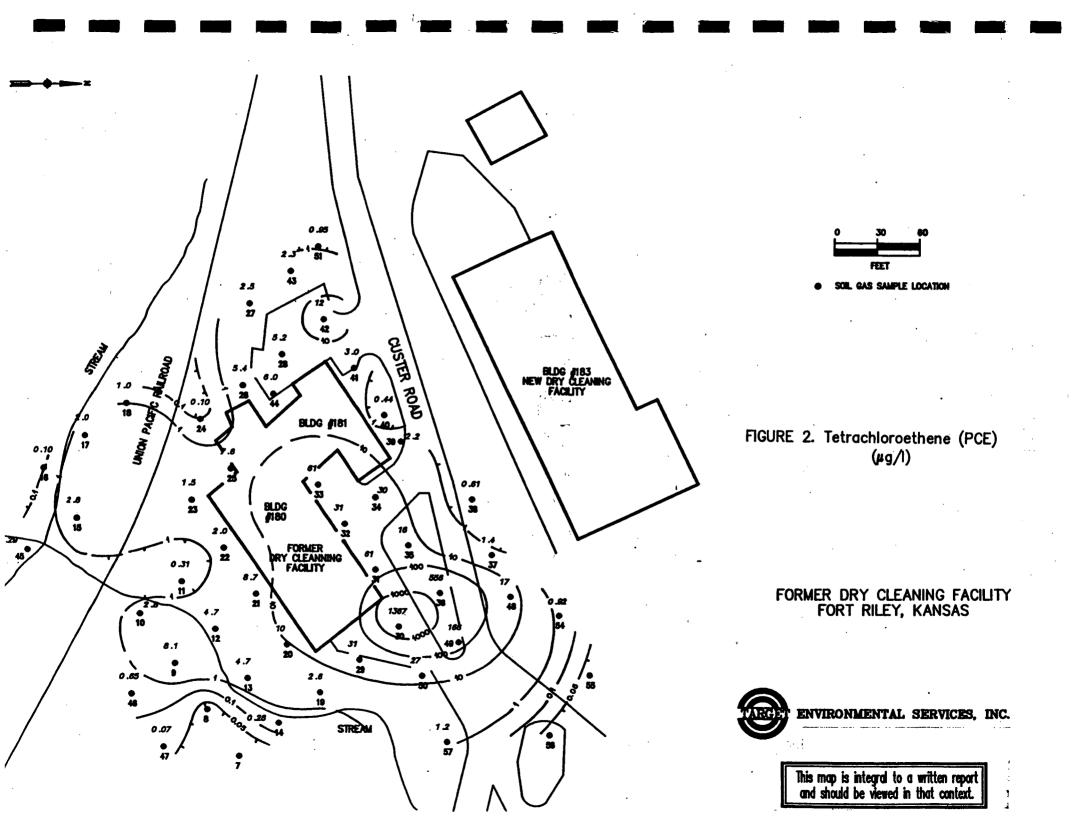
TABLE 2 (cont)

ANALYTE CONCENTRATIONS (µg/l)

SAMPLE	BENZENE	TOLUENE	ETHYL- Benzene	XYLENES	TOTAL FID VOLATILES	PCE
IELD CONTRO						
	<u>C JAW LLJ</u>					
1	<1.0	<1.0	<1.0	<1.0	<1.0	<0.05
2	<1.0	<1.0	<1.0	<1.0	<1.0	<0.05
3	<1.0	<1.0	<1.0	<1.0	<1.0	<0.05
4 5 6	<1.0	<1.0	<1.0	<1.0	<1.0	0.52
5	<1.0	<1.0	<1.0	<1.0	<1.0	0.81
6	<1.0	<1.0	<1.0	<1.0	<1.0	<0.05
52	<1.0	<1.0	<1.0	<1.0	<1.0	<0.05
53	<1.0	<1.0	<1.0	<1.0	2.2	<0.05
58	<1.0	<1.0	<1.0	<1.0	<1.0	<0.05
LABORATORY D	UPLICATE ANALYSES					
15	<1.0	<1.0	<1.0	<1.0	<1.0	2.8
15R	<1.0	<1.0	<1.0	<1.0	<1.0	2.7
22	<1.0	<1.0	<1.0	<1.0	<1.0	2.0
22R	<1.0	<1.0	<1.0	<1.0	<1.0	1.9
31	<1.0	<1.0	<1.0	<1.0	15	61
31R	<1.0	<1.0	<1.0	<1.0	15	62
43	<1.0	<1.0	<1.0	<1.0	1.2	2.3
43R	<1.0	<1.0	<1.0	<1.0	<1.0	2.6
52	<1.0	<1.0	<1.0	<1.0	<1.0	<0.05
52R	<1.0	<1.0	<1.0	<1.0	<1.0	<0.05
58	<1.0	<1.0	<1.0	<1.0	<1.0	<0.05
58R	<1.0	<1.0	<1.0	<1.0	<1.0	<0.05
ABORATORY B	LANKS					
BSFRD-1	<1.0	<1.0	<1.0	<1.0	<1.0	<0.05
BSFRD-2	<1.0	<1.0	<1.0	<1.0	<1.0	<0.05
SFRD-3	<1.0	<1.0	<1.0	<1.0	<1.0	<0.05
BSFRD-4	<1.0	<1.0	<1.0	<1.0	<1.0	<0.05
BSFRD-5	<1.0	<1.0	<1.0	<1.0	<1.0	<0.05


* PCE was analyzed via GC/ECD; all others via GC/FID


ż,

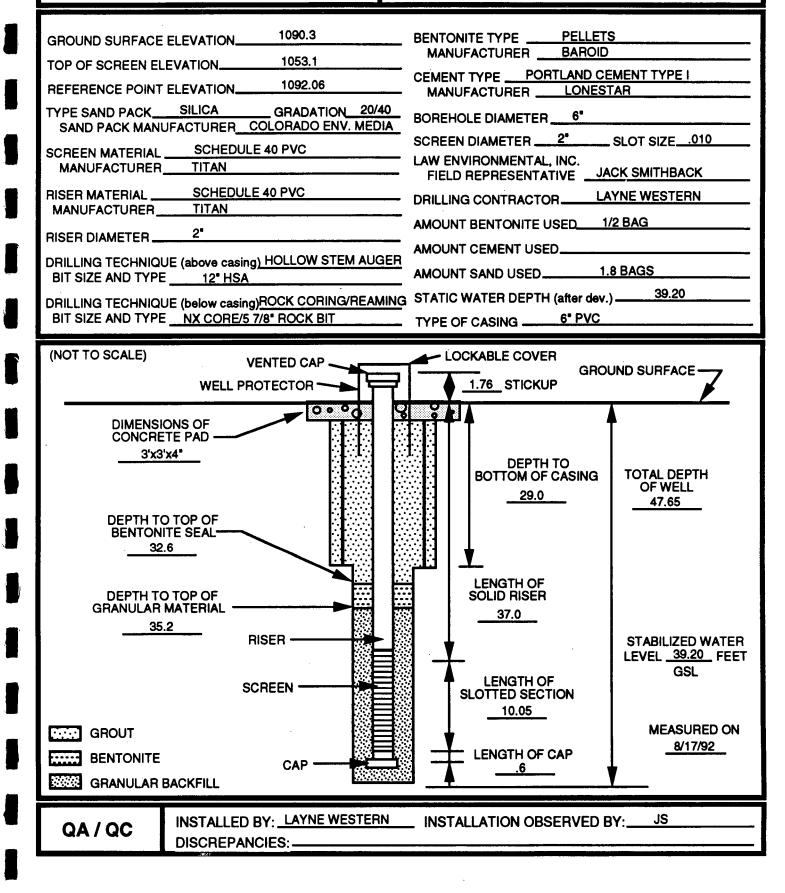

¹CALCULATED USING THE SUM OF THE AREAS OF ALL INTEGRATED CHROMATOGRAM PEAKS AND THE INSTRUMENT RESPONSE FACTOR FOR TOLUENE

. ...

,

APPENDIX E

MONITORING WELL INSTALLATION DIAGRAMS


TYPE III MONITORING WELL INSTALLATION DIAGRAM

LAW ENVIRONMENTAL, INC.

GOVERNMENT SERVICES DIVISION KENNESAW, GEORGIA

	FT. RILEY F	ORMER DCF	
WELL NO.	DCF92-01	JOB NO.	11-1532
DATE4/1	6/92	TIME	17:30

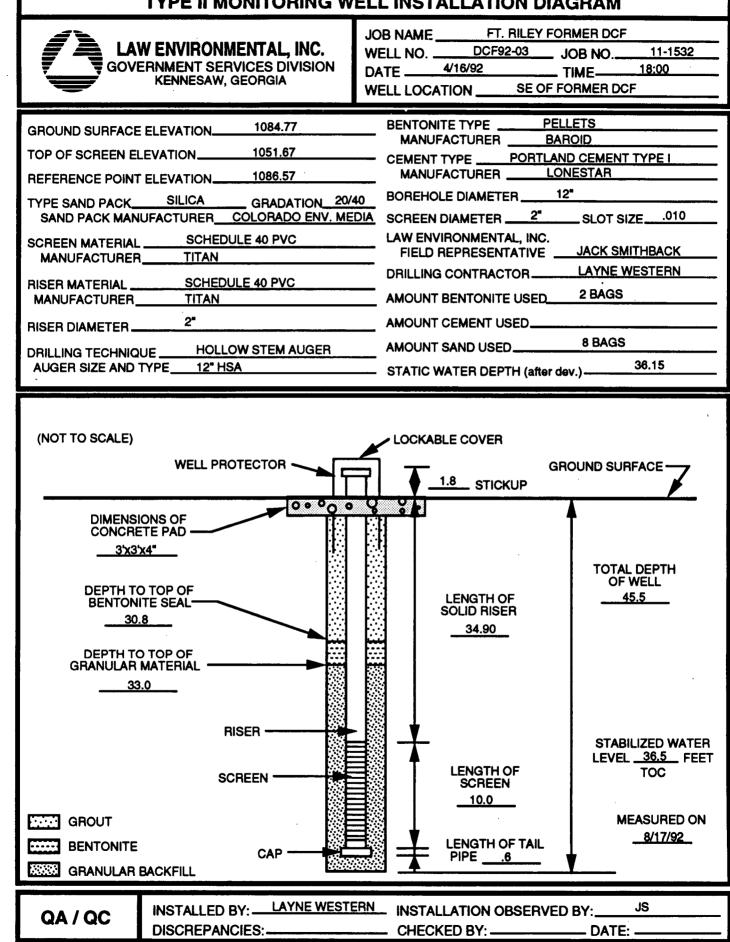
TYPE III MONITORING WELL INSTALLATION DIAGRAM

LAW ENVIRONMENTAL, INC.

GOVERNMENT SERVICES DIVISION KENNESAW, GEORGIA

 JOB NAME
 FT. RILEY FORMER DCF

 WELL NO.
 DCF92-02
 JOB NO
 11-1532


 DATE
 4/21/92
 TIME
 16:00

 WELL LOCATION
 NE OF FORMER DCF


5 - 42

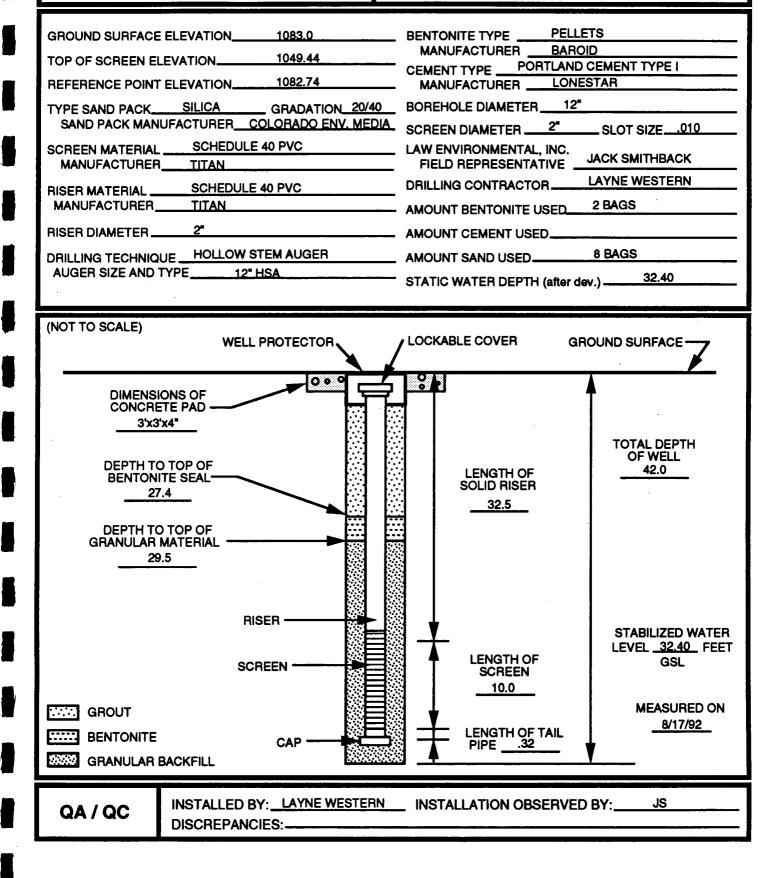
MANUFACTURER <u>11TAN</u> RISER DIAMETER <u>2"</u> DRILLING TECHNIQUE (above casing) HOLLOW STEM AUGER BIT SIZE AND TYPE <u>12" HSA</u>	BENTONITE TYPE PELLETS MANUFACTURER BAROID CEMENT TYPE PORTLAND CEMENT TYPE I MANUFACTURER LONESTAR BOREHOLE DIAMETER 6" SCREEN DIAMETER 2" SLOT SIZE 010 LAW ENVIRONMENTAL, INC. JACK SMITHBACK DRILLING CONTRACTOR LAYNE WESTERN AMOUNT BENTONITE USED 1/2 BAG AMOUNT CEMENT USED 2 BAGS
DRILLING TECHNIQUE (below casing)ROCK CORING/REAMING BIT SIZE AND TYPE <u>NX CORE/5 7/8* ROCK BIT</u>	STATIC WATER DEPTH (after dev.) 37.21 TYPE OF CASING 6" PVC
(NOT TO SCALE) VENTED CAP WELL PROTECTOR DIMENSIONS OF CONCRETE PAD 3'x3'x4" DEPTH TO TOP OF BENTONITE SEAL 31.0 DEPTH TO TOP OF GRANULAR MATERIAL 33.0 RISER SCREEN GROUT GRANULAR BACKFILL	LOCKABLE COVER GROUND SURFACE 1.93_STICKUP DEPTH TO BOTTOM OF CASING 29.0 LENGTH OF SOLID RISER 35.13 LENGTH OF SLOTTED SECTION 10.04 LENGTH OF CAP .56 SLOTED SECTION 10.04 LENGTH OF CAP
QA / QC INSTALLED BY: <u>LAYNE WESTERN</u> DISCREPANCIES:	_ INSTALLATION OBSERVED BY: JS

TYPE II MONITORING WELL INSTALLATION DIAGRAM

TYPE III MONITORING WELL INSTALLATION DIAGRAM

l

GROUND SURFACE ELEVATION 1085.60	
TOP OF SCREEN ELEVATION 1055.65	
REFERENCE POINT ELEVATION 1087.37	CEMENT TYPE PORTLAND CEMENT TYPE I MANUFACTURER LONESTAR
TYPE SAND PACKGRADATION	BOREHOLE DIAMETER6"
SAND PACK MANUFACTURER COLORADO ENV. MEDIA	SCREEN DIAMETER
SCREEN MATERIAL SCHEDULE 40 PVC MANUFACTURER TITAN	LAW ENVIRONMENTAL, INC.
RISER MATERIAL SCHEDULE 40 PVC	FIELD REPRESENTATIVE
MANUFACTURER TITAN	AMOUNT BENTONITE USED 2 1/2 BAGS
RISER DIAMETER2"	
DRILLING TECHNIQUE (above casing) HOLLOW STEM AUGER	AMOUNT SAND USED 1 1/2 BAGS
BIT SIZE AND TYPE <u>12" HSA</u> DRILLING TECHNIQUE (below casing) <u>ROCK CORING/REAMING</u>	
BIT SIZE AND TYPE <u>NX CORE/ 5 7/8" ROCK BIT</u>	TYPE OF CASING6" PVC
(NOT TO SCALE) VENTED CAP	GROUND SURFACE
CONCRETE PAD	
	DEPTH TO BOTTOM OF CASING TOTAL DEPTH
	0F WELL <u>10.5</u> 42.3
DEPTH TO TOP OF	
BENTONITE SEAL	
	LENGTH OF SOLID RISER
GRANULAR MATERIAL 29.6	31.72
	STABILIZED WATER
	LENGTH OF
	SLOTTED SECTION
	LENGTH OF CAP
GRANULAR BACKFILL	
QA / QC INSTALLED BY: LAYNE WESTERN	_ INSTALLATION OBSERVED BY:
DISCREPANCIES:	


TYPE II MONITORING WELL INSTALLATION DIAGRAM


LAW ENVIRONMENTAL, INC.

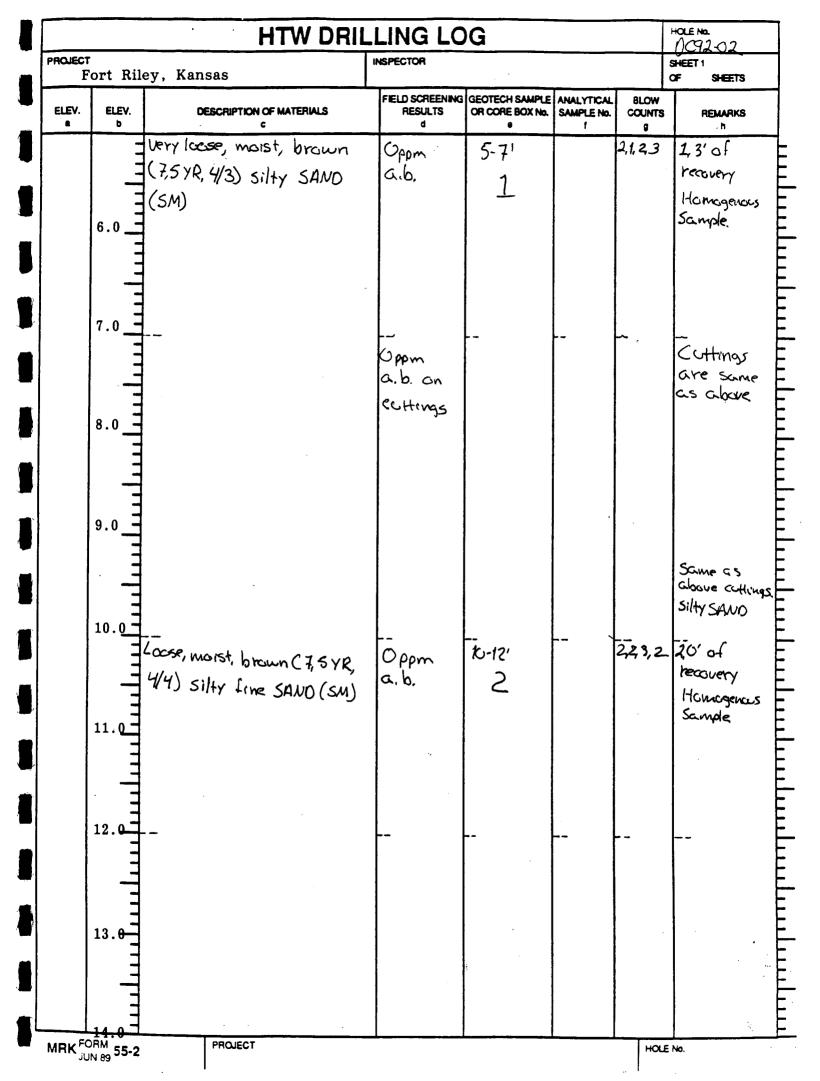
GOVERNMENT SERVICES DIVISION KENNESAW, GEORGIA

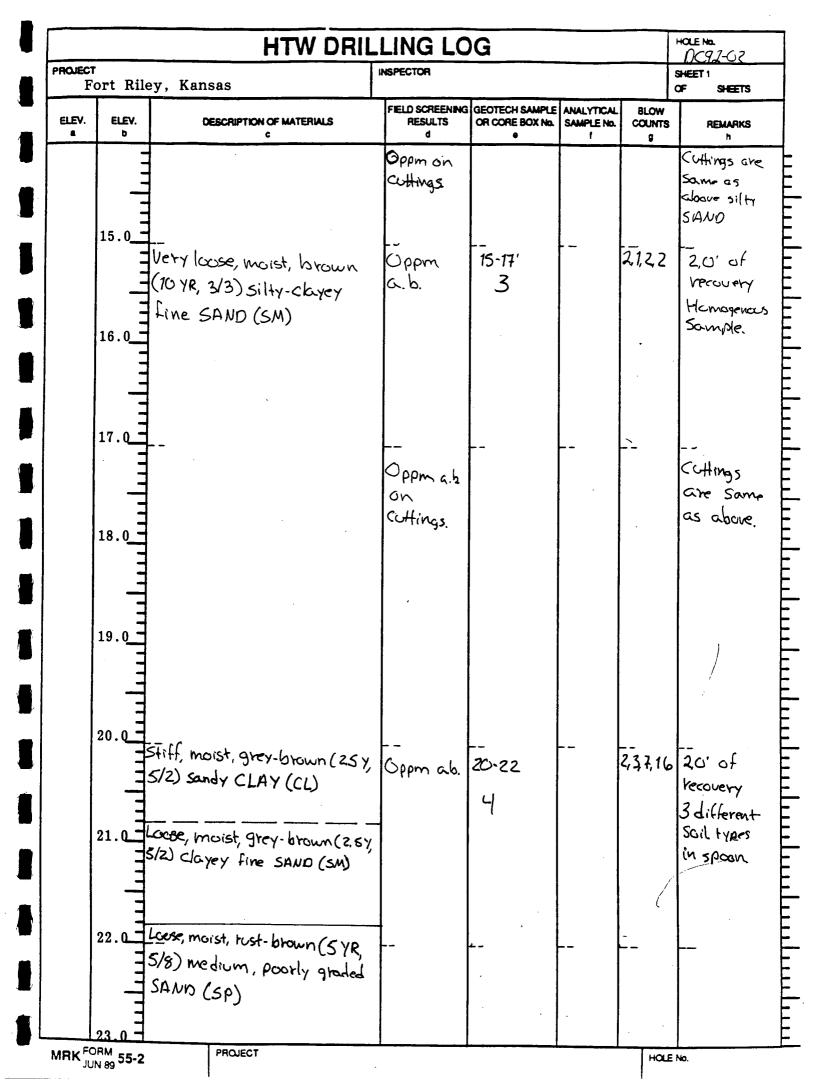
JOB NAME	FT. RILEY F	ORMER DCF	
WELL NO.	DCF92-05	JOB NO	11-1532
DATE4/6	/92		10:00
WELL LOCAT	ION SE OF	FORMER DC	F

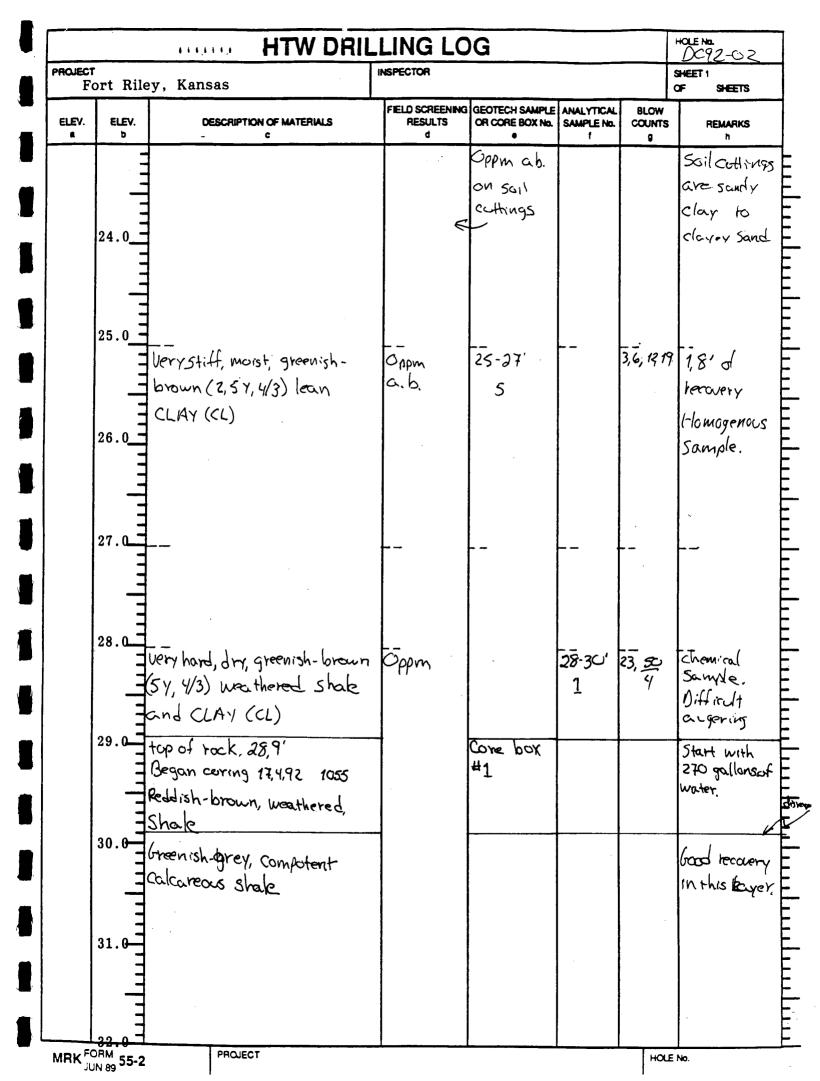
TYPE III MONITORING WELL INSTALLATION DIAGRAM

				HTW	DRI	LLIN	GLC)G					1.E NO. 192-01	
	ANY NAME	•				2. DRILL	ING SUBCO	NTRACTOR	1				EET 1	٦
		rironme	ntal	Govt Ser	vices		4. LOC	ATION				0	6 SHEETS	4
3. PROJE	sort Ril	ey							ı City	, Kans	as			
	OF DRILLER		-							INATION OF	ORILL	•		7
	John	Fornic	k	Layne h				chile						
7. SIZE A	ND TYPES OF	DRILLING	12"0	d Hollow						(I.		_		
	ore barre		<u>1+1 w</u> 2" x	continous 24/Solit SC	<u>+ligh</u>	ts.	9. SUF	FACE ELE		facili	т у			\dashv
	tricone			enter Plua i										
			8.25	" id acers		·	10, 04	TE STARTE	-	10 70		DATE CO		
12 0/68	BURDEN THI	CKNESS	3″X	z' Stainless	Steel	Splitsp		PTH GAOL		10.30 ENCOUNTE		/ 16/0	12	T
			8.6	1					40,1					
13. DEPT	H ORILLED IN	TOROCK					16. DE	PTH TO W	TER AND	ELAPSED TI	ME AFTEI	A DAILLIN	G COMPLETED	
	DERRIGE		1,9'				1.7 ~~			EASUREME			•	
14. TOTA	l depth of H		8.5'				17. 01	neri WATE		ichoureme		⊑⊌# *T) '		
18. GEOT	ECHNICAL S		<u>~_</u>	DISTURBED		UNDISTU	RBED	19. TOTA	L NUMBER	OF CORE B	OXES			-
┛	5				·						071 150			
20. SAMP	LES FOR CHI	EMICAL ANAL	YSIS	VOC	<u> </u>	ETALS	+	SPECIFY)	OTHER (SPECIFY)	OTHER	(SPECIFY		
	1			2 KAS			1 Amb	et					14,65' ×	
22. DISP	OSITION OF H	IOLE		BACKFELED	MONIT	ORING WELL	OTHER (SPECIFY)	23. SIGI	ATURE OF	NSPECT	OR /	 N	
, Mon	itoring	well	ſ		Type	2 III				1 and C	- Andi	the		
·				<u> </u>			SCREENING	GEOTEC	H SAMPLE	ANALYTIC	- T		<u></u>	
ELEV.	ELEV.	C	DESCRI	PTION OF MATERI	ALS		ESULTS			SAMPLEN		UNTS	REMARKS	
		(ryage /		ALC HARLEY				<u>د</u>				• +		_
	I			nic Materia	l		m back						Gravel	
	-	Gravel	fill	Material		J.0	ind HNU	1 - ·	-	1			drill	
	1	,		···· - · · · · · ·				from	Э.					
	1.0									ļ			Cuttings	
													,	
													cobbles	
												ľ	, -	-
ľ													and	
	2.0												gravel	
,										1			•	
	_							1					(cttings	
	1												Sandy Silt	
	3.0							°					Cullings	
										1			-	
													Soil cutting	
-													are moist	
	1												and are	
l I	4.0_											1	balling up.	
	1							1		1				
	1												•	l.
ľ								·						
	5.0													
	FORM 55		PRO	QUECT		l				1		HOLEN	0.	
• • • • • • •			1									1		

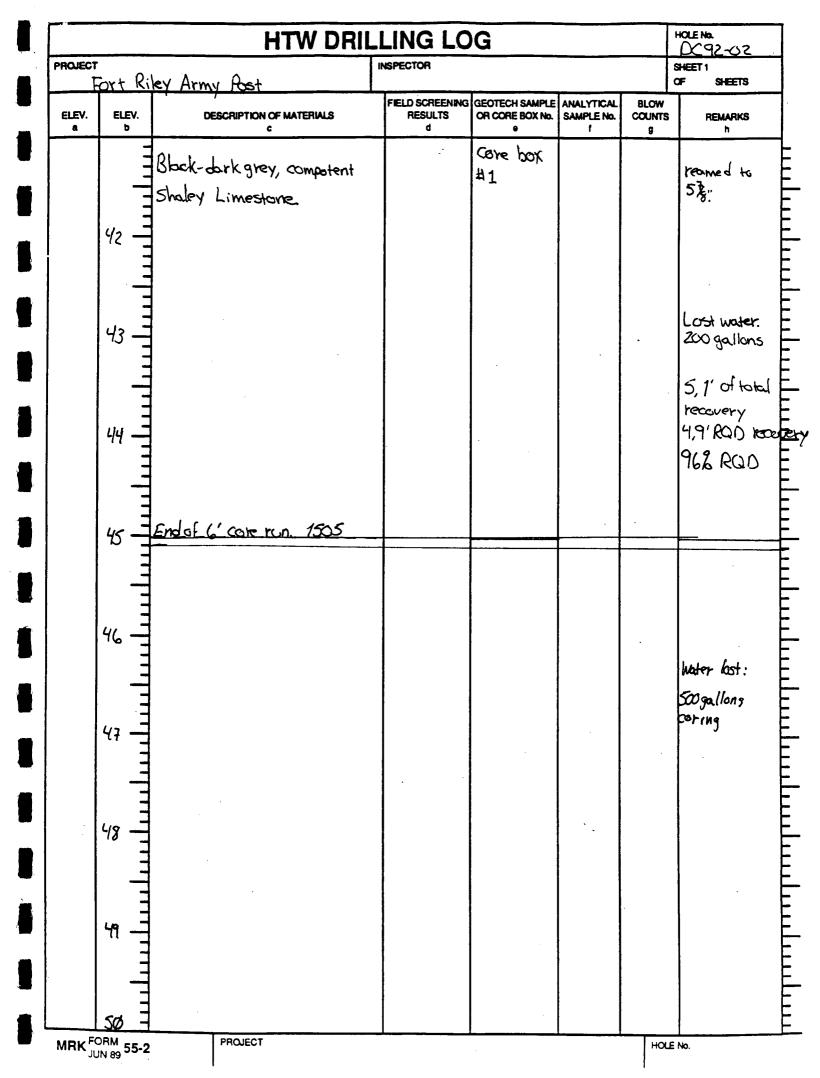
PROJECT		HTW DRIL	LING LC)G			HOLE NO. <u> <u> </u></u>
		ey, Kansas					OF & SHEETS
ELEV.	ELEV. b	DESCRIPTION OF MATERIALS	FIELD SCREENING RESULTS HINU d	GEOTECH SAMPLE OR CORE BOX No.	ANALYTICAL SAMPLE NO. 1		; REMARKS
	111	Soft, moist, brown 10yr,		5'-7'		2/1/2/3	140 Mbs, with 30" Shaw.
		4/4, fine Sandy SILT					2.0° of
	6.0	(ML) some clay					recovery Very homogena
							Sample.
	7.0					• • • '	Maishand
	1 1						Moist certing Certings are
	8.0				ł		Same as above soil.
	111						Sandy SILT
1.	9.0						
	, Thu						Kuttings are localling up
	10.0-	Soft, moist, brown (10 yR, 4/4,)	10-12		<i>x]3/2/3</i>	Moist 2.0' of
	111	five sandy SILT (ML)		2			theory Honogenous
	11.0	Some clay					Sample.
	III						easy drilling
	12.0						
	1111						Cuttings ave same
							as above.
	13.0						Sondy SILT
						, .	
	- <u>14.0</u>	PROJECT			1	<u> </u>	

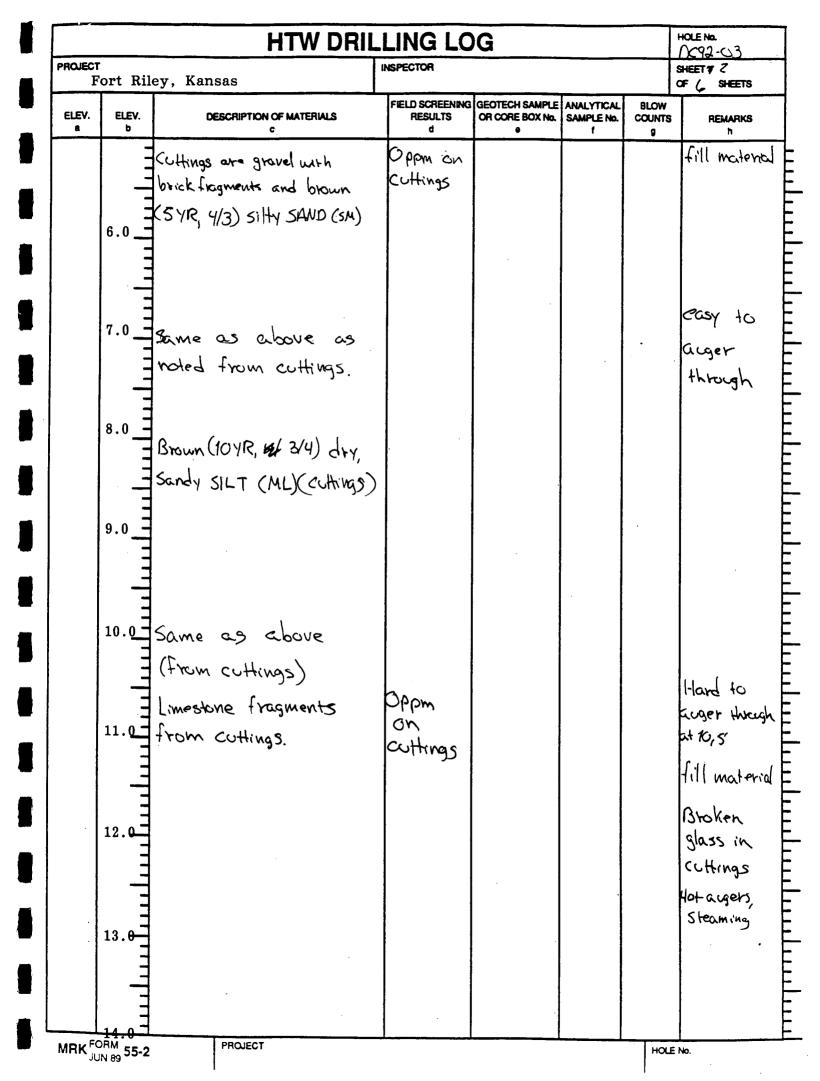

ROJECT									
Fe ELEV.	elev.	, Kansas Description of materials	FIELD SCREENING RESULTS d	GEOTECH SAMPLE OR CORE BOX No.	ANALYTICAL SAMPLE No.	BLOW COUNTS S	OF (, SHEETS REMARKS		
	15.0		Oppm clicave lockground on cuttings				Cuttings are Same as above. Sandy SILT(ML)		
		Pry Iccese, maist, brown (O YR, 4/3) silty fine Scotly graded SAND(SM)	Oppm Gbove backgrand HNU	- 15-17 3		2223	20' of recovery Homogenas Sample		
						*			
	18.0		-	* -			Cuttings an Same as above soil.		
	19.0_1		Oppm ak.						
	20.0	cse, moist, tan-rust(DYR,	 Oppm			3,2,4,4.	1,2' of		
	21.01Li	2) poorly graded medium AND (SP) with mestone fragments gravel coubble size.	с. b.	4	, ,		becquery bock fragments		
	22.0	4. 0.CC			• •				
	23.0 - DRM 55-2	PROJECT				на			

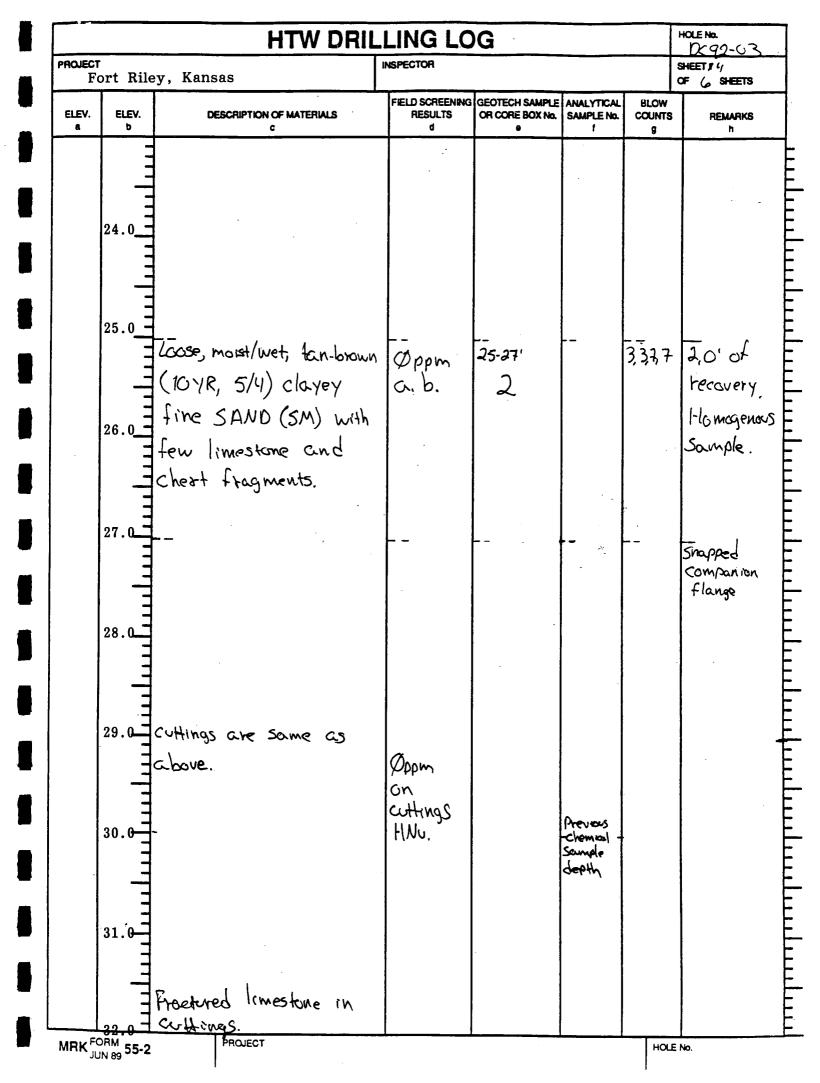

		HTW DRIL	LING LC	G			HOLE NO. 10092-01			
PROJECT	Fort Riley, Kansas									
ELEV.	ELEV.	DESCRIPTION OF MATERIALS	FIELD SCREENING RESULTS d	GEOTECH SAMPLE OR CORE BOX No. •	ANALYTICAL SAMPLE No. 1	BLOW COUNTS S	OF 6 SHEETS REMARKS			
	24.0_	Same as above. (from drill Cuttings)	Oppm G.b. Cuttings				Same as above. SAND With little Chay.			
		Hard, dry, Greenish-brown, (5y, 4/2) weathered shak silt to Clay sized. well Cemented.			 	 4, 5 ,20,1	7.0' c.f Vecovery. Hourogenacs Sample			
		Veryhard, dry, greenish- brown (Olive) (5 y, 4/2) heathered shale silt and Clay size	-	Sharel	27'-28,6 1 2UCA:3 1 Ambor	2131, <u>50</u> 1''	1.1' of recovery			
		top of tack Began coring 13 April 92 -Gray, fractured Limestone			Cove box #1	Amount of Nater loss/ret Slart wit 187 gallo	Refusal on Splitspoon Auger refusal. Scolbs/Spare inch Casing set at 286'			
	30.0 	(Freenish-grey clayey Shale. -teddish-brown clayey shale.				 -	teturn water is gray with clay. Some water loss.			
	,, , , , , , , , , , , , , , , , , , ,									

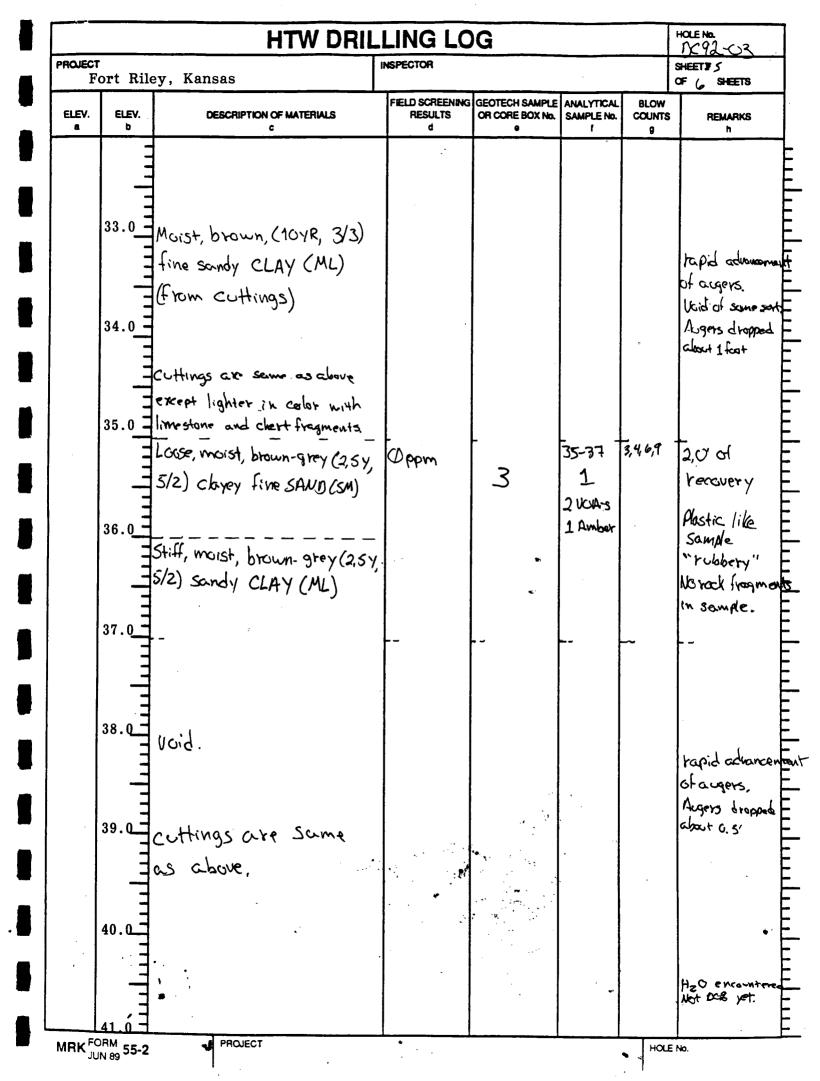

		HTW DRILLING LOG								
PROJECT	r ort Riley		INSPECTOR	NSPECTOR						
ELEV.	ELEV.	DESCRIPTION OF MATERIALS	FIELD SCREENING RESULTS d	GEOTECH SAMPLE OR CORE BOX No.		BLOW COUNTS g	OF (SHEETS REMARKS			
		hin limestone layer. teenish-grey weathered hale eddish-brown, clayey rathered shale. ad af 15t5' two 0930 14April 192 gan 2nd 5' km toco 19April 192 eddish-brown, clayey shale		Core box #1 Core box #1			brown water from return 2,3' of ROD recovery 4,2' of total recovery 558 ROD lost 50galla between 1st + 2nd core runs			
		reenish-grey, clayey shale th sand sized limestane ragments.					Brown return Water.			
	36.0									
	38.01 11	ex weathered, fractured mestone.				·	40% ROLD 3,1'total hearing 1,25' RolD heavery Water loss			
	39.016	rey, compotent, Limestone ith fews ugs and		Core box #1			Water return 15 tan.			
		on Staining.					Water 655			

HTW DRILLING LOG								
ROJECT			SPECTOR			-	Sheet V() Of () Sheets	
ELEV.	ELEV. b	DESCRIPTION OF MATERIALS c	FIELD SCREENING RESULTS d	GEOTECH SAMPLE OR CORE BOX No. 0	ANALYTICAL SAMPLE No. 1	BLOW COUNTS 9		
	-	Grey, weathered by water	-	Core box				
		Limestone with lots of		#1				
		Vugs						
	42							
		shaley					5 19 0 m o	
	43 _	Dark grey, compotent Limeston	e			•	52% ROD 3,85' #0 1 rec	
		with vugs.					20' RUD reed	
	11	End of 3rd 5'0010 run. 1120					175 gallons of	
	,	Began 4th S'core run 1340		cove box			Water last up	
	44 –	Block to dark grey compotent		±1			to this point.	
	11	Shaley Limestone with few	•				Water kss	
	111	Solution cavities and was.					25gallions	
	5	or the second se					Die geweinen ge	
	1	Howard	· ·				Yeamed to	
		Homogenous throughout					6" with tri-	
	46	5' Covie tun.					cone bit	
		Small c. L						
		Small amounts of						
		firite inside of was.						
	47 -							
							201.11	
		-					3,5' total core 3,0' ROD recou	
	48 -						86% RQD	
		endof 4th 5' cove run 1407						
	49 _					1	Total water	
						, j	loss 200 gallons	
							coring	
	50						60 gallons	
	DRM N 89 55-2	PROJECT		<u> </u>			E No. = 260 gallows	


			· HTW	DRIL	LIN	G LO	G				-a	-6)2 ¹⁶
Protect For Riley	1. COMPANY NAME			2	ORILLIN	ig subcon	TRACTOR				SHEET 1	
Fort Riley Junction City, Kansas Total Director Orallan A MARK-TURETS DESIGNTION OF GAL Total Control (Control (Contro) (Contro) (Control (Control (Control (Control (Control (Control		vironmenta	Govt Serv	ices	La			١			OF S	HEETS
L NARE OF DRILLER Tohn / Criver K (Cover Wohler) SE MATTER OF THE OFFICE OF MALE AND IN THE OFFICE		ev						Citv.	Kans	as		
John Control Lawar Machica Modile BS7 1000 121 - 04 </td <td></td>												
Section Press of Pression Section	John Gernick Larne Western				n							
AND SAMPLING ECLIPHENT	SIZE AND TYPES O	FORILLING 12"	od HSA		<u>.</u>	A. HOLE	LOCATIO	N				
MX Core low SP_TEX-cover bit 11. DATE STATTED 11. DATE COMPLETED 11. DATE COMPLETED 2. OVERBARDENT THICKNESS 38. 91 3. DEPTH ORDLED INTO ROCK 11. DEPTH ORDLED INTO ROCK 4. TOTAL DEPTH OF HOLE 12. OF 4. TOTAL DEPTH OF HOLE 12. OF 5. DEPTH ORDLED INTO ROCK 14. DEPTH ORDLED INTO ROCK 4. TOTAL DATE INTERED 13. DEPTH ORDLED INTO ROCK 4. TOTAL COMPLETED 12. OTHER WATER LEVEL MEASUREMENTS (PECIFY) 4. DEPTH ORDLED ANALES DETURBED 5. DEFORTON OF HOLE 12. OTHER WATER LEVEL MEASUREMENTS (PECIFY) 8. DEPTH ORDLED ANALYSIS DETURBED 9. DEFORTON OF HOLE MAXITORIA WELL 12. DEPCHTON CP MATERIALS THER ISPECIFY 12. DEPCHTON CP MATERIALS THER ISPECIFY 12. DEPCHTON CP MATERIALS THER ISPECIFY 13. DETURBED MAXITORIA WELL 14. D DESCRIPTION OF MATERIALS 15. DESCRIPTION OF MATERIALS THER ISPECIFY 10. DETURBED DESCRIPTION OF MATERIALS 10. DETURBED DESCRIPTION OF MATERIALS 10. DETURBED	AND SAMPLING EQ	UPMENT 2'X	a " split s		,				faeil	ity		
Image: Start Thickey Sub- Image: Start The Sub-				eel samp	ley.	- 9. SURF	ACE ELEV					
2 OVERHILDDEN THICKNESS 2 OVERHILDDEN THICKNESS 3 DEPTH OPALLED NTO ROCK 4 DOPIN DPALLED NTO ROCK 4 DOPIN DPALLED NTO ROCK 4 DOPIN DPALLED NTO ROCK 4 DOPIN DPALLED NTO ROCK 4 DOTAL DEPTH OF HOLE ANTER DPALLING COMPLETED 4 DOTAL DEPTH OF HOLE SAMELESS DISC. 5 DEPTH OPALLED NTO ROCK 4 DOTAL DEPTH OF HOLE SAMELESS DISC. 5 DEPTH OPALLED NTO ROCK 4 DOTAL DEPTH OF HOLE SAMELESS DISC. 5 DEPTH OPALLED NTO ROCK 4 DOTAL DEPTH OF HOLE SAMELESS DISC. 5 DEPTH OPALLED NTO ROCK 4 DOTAL DEPTH OF HOLE SAMELESS DISC. 5 DEPTH OPALLED NTO ROCK 4 DOTAL DEPTH OF HOLE SAMELESS DISC. 5 DEPTH OPALLED NO. 5 DEPTH OPALLED NTO ROCK 4 DOTAL DEPTH OF HOLE SAMELESS DISC. 5 DEPTH OPALLED NO. 5 DEPTH OPALLED NO. 5 DEPTH OPALLED NO. 5 DEPTH OPALLED NTO ROCK 5 DEPTH OPALLED NO. 5 DEP				<u> </u>		10. DAT	E STARTE	D			COMPLETE!	<u> </u>
LOPTH OPILLED NTO ROCK 16.0 16.0 17.0THER WATER AND ELAPSED TIME AFTER DRILLING COMPLETED 16.00 17.0THER WATER LEVEL MEASUREMENTS (SPECIFY) 10.00									1010			
3. DEPTH DRILLED NTO ROCK 16.00 16.00 16.00 10.00 4. TOTAL DEPTH OF HOLE 45.00 17. OTHER WATER LEVEL MEASUREMENTS GRECPY) 0THER (SPECPY) 4. GOTECONROLL SAMPLES DOSTUBBED UNDETURBED 18. TOTAL MARGER OF CORE BOXES 0. SAMPLES FOR OREMANALYSIS VOC METALS OTHER (SPECPY) OTHER (SPECPY) 1. 5.00 1. 47.00 KASS OTHER (SPECPY) OTHER (SPECPY) OTHER (SPECPY) 22. DISPOSITION OF HOLE MANUTCHING WELL MONITORING WELL OTHER (SPECPY) S. SIDNATURE OF NEPECTOR 22. DISPOSITION OF HOLE MONITORING WELL THER (SPECPY) S. SIDNATURE OF NEPECTOR NOTION ST. 8 B CVIDSS, OVISCINK WEITER IN FED SCREEMING GEOTECH SUMPLE MALYTOLL BLOW N 9 CVIDSS, OVISCINK WEITER IN 10.0 Pp/m SAHAS ST. SO II CUHKUR 1.0	2. OVERBURDEN TH	ICKNESS 20	r Q/			15. DEP	TH GROU	NOWATER	ENCOUNTE	RED		
1600 4. TOTAL DEPTH OF HOLE 4500 10. OTAL DEPTH OF HOLE 4. TOTAL SAMPLES 0 DETURBED 10. SAMPLES FOR CHEMICAL ANALYSIS VC 11. 0			<u>, 7</u>									
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	3. DEPTH DHILLED F		,0			16. DEP		TER AND E		ME AFTER ORI		LETED
E GEOTECHICAL SAMPLES DESTRIBED DESTRIBED DESTRIBED UNDETURNED IS TOTAL MANERA CORE BOXES D SAMPLES FOR CHEMICAL ANALYSIS VC METALS OTHER (SPECPT) OTHER (SPECPT) DESTRIBUTION OF MATERIALS AAMALED MONITORING WELL OTHER (SPECPT) Z SIGNATURE OF INSPECTOR RECOVER RE	4. TOTAL DEPTH OF		o'			17. OTH	ER WATE	R LEVEL M	EASUREME	INTS (SPECIFY	n -	
2. SUMPLEAR OF CHÉMICAL MANAYSES VOC METALES OTHER (SPECIFY) OTHER (SPECIFY) A. TOTAL CONF 2 (KAS 2 Amb etc 2 2 DEPOSITION OF HOLE ENCODED MONTORINO WELL OTHER (SPECIFY) 22 SIGNATURE OF REFECTOR MONITORINO WELL THE INTERNALS FELD SOREENING GENERALE MANYTICAL BLOW RESULTS OR CORE DOX NO. BANKYE NO. COUNTS REMAINS A CONTS AND THE INTERNALS FELD SOREENING GENERALE MANYTICAL BLOW CONTS AND THE INTERNALS FELD SOREENING GENERAL AND THE INTERNAL BLOW CONTS AND THE INTERNALS FELD SOREENING GENERAL AND THE INTERNAL BLOW CONTS AND THE INTERNAL INTERNALS FELD SOREENING GENERAL AND THE INTERNAL BLOW CONTS AND THE INTERNAL INTERNALS FELD SOREENING GENERAL AND THE INTERNAL BLOW CONTS AND THE INTERNAL INTERNAL INTERNAL BLOW THE INTERNAL BLOW CONTS AND THE INTERNAL INTERNAL INTERNAL BLOW THE INTERNAL BL	8. GEOTECHNICAL S	AMPLES	DISTURBED		NOISTUR	BED	19. TOTAL	NUMBER	OF CORE B	OXES		
1 4 KAS 2 Amb ers 22 DEPOSITION OF HOLE BACKFILED LONITORING WELL OTHER (SPECFY) 23. SCINATURE OF INSPECTOR MONIAORING WELL type TIT SCONT RESULTS OR CONF BOX No. SLOW ELEN. ELEN. DESCRIPTION OF MATERIALS FELD SCREENING GEOTECH BAMPLE MAILYTTCAL BLOW I.O. Gross, Organic material. ICO Prim SAH Space ICO Prim 1.0. Gross, Organic material. ICO Prim SAH Space 1.0. Gross, Organic material. ICO Prim. SAH Space 1.0. Gross, Organic material. ICO Prim. SAH Space 1.0. Gross, Organic material. ICO Prim. Sandy Sult 1.0. Gross, Organic material. ICO Prim. Sandy Sult 1.0. Gross, Organic mater	0. SAMPLES FOR CH			METAL	8	OTHER (S	PECIFY)	OTHER (8	PECEY	OTHER (SPE	CFY) 21. 1	
2 DEPOSITION OF HOLE BACKFILED MONITORING WELL OTHER (SPECIP) 2. SCHATURE OF RESPECTOR MONITORING WELL TYPEIT ELEV. DESCRIPTION OF MATERIALS FELD SCREENING GEOTECH SAMPLE AMALYTICAL BLOW RESARDS OF SCHART RESERVED OF CONTRACT OF MATERIALS FELD SCREENING GEOTECH SAMPLE AMALYTICAL BLOW CONTRACT OF MATERIALS FELD SCREENING GEOTECH SAMPLE AMALYTICAL CONTRACT OF MATERIALS FELD SCREENING GEOTECH SAMPLE AMALYTICAL SCREENING CONTRACT OF MATERIALS FELD SCREENING GEOTECH SAMPLE AMALYTICAL SCREENING CONTRACT OF M		1	4 mar			2 Am	pers					11EWUEN %
Monitoring Well typeIII ELEV. DESCRIPTION OF MATERIALS FELD SCREENING GETECH SAMPLE ANALYTICAL BLOW CONTR PEMARUS Gross, Organic material Cooperation of Control Sample in Control Choss, Organic material Cooperation of Control Sample in Control 1.0 1.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5	2. DISPOSITION OF	HOLE		MONITORIN	IG WELL			23. SIGN	ATURE OF	NSPECTOR	<u> </u>	
ELEV. DESCRIPTION OF MATERIALS FELD SCREENING OBCOTECH SAMPLE MALLYTICAL BLOW OCUMPS IN COLONTS IN							· .		-			
ELEV. DESCRIPTION OF MATERIALS PESULTS OR CODE BOX IN. SAMPLE IN. COUNTS PEMARIS 1.0	TONHOR W	y well		Type	T		r	L				
Logic loss organs material lippin 1.0	ELEV. ELEV.	DESCE		LS								MARKS
1.0_ 1.0_			6	•		d		0	1			
1.0_ - Soil cuthing are dark 2.0_ - - 3.0_ - - 4.0_ - - 5.0_ - -		Grass Grad	ank material		1,0 0)pm	SAIL	Socrata		·		
1.0_ - Soil cuthing are dark 2.0_ - - 3.0_ - - 4.0_ - - 5.0_ - -	=	1			back	grand	C			1		
1.0_ Soil cutting 2.0_ Soil cutting 3.0_ Soil cutting 4.0_ Soil cutting 5.0 Soil cutting			н. А.		HNL	, - ,				1		
1.0							ever	5'				
2.0_ 2.0_ 3.0_ 4.0_ 5.0 - 5.0 -	1.0											
2.0_ 2.0_ 3.0_ 4.0_ 5.0 -											Soil	CUL
2.0												
3.0											are	dark
3.0_ 4.0_ 5.0	2 0 =										bru	νn
											(SM	r - 11 - 1 \
					1					1		
	3 0 -					-						
					1							
							-			1	1	
											1	
			· · · · · · · · · · · · · · · · · · ·									
	4.0		· · · · · · · · · · · · · · · · · · ·									




HTW DRILLING LOG								
ROJECT	Fort Riley, Kansas							
ELEV.	ELEV.	DESCRIPTION OF MATERIALS	FIELD SCREENING RESULTS d	GEOTECH SAMPLE OR CORE BOX No. 9	ANALYTICAL SAMPLE No.	BLOW COUNTS	OF SHEETS	
				Core box #1				
	33.0	Grey weathered Limestone						
		with green weathered Shale					4,3' total rea 2,8' RQD rec	
	34.0	End of 1st 5'con run_1130		Concher		*	65% RQD 1051/00 gal	
		Began 2nd s'cove run 1455		Core box #1				
	35.0	Grey-tan, weathered, fractured, well						
		laminated Limestone					Suspect Water due	
	36.0	with Vugs and iron Staining.				·	to ung, Iron Staining ene Water 1055.	
							100 gallons	
	37.0_						Lost water, 1	
	38.0						700 gallons 100 gallons 3,4' Total re	
				3 9			Ø RQD reccu 0% RQD	
	39.0-	End of 2nd 5'run 1425 Began 3nd 5'run	-	Core box				
	1	Ran, Compotent, Limestone With few rugs		#1				
	40.0_	Block-dark grey, compotent	-					
	بيابي	Shaley Limestone						
	0RM 55-2	PROJECT		l			LE No.	



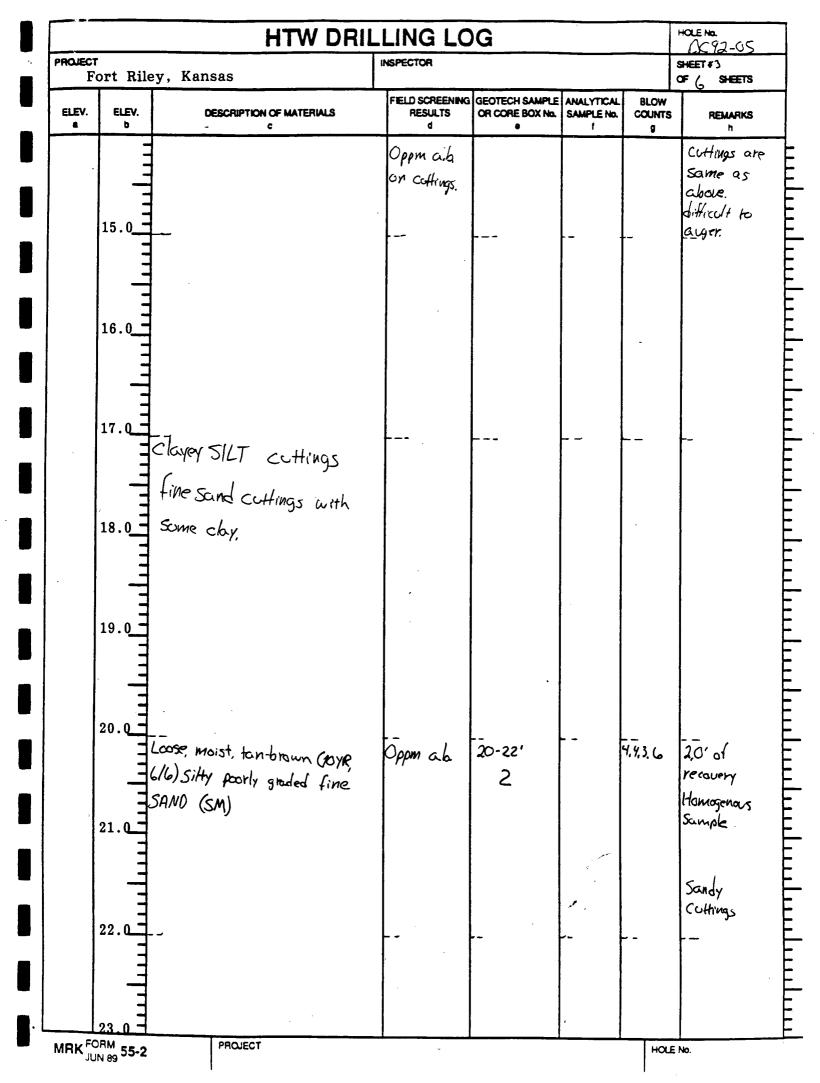
				HTW	DRIL	LIN	GLC	G					OLE NO. 2092-03
1. COMPA		•	·	<u> </u>			NG SUBCO		1			SI	EET 1
	_	vironme	ental	Govt Ser	vices	Lay	ne We					a	F (SHEETS
3. PROJEC F	ort Ril	ley					4. LOC Ju		n City	, Kans	as		
_	FORILLER			· <u>·</u> ··································			6. MAN	UFACTUR	ER'S DESK	INATION OF		•	
		omick		Layne 1	vestern			bile					
	ID TYPES O MPLING EQ	F DRILLING	12"0	d HSA	<u>.</u>			ELOCATIO			_		
				enter plug				FACE ELEV	<u>(V)9 + C</u> /ATION	cilities	5		
•		1	reve	rse flight	i								
								TE STARTE		60.0	11.	DATE CO	MPLETED
2. OVER	BURDEN TH	ICKNESS						PTHOROU			RED		
			45,	,5'									
3. DEPTH	I DRILLED I	ITO ROCK	Ø				16. DE	PTH TO WA	TER AND	ELAPSED TI	ME AFTE	ROALLI	NG COMPLETED
4. TOTAL	DEPTH OF	HOLE	45,	5'			17. OT	HER WATE		EASUREME	NTS (SP	ĘCIFY)	•
IS. GEOTE	ECHNICAL S	AMPLES	<u> </u>	DISTURBED	. 1	INDISTUR	BED	19. TOTAL	NUMBER	OF CORE B	OXES		
D. SAMPL	LES FOR CH	EMICAL ANA	LYSIS	voc	META	LS	OTHER (S	SPECIFY)	OTHER (SPECIFY)	OTHER	(SPECIF)	
	1		F	2 VOAS	•		LAmb	or	-	-			- RECOVERY
22. DISPO	SITION OF	HOLE		BACKFILLED	MONITOR	NG WELL	OTHER (S		23. SIGA	IATURE OF	NSPECT	IOR .	
M		1 11	F	1.				-		1 1 -	1	1	
	itoring	well		Grout	type	_			#	beck S/			
ELEV.	ELEV. b		DESCRIF	C C C C C C C C C C C C C C C C C C C	ALS		CREENING SULTS d		H SAMPLE E BOX No. 0	ANALYTIC SAMPLE N		LOW CUNTS	REMARKS h
	-	Cemer	nt	· · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	Ø.8	ppm					1	Concrete
	_			id fill ma	1		rgioind			•			Parking lot.
	-			· ·	•	HNU		1					Augered
	1.0_	Brown, c	dry, :	silty SAMO +	Fill			1					through
		Materia	(w	ith limest	one	 ~0,0	~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~					·	
		gravel.											Cencrete,
													N .
	-												
	2.0_							1					
	-												
												1	
	-					1							
	3.0_												
													difficult
											1		
				-								f	Sugering.
					•								CAL
	4.0	Rk	2 01	mip h.									fill materio
				rovel, br				l					
	- T	(SYR,	5/8)	silty SAA	0					l			•
ł		(SM)	1 mars	n cutting	e			ľ]	ł		
	5.0	(~/\)	1100	n cotting	>			{		1	f	ļ	

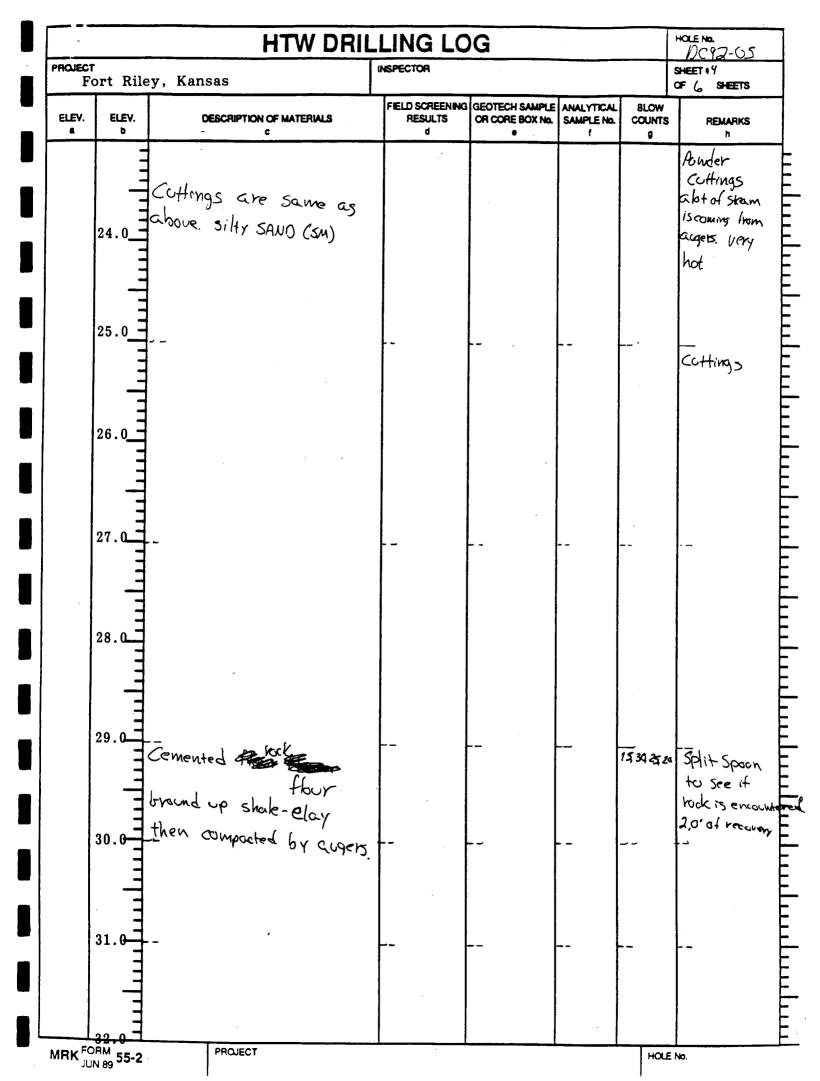
		HTW DRIL	LING LO)G			HOLE No.
PROJECT			INSPECTOR		· · · · · · · · · · · · · · · · · · ·		1292-03 SHEET 13
F	ort Rile	ey, Kansas					OF (SHEETS
ELEV. a	ELEV. b	DESCRIPTION OF MATERIALS c	FIELD SCREENING RESULTS d	GEOTECH SAMPLE OR CORE BOX No. 0	ANALYTICAL SAMPLE No. f	BLOW COUNTS	REMARKS
			·				metal object
							in cettings
	1			,			
	E S	•					
	15.0_		+-	45 47			120105
		Stiff, moist, brown (7,5	Øppm G.b.	15-17		6,6,5,7	2,0' of
		YR, 3/4) fine sandy	a.b.	-1			recovery
				-			Homogena
	16.0_	SILT (ML)					Sample.
						-	· · ·
	E I						
	17.0						
			-			<u> </u>	├
1	ΞΞ						
	18.0						
		Cullings are same					
	-]	as above sandy SILT					easy to
	_		Øppm				auger.
	19.0_		on				
			Cuttings				
	-		U.				
	- -						
	20.0_						
						J	
	21.0						
	Ξ						
	22.0						
		Moist, brown, (7,548, 4/3)	Oppm				
	-	Sandy-clayey SILT (ML)	HNU				
		(from soil cuttings)					
1							
	ORM JN 89 55-2	PROJECT				ноц	1

		HTW DRIL	LING LO	G			HOLE No.
PROJECT	<u></u>		INSPECTOR				SHEET > (
	tort	Riley 11-1532					OF & SHEETS
ELEV. a	ELEV. b	DESCRIPTION OF MATERIALS c	FIELD SCREENING RESULTS d	GEOTECH SAMPLE OR CORE BOX No. 9	ANALYTICAL SAMPLE No. f	BLOW COUNTS 9	REMARKS
							difficult augerings
	42					Ł	rocky cuttings
							Believe to be sugering through
	43	Fractured limestone with CLAY				*	fractured limeston
-		(based on drilling conditions and cuttings)					
	44						
	رئ ساسال						Very wet, "flowing"
							cuttings "Slurry" ==
	46 111	Boring terminated 1515 45,5'					
	را با با با را با با با						
	لياليا الم	·					
	4	•					
	بليبا						
	50 - DRM N 89 55-2	PROJECT		l	1	Lu~	E. No.

				HTW	DRi	LLIN	g LO	G				-ae DC9	₩0. Z=01∰
1. COMPA L		rironmen	ital Go	ovt Serv	vices	2. DRILLI	ig subcon	ITRACTOR				SHEET	1 SHEETS
3. PROJEC					<u></u>	1	4. LOC			, Kans	200	4	
	FORLIER	ey								, Kalls			
		n (rore	nek	10	ime lik	estern			B5				
7. SIZE AN	ID TYPES OF	ORILLING 1	2" od	Augers			a HOLE	LOCATIO	N				
ANU SA	MPUNG EQ.			<u>' solit <</u>			Ury SUP		ning fo	<u>cility</u>			
				barrel	<u>ug</u>	•	-						
		F	5%" Ro	ickbit				E STARTE		~~~~~			
12. OVERI	BURDEN THI	CKNESS		<u>.</u>				TH GROU		CS3C		pril 12	2 1900
			10,3	/					3;	5,0'			
13. DEPTH	I DRILLED IN	TO ROCK	3	2,4'							ime after o lons aft		
14. TOTAL	DEPTHOFI		42.7'				17. OTH	ER WATE	R LEVEL M	EASUREMI	ENTS (SPECI	FN	<u>1149</u>
18. GEOTE	ECHNICAL S			DISTURBED	-	UNDISTUR	BED	19. TOTAL	NUMBER		OXES		
20. SAMPL	ES FOR CH	EMICAL ANALY	7518	voc	ME	TALS	OTHER (S	PECIFY)	OTHER (SPECIFY)	OTHER (SP	ECIFN	21. TOTAL COR RECOVERN
		1		240AS			-				~		94 *
	SITION OF H			ACKFLLED	+	ANG WELL	OTHER (S	PECIFY)	1 1		NSPECTOR	1	
1ºor	litoriu	g well			type			1	└── <i>↓</i>	· · · · · ·	mitha		
ELEV.	ELEV. b	DE	SCRIPTIO	N OF MATERIA	NS	FIELD S RE	CREENING SULTS d			ANALYTIC SAMPLE			REMARKS
	-	Grass, ci	Ganic	materia	1	1,0	Dom				·		
	1		Ū		•	hock	opm igraund						
						HNU				Į			
	1.0	·				1.000						Cas	
											·	au	jering
	2.0											5:1	
													ly-clayery
							,					d'ri	1 cuthings
	E I												
	3 0 -		1 1 12										
	··· -	silty cl	-4/2										
ł			•										
1	4.0												
	····												
	-												
-													
	5.0												

ELEV. b	DESCRIPTION OF MATERIALS	FIELD SCREENING		ATT DRILLING LOG									
	•	RESULTS	GEOTECH SAMPLE OR CORE BOX No.	ANALYTICAL SAMPLE ND.	BLOW	OF SHEETS							
6.0	Very firm, moist; reddish brown (SYR, 4/2) silty CLAY (CL)	Oppm G.b.	5-7'	ť	5, 13, 8, 9	2,0° cif recovery Homogenous Sample.							
7.0		Oppm G b. On Cuttings			· · · · ·	reddish- brown dvill cottings siltyCLAY(CL)							
10.0	•			-		Hot (Sucking) augers Oppom HWU Difficult to auger. Chavel cuttings							
	Compotent Limestone With Uugs. Greenish-tan, Compotent		10-12 2 Core box #1		S S	0.5' of <i>keavery</i> <i>Weathered</i> <i>Limestone</i> Casing set at 10,5' 2,1' total te 1,2' ROD real							
للمبال	tan/grey, compontent Limestone End 1st run 1013		 Core box <u>#1</u>			-58% RQD 2,4" Vun. 5' tun.							
	8.0 9.0 10.0 11.1 12.1 12.1	8.0 9.0 10.0 Weathered limestone 10.0 Weathered limestone 11.0 Competent Limestone With UUgs. Greenish-tan, Compotent 12.0 Shale. tan/grey, component Limestone <u>End thron</u> 1073 13.0 Began Zud ron. 7025	8.0 8.0 9.0 10.0 Weathered limestore 10.0 Weathered limestore 11.0 Compatent Li mestore With Uugs. 12.0 Shale. 12.0 Shale. 13.0 Regan Zud run. 7025	8.0 9.0 10.0 Weathered limestone 10.0 Weathered limestone 10.0 Weathered limestone 10.0 Weathered limestone 10.0 Competent Limestane With Uugs. Greenish-tan, compotent 12.0 Shale. tan/grey, component Limestane End than 1025 13.0 Began End ron. 7025 14.0	8.0 8.0 9.0 10.0 Weathered linestore 10.0 Weathered linestore 10.0 Weathered linestore 10.0 Weathered linestore 10.0 Competent Li mesture With Uugs. Greenish tan. compotent 12.0 Shale. tan/grey, component Limestone End term 1025 13.0 Regan Zud run. 7025 Core box H1 Core box H1	8.0 8.0 8.0 9.0 10.0 Weathered Imestore 10.0 Weathered Imestore 10.0 10.0 Weathered Imestore 10.0 1							

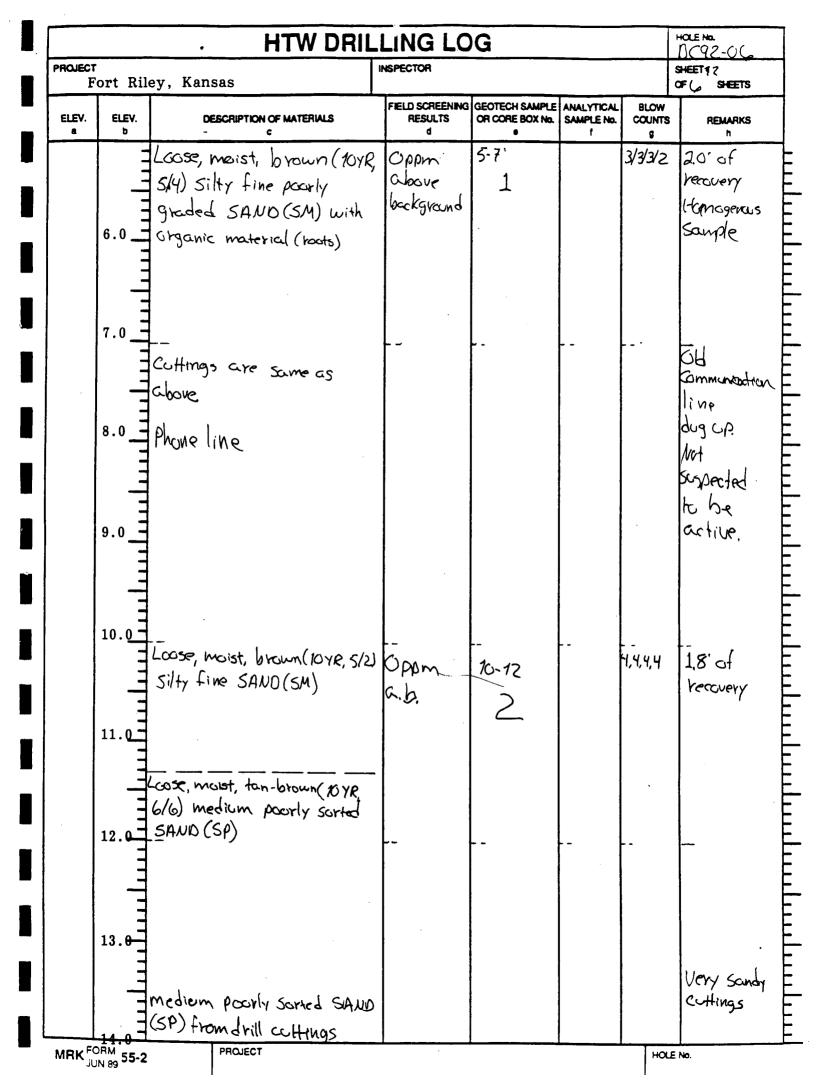

)G		HTW DRILLING LOG									
		ey, Kansas	SPECTOR				SHEET 1 OF SHEETS								
ELEV.	ELEV. b	DESCRIPTION OF MATERIALS	FIELD SCREENING RESULTS d	GEOTECH SAMPLE OR CORE BOX No.	ANALYTICAL SAMPLE NO. 1	BLOW COUNTS	REMARKS								
	1111	tan-brown, weathered (Compoten Limestane with was.		Core box #1			4,41 forthe recovery								
	15.0_	Grey weathered shale.					2,7'Ray								
		Cakareous shale. Reacts with HCI Shale mixed with				٠	6190 RQD								
	-	Limestone. with cakite Crystals.			÷		some He water								
		End of Znd 5' Coreron 1045 Began 3rd 5' Coreron. 1330 Gran shale with ealcrife.		corebox #1_			loss 200 gallon No koter return.								
	19.0	Greenish-grey, compotent Clayey Shale. Some iron staining in	,				5,0'total recovery								
	20.0	clay. Clay is mixed with shalefragments, Greenish-grey,					4,7' Rad recovery 94% Rad								
		compotent clayey Shale.													
	22.0						2 72 7								
		Black shale, compotent. <u>Chilof 3rd 5 1415</u> Began 4th 1440		· · · · · · · · · · · · · · · · · · ·			200 gallous								
	23.0 - DRM JN 89 55-2	PROJECT		<u> </u>			E No.								

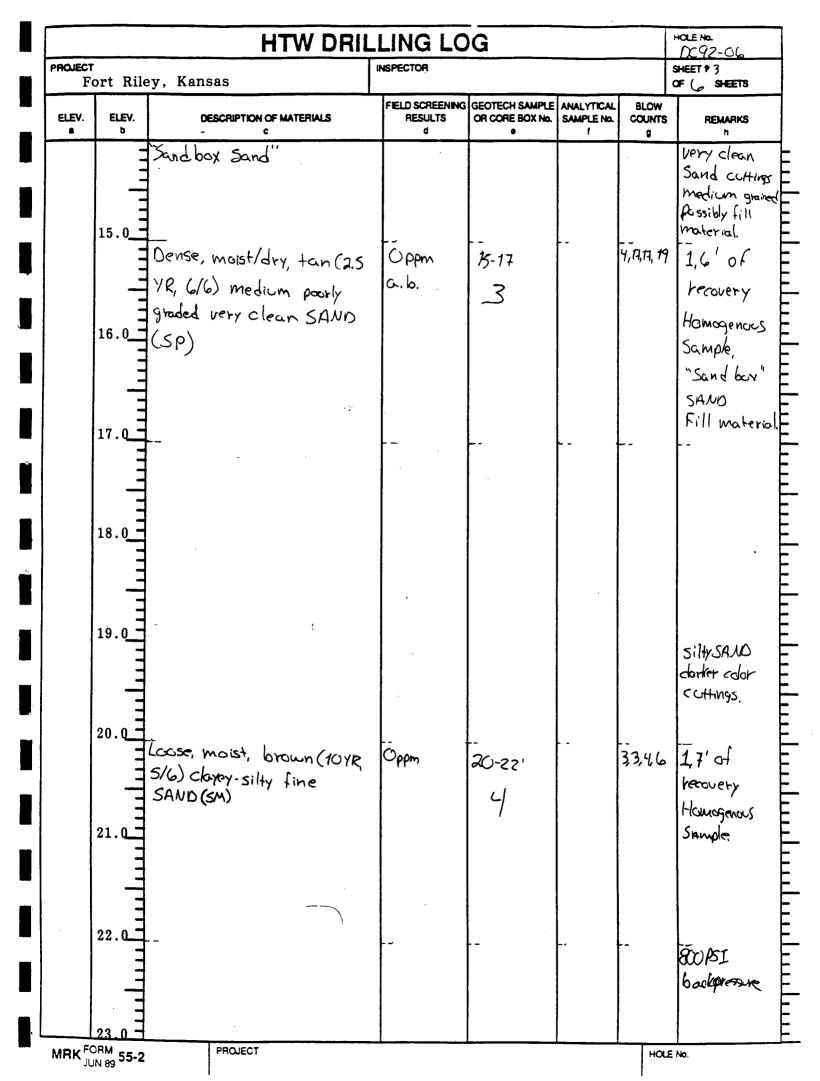

		HTW DRI	LLING LC	G			HOLE NO. DC92-04
ROJECT F		ey, Kansas	INSPECTOR				Sheet 1 Of Sheets
ELEV.	ELEV. b	DESCRIPTION OF MATERIALS	FIELD SCREENING RESULTS d	GEOTECH SAMPLE OR CORE BOX No. 0	ANALYTICAL SAMPLE NO.	BLOW COUNTS 9	REMARKS
	33.0 34.0 34.0 35.0 11 36.0 11 37.0 11 37.0 11 37.0 11 11 11 11 11 11 11 11 11 1	Greenish-gray, Compotent, Clayey Shale. Endaf. 5th Kin Bogan 6th run 1730 Tan-grey, compotent, Well lawinated Limestone. With Vigs. Little incon staining. Greenish-grey, fractured, Weathered, clayey Shale. Calcateous Shale. Reads With HCI Very hard, most, grey-green CLAY mixed with Shale Endof 6th Kin Began 7th run 1830 Tan grey. compotent Limestone	E E E	Curebox H2. Cerebox H2.	Sampled return later due to color and film.		
	41.0	bark grey to black Shaley Linestone					
	0RM N 89 55-2	PROJECT	<u> </u>			HOL	E No.

PROJECT	, <u> </u>		LING LC	G			HOLE NO. DC92-CH
TRUEUI		-					Sheet 1 Of Sheets
ELEV. a	ELEV.	DESCRIPTION OF MATERIALS	FIELD SCREENING RESULTS d	GEOTECH SAMPLE OR CORE BOX No. 0	ANALYTICAL SAMPLE No. 1	BLOW COUNTS 9	Т
		back arey to play 18		Core box			HNu. 2pp.
		bark grey to slave Shaley Limestone		#2.+			
		strateg -		#3			
	42 -			4 V			
		Endof 7th run 1910					Lost 400gall
	43 -						
		After beginning by 11				٣	
		, by by boyende					14ma II
		After teaming, borehole 15 open to 42,3!					1400 gallon
	44 -						lost during
							Coring.
							500 gallens
							lost during
	45 –						recuning.
							1900 gallon
	-						lost : total
	46 –			· · ·			i i i i i i i i i i i i i i i i i i i
	-						
	-						
	47						
	3						
	48 -						
				· · ·			
	49 -						
	50 T					•	, . .
	DRM JN 89 55-2	PROJECT	L	L	L I	на	E No.

		HTW	/ DRILI		GLC	G				NCLE NO.
1. COMPANY NAME			2	PALLA	IG SUBCON	TRACTOR				SHEET 1
Law Envi	ironmenta	al Govt Ser	vices	Layr	1e We		<u>(</u> <u></u> ,	Inc.		OF 6 SHEETS
Fort Rile	ey	11-1532			Ju	nction		, Kans		
S. NAME OF DRILLER	-		1.1.1.			1 1	•	INATION OF	DRILL	
, SIZE AND TYPES OF I	n Gorni	100 HSA	ne Wester	Δ		LOCATIO	<u>R57</u> N	<u>f</u>		
AND SAMPLING EQUI	PMENT 8"	Center Plu	A		Dr	1 clee	ning	facili	ty	
	2.	x24' Split	Spoon		9. SURI	FACE ELEV	ATION J		,	
				·		E STARTE			11. DATE C	OMPLETED
2. OVERBURDEN THIC						pril 9		700		
2 OVERBORDEN THIC	KNESS 42,	0'			15. DEF		NDWATER 34, 7'	ENCOUNTE	RED	
3. DEPTH DRILLED INT	O ROCK	-				TH TO WA	TER AND			LING COMPLETED
4. TOTAL DEPTH OF H	<u>ل</u> ا) 			<u>34, -</u> 17, 00	ER WATE	pril 42	- 12 h	NTS (SPECIFY)	drilling
	- 42,C	51								
8. GEOTECHNICAL SA	MPLES	DISTURBED) U	DISTURI	BED	19. TOTAL	NUMBER	OF CORE B	OXES	
20. SAMPLES FOR CHEN	MICAL ANÁLYSIS		METAL	5	OTHER (S	PECIFY)	OTHER (SPECIFY)	OTHER (SPEC	FY) 21. TOTAL CORE
1		2 VOA'S			1 Amb	er			~	RECOVERY
22. DISPOSITION OF HO	XE	BACKFILLED	MONITORIN	G WELL			23. SIGA	IATURE OF	NSPECTOR	
Monitoring	Well	grout	typeI		. —		la	eksn	nithback	
ELEV. ELEV.	,	CRIPTION OF MATER	tals		CREENING			ANALYTIC SAMPLE N	AL BLOW	REMARKS
	Dry, brou Clarry SIL	ganie moder un (10yr, 5/ T (ML) as om drill c	(2)	0,9 baek HNi	iground					Soil Cuttings are dark brown Clayey Silt with some Sand. Boulder/ cobbles at 2,0'
5.0 MRK form 55		ROJECT							HOLE	No.

		HTW DRIL	LING LC)G			HOLE NO. 1092-05
ROJECT F		ey, Kansas	INSPECTOR				SHEET 12 OF (SHEETS
ELEV.	ELEV. b	DESCRIPTION OF MATERIALS	FIELD SCREENING RESULTS d	GEOTECH SAMPLE OR CORE BOX No.	ANALYTICAL SAMPLE No.	BLOW COUNTS 9	
,		Very soft, dry, brown	Oppm	5-71		1,2,2,1	1,7' of
		(10 YR, 5/2) clayer SILT	a.b.	1			Vecovery
	6.0	(ML)					Homogenous
	-						Sample Backer orpin Comment at
		Pipeline hit, unknown source.	Oppm HNU				
	7.0	JUCICE,	on pipeline				~7,0: Very hord to
	···					,	auger.
	11	Same as change					CcHings are same
		Same as above (from cuttings)					as above
	8.0	J~)	2 2				SILT (ML)
	l						
	9.0					•	
		•					
1	10.0-						-
	11.0]	د					
	1						
	12.0						
		Hard-brittle, dry silty					Difficul+
		CLAY. (from cuttings.)					acgering. Dense Chr
							Flard
							Snapped. Pinhex on
							Gugers.
	14 0 T						
	DRM 55-2	PROJECT	· · · · · · · · · · · · · · · · · · ·			но	E No.





		HIW DRI	LLING LC)G			HOLE NO. 1092-05
ROJECT			INSPECTOR				SHEET #5
F	ort Rile	y, Kansas	<u> </u>				OF 6 SHEETS
ELEV.	ELEV. b	DESCRIPTION OF MATERIALS	FIELD SCREENING RESULTS d	GEOTECH SAMPLE OR CORE BOX No. 0	ANALYTICAL SAMPLE NO. 1	BLOW COUNTS 9	REMARKS
	E						
	E						
	33.0		() ppm				
			on cuttings				
	1		j.				
	E						
	34.0_					•	
	Ξ						(cuttings are
							silly SAND
	Ξ.			HD 34,6'			Scime CLAY
	35.0			during drilling 			L-,
	٦°	ery hard, wet, grey(sy, st		OTSC GARI		15, 18,30 40	3"X2' Stainless
	·	SIM Sandy CLAY (CL) with		atter setting our night	1	70	Steel Sampler.
	1'	roctured Limestone.			2 VOA'S		Wet split spear
	36.0-	-			1 Amber		2,0' of
	4					•	Vecovery Wet Sample
	⊣						
							recky
	37.0	_					drilling
	1						difficult to auger, rocky
	38.Q-1						
	°°. ' <u> </u>	Ssume to be same					Very tocky.
	⊐ °	s above but with more					V- / WAY
	t	ractured limestone than			:		
	39.035	at a minesion than					
	4						
	40.0						
	4		Ţ		-		07306 April 92
							Continue
	-						
	41 0 7						1

			HT	W DRIL	LING LC)G			HOLE NO. DC92-C5
ROJECT	- · · · · · · · · · · ·	······			INSPECTOR				SHEET46
F	Ert R	iley 11-	-1532			Smithback			OF (SHEETS
LEV. a	ELEV.		SCRIPTION OF M	ATERIALS	FIELD SCREENING RESULTS d	GEOTECH SAMPLE OR CORE BOX No. 9	ANALYTICAL SAMPLE No. 1	BLOW COUNTS 9	REMARKS
		Fracture	d Shale, li it is clay	packed.	Oppm in Cuttings.				easy to augor through back.
	420-								
		Boring 1 42,01	erminated	0855 6 April 9,	2				
	43,0	-						÷	
								-	
	44,0								
	450								
	46,0-								
	1111								
	47,0-1								
	480								
	1111								
	49,0							· ·	
	50.0 - DRM IN 89 55-2	T	PROJECT						E No.

HTW DRILLING LOG										na i no. NGGLECIE		
1. COMPANY NAME		· · · · · · · ·			IG SUBCON					SHEET 1		
	nvironmen	tal Govt Serv	rices	La	ine h		rn			F 6 SHEETS		
Fort R	iley				4. LOCATION Junction City, Kansas							
NAME OF DRILLE	R -	······································			6. MANUFACTURER'S DESIGNATION OF DRILL							
Joh	in Gornic	k Larne 1	Nestern	Δ	B57 Mobile							
7. SIZE AND TYPES AND SAMPLING E		12" ad 1-follow	2 Stem	Augers	TS & HOLE LOCATION							
AND SAMPLING E	and sampling equipment 2" x 2,4" solit spaces s 3" x 2" stainless strel					ry C		ing to	<u>cility</u>			
		3 X C Staine B" inside guapr			- 9. SUH -	FACE ELEN	ATION					
	H	IX Core barrel		head	10. DAT	E STARTE	Ð		11. DATE C	OMPLETED		
·	<	its" Rock bit				prili		1015				
2. OVERBURDEN 1		30,0'			15. DEP	TH GROU		ENCOUNTER	ED			
3. DEPTH DRILLED		30,0		-	10.000					NG COMPLETED		
		19.0'										
14. TOTAL DEPTH OF HOLE					17. OTH	ER WATE	R LEVEL M	EASUREMEN	TS (SPECIFY)	•		
8. GEOTECHNICAL	SAMPLES	DISTURBED		UNDISTUR	BED	19. TOTAL	NUMBER	OF CORE BOX	ŒS			
0. SAMPLES FOR (HEMICAL ANALYS		MET	ALS	OTHER (S	PECIFY)	OTHER (SPECIFY) C	THER (SPEC	Y) 21. TOTAL COR		
1		2 VOA-S	-	-	1 Am	Amber		-	_	AT 21. TOTAL CON		
		BACKFLLED	MONITOR			PECIFY)	23. SIGNATURE OF IN		SPECTOR A			
Manitoring Well gr		C. mark	1.0-	π			L.	1.Sm	ithack			
TIONITORI	Well_	grout	type			r	- ja	r				
ELEV. ELEV. 8 b	DE	SCRIPTION OF MATERIA c	LS		SULTS		H SAMPLE E BOX No. 0	ANALYTICAL SAMPLE No. 1		REMARKS h		
	Grass or	ganic materi	<u></u>	100	n HNU			·				
	- Gravel f		-1		- • I					Grovel		
	- Cravel +	. () (1000	kgrcund					cuttings		
	4								1	Cili Sauna		
1.0_	-									Silty SAND		
	3					· ·				drill		
	3									Cuttings		
1	4					ļ				<u></u>		
2.0_	4											
2.0_	4					l			1	casy		
	3											
-	3					1				augeting		
3.0_	4									Emp		
	1									limestone Tragmonts		
	4									imestone		
	4						:			Argaliant		
	7									- Myrum 15		
4.0	7											
	7											
	3								1	•		
	3											
5.0	3						:					
	1	PROJECT				l			HOLE	l		
MRK JIN 89 55	1											

		HTW DRIL		G			HOLENO. AC92.UC
F		y, Kansas	NSPECTOR				SHEET + Y OF (SHEETS
ELEV.	ELEV. b	DESCRIPTION OF MATERIALS	FIELD SCREENING RESULTS d	GEOTECH SAMPLE OR CORE BOX No. 0	ANALYTICAL SAMPLE No. 1	BLOW COUNTS S	REMARKS
	24.0_1						Cuttings are Clayer-silly SAND (SM) Some linnstane Fragments Clay on bottom
	25.0	Very stiff, moist, green-brown (SY, 3/2) clarey weathered	Oppm	25.27		4.7.11. 19	-/0 -
	26.0	(SY, 3/2) Clarey weathered Shale.	G. b.	5			Kecovery Howogeness Sample Kery based Material
	27.0 11 11	Same as above.		27-29' 6	1	17,34,50,51	Chemical Sample at
	28.0	·					2.0' of 2.0' of Verovery
	29.01					•	• •
		top of rack 30,4' Began caring 15 April 92 1430 (Grout/Cement - 1st 1' Greenish - grey, compotent, calcareas clarey shake.	2	Core box #1			Ø,7' of grout Inside of Casing.
	31.0	Redish-brown, compotent, Shale.					
	22.0 RM N 89 55-2	PROJECT				НОЦ	

		HTW DRI					DC92-086	
PROJECT		r, Kansas	INSPECTOR				SHEET & < OF (SHEETS	
ELEV.	ELEV.	DESCRIPTION OF MATERIALS	FIELD SCREENING RESULTS d	GEOTECH SAMPLE OR CORE BOX No.	ANALYTICAL SAMPLE NO.	BLOW COUNTS		
		Freenish-grev, weathered, Shale. edish-brown, weathered, shale		Core box #1			entire core heacts with. HRI acid No water loss 1st S'run.	
		Endo <u>F15t5'Cove 1540</u> Began 2nd 5'Cove 1615		Care box #1			3,2' total rena 2,2' RQD rena 69% RQD	
	35.0 11 R	reddish-brown, compotent and trathered, calcareeus Shake leacts with HCl					No water Koss	
	36.0-1C	reenish-gray compotent, laxey shale. Does not eact with HCl very much.					This layer is true shale. Above and below is shale-Limosto Mixture.	
	37.0	an-gray, weathered,					No water,	
		haley Limestone. Reacts with HCI. ell Stratified. <u>End of 2nd 5' run 1630</u>					3,8' total trecover 1,4' ROD tercover 378 RQD	
		Degan 3rd 5' run 1725 in-gray, weathered, fracture investore. Well stratified. an.gray, compatent imestore. few Vugs.		Core box #1			little water loss.	
MRK ^{FC} JL	41.0 7							

Ĵ

ROJECT			LING LO	G			HOLE No. 292.06 SHEET#6 OF 6 SHEETS
ELEV. a	ÉLEV. b	DESCRIPTION OF MATERIALS	FIELD SCREENING RESULTS d	GEOTECH SAMPLE OR CORE BOX No. 0	ANALYTICAL SAMPLE No. 1	BLOW COUNTS 9	REMARKS
	11	tan-gray, compotent,	-	Core box			
	_	Limestone. some vugs		#1			
		and natural fractures.					
		and hatched tractures.					
	42						
	·						1,5 monutos for
							1. tapid advances
	43 —						of cure barnel
		Black-darkgrey, compotent	-				Drop in circul
		Shaley Linestone with few					50gallons los
		Vugs.					4,5' total real
	44 _	Endof 3rd 5'Grenn 1738					44% ROD 1000
		Began 4th S'run 1810	~	Core box			
	-			#1			C
		Black-durkgrey, compotent					Some Water luss
	1	Shaky Limestone.					
	45 –						
	1	Reacts with HK1					Hamogenous
		A DECIS WITH FLL					Score samp
	3						:
	46 -	few					
		few vugs or solution					
	Ξ	cavities.		,			
Ì	1		- -			÷	1 total 100
	لم بر ا					ť	gallons last
	47 <u>–</u>						during coring.
	-						
	Ξ						
	48 –	· ·					3,7' total recor
	-						2,2' ROD recove
							59% ROO
	Ξ						tram with
	49 -	End of 4th 5'run. 1825					5%" rockbit
	· •	Coring completed					
		4 1.44					
	-						
	50 7						1
FC YO	0RM 55-2	PROJECT				Но	 E No.

- -----

0

			HTW	DRIL	LIN	GLC	G				HOLENO. DC5B-01		
1. COMP	ANY NAME	E.S.	ĹŊ	1	2. ORILLI	NG SUBCO	NTRACTOP	1			SHEET 1 OF / SHEETS /		
3. PROJE		NIronk	F PA/SI			4. LOC	ATION						
F	<u>4. Kil</u>	ey - DC	F PA/SI			15	- <u>f+.</u> /	V of	B/dg	. 1815 DRILL			
5. NAME	OF DRILLER	•				6. MAN	IUFACTUR	er's desig	SNATION OF	DRILL)		
	ND TYPES O		" (0.0.) stainle	ess ste	01	a HOL	ELOCATIC	N al			/		
AND SA	MPLING EQU		hund a	vaer		Form	FACE ELE	I Clean	ing tac	ility K	<u></u>		
		2	14" (D.D.) stai hund	nless st	121				V				
			hand	auger			E STARTE				COMPLETED 3-92		
12. OVER	BURDEN TH	CKNESS	L						ENCOUNTE				
13. DEPTI	H DRILLED IN	<u>10.5</u> <i>f.e.</i> Ito rock	2T			16. DEI		TER AND		ME AFTER DRIL	LING COMPLETED		
						17.01				NTS (SPECIFY)			
14. IUTAL	<u> </u>	5 feet	-							NIS (SPECIFT)			
18. GEOT	ECHNICAL S	AMPLES	DISTURBED	U	NDISTURI	BED	19. TOTAL	NUMBER	OF CORE BO	DXES			
20. SAMPI	LES FOR CHI	EMICAL ANALYSIS	voc	METAL	S	OTHER (S			SPECIFY)	OTHER (SPEC	IFY) 21. TOTAL CORE RECOVERY		
			8240			Semi-1 83	iolatile 70	r			*		
22. DISPO	DSITION OF H	OLE	BACKFILLED	MONITORIN	G WELL	OTHER (S	PECIFY)	23. SIGN	ATURE OF I	NSPECTOR			
			Hole plug]. J	ray			
ELEV.	i b c			RES	CREENING SULTS d		H SAMPLE E BOX No.			REMARKS			
_		KBrown si	Ity fine to m filty fine to	ed. SAND	1					ße	ing advanced		
	1.5	$\overline{\mathcal{D}}$			ł					On F	3-6-92 to way		
		Drawn				-				+1	be UST on bur		
	,		SAND		4-5 NI	ft,			рс5В- 0 1 В		lity- sample		
	5								-12	+	92-09A gent a leb-boring		
										6	ck filled		
									2018-	4	Her obtaining		
		A			9-10 N) . D			DC5B- O L A	me	ore data conce		
	10,5	colling Il	own sandy CL	-41						de	the to bedrack,		
	E	Z	IMESTONE	=							acent boring		
ľ	-										sample		
ł										DC	\$B-09B sent		
	-										to lab		
	- 1										ACL DIA M		
1	-		,								M5/M50 somple collected at		
	E										4-5 ft. interva		
ĺ	-									1			
	E									1			
	_												
	<u> </u>	· · · · · · · · · · · · · · · · · · ·								HOLE			

1. COMPANY NAME Environmental 2. DRILING SUBCONTRACTOR SHEET: 1. CAW Environmental 2. DRILING SUBCONTRACTOR SHEET: 3. PROJECT Ft. Riley - DCF PA/SI 4. LOCATION Former Dry Cleaning Facility 5. NAME OF DRILLER 6. MANUFACTURER'S DESIGNATION OF DRIL 8. MANUFACTURER'S DESIGNATION OF DRIL 7. SIZE AND TYPES OF DRILLING 3/4" (0.0.) Stainless steel 8. HOLE LOCATION 8. HOLE LOCATION 7. SIZE AND TYPES OF DRILLING 3/4" (0.0.) Stainless steel 8. HOLE LOCATION 9. SUBFACE ELEVATION 7. SIZE AND TYPES OF DRILLING 3/4" (0.0.) Stainless steel 8. SUBFACE ELEVATION 9. SUBFACE ELEVATION 7. SIZE AND TYPES OF DRILLING 3/4" (0.0.) Stainless steel 8. SUBFACE ELEVATION 9. SUBFACE ELEVATION 7. SIZE AND TYPES OF DRILLING 3/4" (0.0.) Stainless steel 9. SUBFACE ELEVATION 9. SUBFACE ELEVATION 7. SIZE AND THE COMPLETENT 10. DATE STAPTED 11. DATE COMPLETED 11. DATE COMPLETED 12. OVERBURDEN THICKNESS 18. DEPTH OROUNDWATER ENCOUNTERED 13. DEPTH ORILLED INTO ROCK 18. DEPTH TO WATER AND ELAPSED TIME AFTER DRILLING COMPLETENT 14. TOTAL DEPTH OF HOLE DISTURBED UNDISTURBED 19. TOTAL NUMBER OF CORE BOXES 20. SAMPLES FOR C	D
3. PROJECT F.H. Riley - DCF PA/SI 4. LOCATION Former Dry Cleaning Facility 5. NAME OF DRILLER a. MANUFACTURER'S DESIGNATION OF DRYLL a. MANUFACTURER'S DESIGNATION OF DRYLL 7. SIZE AND TYPES OF DRILLING 3/4" (0.0.) Stainless steel a. HOLE LOCATION Grassy area N of Bldg. 180 7. SIZE AND TYPES OF DRILLING 3/4" (0.0.) Stainless steel a. HOLE LOCATION Grassy area N of Bldg. 180 9. SURFACE ELEVATION 10. DATE STATTED 11. DATE COMPLETED 3-6-92 12. OVERBURDEN THICKNESS 16. DEPTH GROUNDWATER ENCOUNTERED 3-6-92 13. DEPTH DRILLED INTO ROCK 18. DEPTH TO WATER AND ELAPSED TIME AFTER DRILLING COMPLETED 14. TOTAL DEPTH OF HOLE 17. OTHER WATER LEVEL MEASUREMENTS (SPECIFY) 14. TOTAL DEPTH OF HOLE DISTURBED UNDISTURBED 15. GEOTECHNICAL SAMPLES DISTURBED UNDISTURBED 20. SAMPLES FOR CHEMICAL ANALYSIS VOC METALS 21. DISPOSITION OF HOLE BACKFILLED MONITORING WELL OTHER (SPECIFY) OTHER (SPECIFY) 22. DISPOSITION OF HOLE BACKFILLED MONITORING WELL OTHER (SPECIFY) Z3. SIGNATURE OF INSPECTOR 4. DUP Jug OTHER (SPECIFY) Z3. SIGNATURE OF INSPECTOR	CORE
Note and the solution of the so	CORE
hand augur 10. DATE STARTED 11. DATE COMPLETED 12. OVERBURDEN THICKNESS 15. DEPTH GROUNDWATER ENCOUNTERED 13. DEPTH DRILLED INTO ROCK 16. DEPTH TO WATER AND ELAPSED TIME AFTER DRILLING COMPLETED 14. TOTAL DEPTH OF HOLE 17. OTHER WATER LEVEL MEASUREMENTS (SPECIFY) 18. GEOTECHNICAL SAMPLES DISTURBED UNDISTURBED 20. SAMPLES FOR CHEMICAL ANALYSIS VOC METALS OTHER (SPECIFY) 20. SAMPLES FOR CHEMICAL ANALYSIS VOC METALS OTHER (SPECIFY) OTHER (SPECIFY) 22. DISPOSITION OF HOLE BACKFILLED MONITORING WELL OTHER (SPECIFY) 23. SKIRMATURE OF INSPECTOR Hole plug Monitoring well OTHER (SPECIFY) 24. SKIRMATURE OF INSPECTOR	CORE
13. DEPTH DRILLED INTO ROCK 18. DEPTH TO WATER AND ELAPSED TIME AFTER DRILLING COMPLETER 14. TOTAL DEPTH OF HOLE 17. OTHER WATER LEVEL MEASUREMENTS (SPECIFY) 18. GEOTECHNICAL SAMPLES DISTURBED 18. GEOTECHNICAL SAMPLES DISTURBED 20. SAMPLES FOR CHEMICAL ANALYSIS VOC METALS OTHER (SPECIFY) 22. DISPOSITION OF HOLE BACKFILLED MONITORING WELL OTHER (SPECIFY) 22. DISPOSITION OF HOLE BACKFILLED MONITORING WELL OTHER (SPECIFY) 23. SIGNATURE OF INSPECTOR Hole plug	CORE
14. TOTAL DEPTH OF HOLE 17. OTHER WATER LEVEL MEASUREMENTS (SPECIFY) 14. TOTAL DEPTH OF HOLE 15 feet 15 feet 17. OTHER WATER LEVEL MEASUREMENTS (SPECIFY) 18. GEOTECHNICAL SAMPLES DISTURBED 20. SAMPLES FOR CHEMICAL ANALYSIS VOC 8240 Semi-vols 8270 8270 22. DISPOSITION OF HOLE BACKFILLED Hole plug OTHER (SPECIFY) 23. SIGNATURE OF INSPECTOR Hole plug	CORE
15 feet 18. GEOTECHNICAL SAMPLES DISTURBED UNDISTURBED 19. TOTAL NUMBER OF CORE BOXES 20. SAMPLES FOR CHEMICAL ANALYSIS VOC METALS OTHER (SPECIFY) OTHER (SPECIFY) OTHER (SPECIFY) 21. TOTAL RECO 20. SAMPLES FOR CHEMICAL ANALYSIS VOC METALS OTHER (SPECIFY) OTHER (SPECIFY) 21. TOTAL RECO 20. SAMPLES FOR CHEMICAL ANALYSIS VOC METALS OTHER (SPECIFY) OTHER (SPECIFY) 21. TOTAL RECO 20. SAMPLES FOR CHEMICAL ANALYSIS VOC METALS OTHER (SPECIFY) OTHER (SPECIFY) 21. TOTAL RECO 22. DISPOSITION OF HOLE BACKFILLED MONITORING WELL OTHER (SPECIFY) 23. SIGNATURE OF INSPECTOR Hole plug VOC Well OTHER (SPECIFY) 23. SIGNATURE OF INSPECTOR	VERY
18. GEOTECHNICAL SAMPLES DISTURBED UNDISTURBED 19. TOTAL NUMBER OF CORE BOXES 20. SAMPLES FOR CHEMICAL ANALYSIS VOC METALS OTHER (SPECIFY) OTHER (SPECIFY) OTHER (SPECIFY) 21. TOTAL RECO 20. SAMPLES FOR CHEMICAL ANALYSIS VOC METALS OTHER (SPECIFY) OTHER (SPECIFY) 21. TOTAL RECO 20. SAMPLES FOR CHEMICAL ANALYSIS VOC METALS OTHER (SPECIFY) OTHER (SPECIFY) 21. TOTAL RECO 22. DISPOSITION OF HOLE BACKFILLED MONITORING WELL OTHER (SPECIFY) 23. SIGNATURE OF INSPECTOR Hole plug Hole plug V. May	VERY
22. DISPOSITION OF HOLE BACKFILLED MONITORING WELL OTHER (SPECIFY) 23. SIGNATURE OF INSPECTOR Hole plug	VERY
22. DISPOSITION OF HOLE BACKFILLED MONITORING WELL OTHER (SPECIFY) 23. SIGNATURE OF INSPECTOR Hole plug	
Hole plug D. Kay	
	1
FIELD SCREENING GEOTECH SAMPLE ANALYTICAL BLOW	
ELEV. DEPTH DESCRIPTION OF MATERIALS RESULTS OR CORE BOX No. SAMPLE No. COUNTS REMARKS a b c d e 1 g h	;
Dark Brown silly fine to med. SAND 5 Brown clayoy sandy SILT ND	
10 Tan-brown sitty fine to 9-10 feet DCSB- med. SAND Ppin 02A this inter	a t = t
15 TD 14-15 feet DC5B- ND 02B DUPLICAT Sample col at this inte	llecte
MRK FORM 55 PROJECT HOLE No.	ם ו

			HTW	DRIL	LIN	GLC	DG				OLENO. UCSB-03	
1. COMP	ANY NAME	Fride	onmental	4		NG SUBCO	NTRACTOR	'En	iron. J	2.1/		
, 3. PROJE						4.100	ATION		4	1		1
• ! 	<u> </u>		y - DCF	PA/ 5	I		Form	er b	ry CI	Caning	Pacility	
5. NAME	OFORILLER	Clay	Dyer			6. MA		ME	GNATION OF	DRILL ·	/	
	ND TYPES C	FORILLING	414" (F.D.)	HSA		8. HOL	ELOCATIO	N	-	Pil	100	1
	Ampling Eq		3" (ME -	<u>, Empl</u>	21	9. SUF	IFACE ELEN	<u>t la</u> /ation	57 01	Blog	780	-
										T	· · · · · · · · · · · · · · · · · · ·	1
.							TE STARTE 3 - 11 - 1			11. DATE C	-92	ŀ
12. OVER	BURDEN TH	ICKNESS				15. DE	PTH GROUI	NDWATER	ENCOUNTER			7
13. DEPT	H ORILLED I	NTO ROCK	,	<u> </u>		16. DE		TER AND	ELAPSED TIM	E AFTER DRILL	ING COMPLETED	1
/ 14. TOTA	L DEPTH OF	HOLE	<u> </u>		<u></u>	17. OT	HER WATE		AEASUREMEN	TS (SPECIFY)		$\left \right $
18. GEOT	ECHNICAL S	15 g	DISTURBED	U	NDISTUR	BED	19. TOTAL	NUMBER	OF CORE BOX			-
		·····			-							
20. SAMP	LES FOR CH	EMICAL ANALYS		METAL	.S	OTHER (S	vaati Ve		SPECIFY) C	THER (SPECIF	Y) 21. TOTAL CORE RECOVERY	
			\$240	MONITORIA			170			EDECTOR	*	-
22 0154	DSITION OF H	-OLE	BACKFILLED	MONTOHI						SPECION		
,			Hole plug				1	1	1. Ara	7		$\frac{1}{2}$
ELEV.	ОЕРТН b	DES		.S		CREENING SULTS d	GEOTECH OR CORE	H SAMPLE E BOX No. 9		BLOW COUNTS	REMARKS h	
		lime (Brown	k brown s with weath stone è gra FILLS clayey sand wan sandy	iyel ly SILT	9-10 1 14-1	- feet 10 5 feet 10			<i>DC5</i> В- 03А DC5В- 03В		MS/MSD Saunple collect of this interval	
MRK	FORM 55	F	PROJECT							HOLEN	o .	HF

		DRIL	LIN	GLC	DG				HOLENO. DCSB-0	.4		
1. COMP	ANY NAME		· · · · · · · · · · · · · · · · · · ·	T	2 0811	ING SUBCO	NTRACTO	R	Λ		SHEET 1	,
La	W Eng	ironmen	tal CF PA/si		_5h	amroe	K En	viron	. Dril	1.hg	OF SHEETS	<u>s /</u>
3. PROJE	E R	len - D	CE PA/S	E		For	iation <i>Mar</i>	Dry	Clean	FORML	ility	
5. NAME	OF DRILLER	7				6. MAN	NUFACTUR	ERSDESI	GNATION O	FDRILL		
		·										
7. SIZE A	ND TYPES O MPLING EQ	FORILLING 4	14" (I.D.) H	<u>SA</u>			ELOCATIO	π.f	NE	nomer .	of Blog.	180
		5	" CME sq	mpier			FACE ELE		100		- J-	<u> </u>
						10. DA	te starte 3 - 10-	000			COMPLETED	1
	BURDEN TH										0-92	
									-			
13. DEPTI	H DRILLED I					16. DE	PTH TO W	TER AND	ELAPSED T	IME AFTER ORIL	LING COMPLETE	2
14. TOTAL	DEPTH OF	HOLE 5 feet	· · · ·			17. OT	HER WATE	RLEVELN	EASUREM	ENTS (SPECIFY)		
18. GEOT	ECHNICAL S		DISTURBED		UNDISTUR	ļ			OF CORE B			
20. SAMP	LES FOR CH	EMICAL ANALYSIS	VOC	META	LS	OTHER (S		OTHER (SPECIFY)	OTHER (SPEC	FY) 21. TOTAL RECO	
			8240			Semi 8	- vols 270					*
22. DISPO	SITION OF	HOLE	BACKFILLED	MONITORI	NG WELL			23. SIGN	ATURE OF	INSPECTOR		
			ilale al a						h.	2.4		
		Γ.	Hole plug	L		CREENING	LOSOTE O		ANALYTIC	BLOW		
ELEV.	DEPTH	DESC	RIPTION OF MATERIAL	.s		SULTS			SAMPLEN	OUNTS	REMARKS	3
a	b		с			<u>a</u>	· · ·			9		
	1.5	Conc	y & brown m CLAY in sandy 5.	avel								F
	//- 	Green-gra	y & brown M	ottled								F
	3,5	silty	CLAY		+ ,,							E
	45	Dark brow	in sandy 5.	ILT	- 7- N	5 feet D						E
	45	Park brow	un silty fine	SAND		<i>·</i>						E
	6.0											
		Brown	silty fine to	o Med.			ļ					,
	3		SAND		1	feet	1		DCSB-	-	Split sam	ple
7	10-					i feer			04A		collected a this samp	it -
	/ 1	Light h	rown silty,	fino to		7					interval	۶۶E
 		med										F
	3	r"(CØ	JA PA IJ		1							þ
			•			feet			DCSB-		Puplicate sa	:up/eF
7	15-	~			-1				04B		collected a	at F
	· -										this samp	
	·				1						interval	″ F
	-											F
	_				1						l	È
4	3	• .							•			F
· · ·	3				Ì							Ļ
, .	ᅴ											F
T	4	•										E
		I			<u> </u>					HOLE	<u> </u>	
MRK	-0RM 55	PF	OJECT	·								Н

/	HTW DF	RILLING	LOG		HC O	LENO. C513-05				
1. COMPANY NAME				DR						
3. PROJECT S DI	nmental	<u>))ha</u>	4. LOCATION n n i							
	- DCF-PAJ	SI	4. LOCATION FORMER Dry Cleaning Facility 6. MANUFACTURER'S DESIGNATION OF DRILL							
S. NAME OF DRILLER CIAY	Dyer		C/ME - 55							
7. SIZE AND TYPES OF DRILLING 4 AND SAMPLING EQUIPMENT	14" (I.D.) HS	SA	8. HOLE LOCAT	ON OF NE CO	cover of t	51 de 180				
	" CIME SAM		9. SURFACE EL							
			10. DATE STAFT	ED	11. DATE CON	PLETED				
			3-10-	-92 UNDWATER ENCOUNTE	3-10-	92				
12. OVERBURDEN THICKNESS										
13. DEPTH DRILLED INTO ROCK			16. DEPTH TO W	ATER AND ELAPSED TI	MEAFTER DRILLIN	G COMPLETED				
14. TOTAL DEPTH OF HOLE		<u></u>	17. OTHER WAT	ER LEVEL MEASUREME	NTS (SPECIFY)					
15 feet 18. GEOTECHNICAL SAMPLES	DISTURBED	UNDISTURB	D 19. TOT/	AL NUMBER OF CORE B	OXES					
	voc	METALS		OTHER (SPECIFY)	OTHER (SPECIFY)	21. TOTAL CORE				
20. SAMPLES FOR CHEMICAL ANALYSIS			emi-vols			RECOVERY				
22. DISPOSITION OF HOLE	8240 BACKFILLED MONI		8270 THER (SPECIFY)	23. SIGNATURE OF	NSPECTOR	<u> </u>				
	Hole plug			1 1. An	A./*					
ELEV. DEPTH DESCA a b	C C	AESU		REBOX No. SAMPLE N f	a COUNTS g	REMARKS h				
10 Concre	te and grave	el								
- Dark bro	wh silty fine sr	AND								
4,0			0.4			F				
5- Gray-bro	own silly fine :	- 4-5 10 NI	<i>tee</i> 1			F				
6.0 - Medic	In SAND In sandy SILT									
8.0										
Brown si	Hy fine to medi	1		DCSB-		F				
10-	SAND	N/)	05A						
12.0										
Brown	sandy clayey SI			nrua						
15-10		14-15 NS		DC5B- 05B						
						Ē				
						E				
						E				
						F				
						F				
						<u>-</u>				

	HTW	DRIL	LINC	G LC	G		DCSB-06				
1. COMPANY NAME	intal	:	2. DRILLIN	g subco	NTRACTOP	F			SHEET 1 OF / SHEETS /		
3. PROJECT Ft. Riley - DCH 5. NAME OF DRILLER	= PA/SI			4. LOC For 6. MAN	ATION Mer IUFACTUR	Pry ER'S DESI	<u>Cleur</u> GNATION OF	ning Fa	heility		
7. SIZE AND TYPES OF DRILLING 3%	(" (O.P.) stain hand au		+1=1	25	ELOCATIO FACE ELEN	ast c	of Br	ldg. 181	/		
2%	("(0,0.) stain hand avg		teel	10. DA	1 E STARTE 3 -/0	-97-			COMPLETED		
12. OVERBURDEN THICKNESS		15. DEPTH GROUNDWATER ENCOUNTERED									
13. DEPTH DRILLED INTO ROCK		16. DEPTH TO WATER AND ELAPSED TIME AFTER DRILLING COMPLETED									
14. TOTAL DEPTH OF HOLE	Peet			17. OTI	IER WATE	RLEVELN	IEASUREME	NTS (SPECIFY)			
18. GEOTECHNICAL SAMPLES	DISTURBED	U	NDISTURBI	ED	19. TOTAL	NUMBER	OF CORE BO	DXES			
20. SAMPLES FOR CHEMICAL ANALYSIS	VOC	METAL		OTHER (S	,	OTHER (SPECIFY)	OTHER (SPECI	FY) 21. TOTAL CORE RECOVERY		
	8240			emi-v 82					*		
22. DISPOSITION OF HOLE	MONITORIN		OTHER (S	PECIFY)	23. SIGN	ATURE OF	AN				
ELEV. DEPTH DESCRI	PTION OF MATERIALS	5	FIELD SCI RESU	ilts	GEOTEC OR CORE	I SAMPLE BOX No.	ANALYTICA SAMPLE No		REMARKS h		
5- 6.0 9.5 10 Brown 5	te and gi brown silt SAND rown sandy sandy claye ilty fine to AND	SILT	4-54 NC 9-10) fect) feet			DC5B- 06А DC5B- 06В				
	JECT							HOLEN	<u> </u>		

	.LIN	GLC)G				DCSB-0	ラ		
1. COMPANY NAME Environh				ING SUBCO		3			SHEET 1 OF / SHEETS /	
5. NAME OF DRILLER				F	ATION		y Cle	euning 1	Facility	
		1.60 0	1		ELOCATIO					\neg
7. SIZE AND TYPES OF DRILLING 31/2 AND SAMPLING EQUIPMENT	hand	ager	-	no		side	of B	1dg. 180)	_
24	1" (0.1) sta. hand		10. DATE STARTED 11. D						COMPLETED	-
12. OVERBURDEN THICKNESS		V			<u>3 -10 -</u> РТН GROU		ENCOUNTI		1-92	
13. DEPTH DRILLED INTO ROCK				16. DE	PTH TO WA	TER AND	ELAPSED T	IME AFTER DRIL	LING COMPLETED	
14. TOTAL DEPTH OF HOLE feet				17. OTHER WATER LEVEL MEASUREMENTS (SPECIFY)						
18. GEOTECHNICAL SAMPLES	DISTURBED	L	INDISTUR	BED	19. TOTAL	NUMBER	OF CORE B	OXES		
20, SAMPLES FOR CHEMICAL ANALYSIS	voc 8240	META	LS	OTHER (S	volatil		SPECIFY)	OTHER (SPEC	IFY) 21. TOTAL COF RECOVER %	_
22. DISPOSITION OF HOLE	BACKFILLED	MONITORI	NG WELL	OTHER (S		23. SIGN		INSPECTOR		\neg
	Hole duy				1		<u> </u>	ray	T	_
a b	IPTION OF MATERIALS		RE	CREENING SULTS d	GEOTECH OR CORE		ANALYTIC SAMPLEN		REMARKS h	
1.0 Concr Brown silty	sand with of ricks (Fill	gravel								E
										Ē
5- Clay-	brown sills med. SA	7		5 ft. 10			1			F
Fine t	d med. In									E
			9	io fi.					DCSB-07A	
10				VD					sent to lab	
										F
15 <u>TD</u>			14- K	.15 f4, 10					DCSB-07B Sent to 10b	Ŀ
									SPLIT samp Collected of	F
									this interve	Ĕ
	DJECT		<u>I</u>			1		HOLE	<u> </u> No.	HI

	HTW	DRIL	LING	LOG		· · · · ·		DCSB-08
1. COMPANY NAME Law Environ	vental		2. DRILLING SI	JBCONTRACTO	R	Dril		SHEET 1 OF / SHEETS /
		L	4		141-211	21		
	CF PA/S.	L		MANUFACTUR				Facility
5. NAME OF DRILLER CLA	y Dyer		0	MANUFACIU	IEN 3 DEDI	GNATION O		
7. SIZE AND TYPES OF DRILLING AND SAMPLING EQUIPMENT	4'14" (T.D.)	HSA		HOLELOCATH	NC		L RII	1 101
	3" CME Sa	mpler	9.	SURFACE ELE	VATION	a W	of Bld	<u>g. /0/</u>
F		<u></u>		0.70 07.07				
 				D. DATE START				COMPLETED
12. OVERBURDEN THICKNESS	· · · ·		11	S. DEPTH GROU	INDWATER	ENCOUNT	RED	
13. DEPTH DRILLED INTO ROCK			16	DEPTH TO W	ATER AND	ELAPSED T	ME AFTER DRIL	LING COMPLETED
	·						,	
14. TOTAL DEPTH OF HOLE	et		"	. UTHEN WATE	R LEVEL N	ILASUHEME	ENTS (SPECIFY)	
8. GEOTECHNICAL SAMPLES	DISTURBED	U	NDISTURBED	19. TOTA	LNUMBER	OF CORE B	OXES	
0. SAMPLES FOR CHEMICAL ANALYS	IS VOC	METAL	S OTH	IER (SPECIFY)	OTHER (SPECIFY)	OTHER (SPECI	FY) 21. TOTAL CORE
			Se;	ni-yols				RECOVERY
2. DISPOSITION OF HOLE	8240 BACKFILLED	MONITORIN		82.70 ER (SPECIFY)	23. SIGN	ATURE OF	INSPECTOR	<u>_</u>
	11-la alia				1	D	Thay	
	Hole plug	l	FIELD SCREE	NING GEOTEC		ANALYTIC		<u></u>
ELEV. DEPTH DES	CRIPTION OF MATERIAL	.s	RESULTS	B OR COR	E BOX No. 9	SAMPLEN		REMARKS h
1.0 - Aspha	t and gray frown clayey - brown silty f	d	1					E
Dark E	rown dayey .	SILT						
2.5	how	·	ł					E, E
Light	urun silty f	ne SANI	4-5 fe	ret		DCSB		Duplicate
5.0 Light h	Bun silts fin	e tr	1			08A		sample collected at this interval
med.	own silty fin. SAND efisiel)	. , 0				0000		interval -
8.0 lauger a	efusul)		7-8 fe ND	PET		DC5B- 08B	-	
	MESTONE							
								I E
		:						
						-		
			:					I E
								I E
								E E
	۰.							E E
	PROJECT	2					HOLE?	No.
MRK ^{FORM} 55	PROJECT				l	<u>.</u>	HOLE	, Г No.

.

$\begin{array}{ c c c c c c c c c c c c c c c c c c c$			HTW	DRIL	.LIN	GLC	DG						No. B-09	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	1. COMPANY NAME						_	۹						-
E MARE D'ALLES C. LOW DUPC 7. SEG AND THESO D'ALLEN D'ALLE D'ALLEN AND SAMELAS CONTRUE 7. SEG AND THESO D'ALLEN D'ALLE D'ALLEN 7. SEG AND THESO D'ALLEN D'ALLE D'ALLEN 7. SEG AND THESO D'ALLEN D'ALLE D'ALLEN 7. SEG AND THE D'ALLEN D'ALLEN 7. SEG AND THE D'ALLEN THE D'ALLEN THE D'ALLEN 7. SEG AND THE D'ALLEN THE D'ALENT THE D'ALLEN THE D'ALLEN THE D'AL		Enviro.	menter						4					
s MARE D'RILLES L (LOL D'LLE) L (LOL D'LLE) T SE AND THES OF ORLINGT 202 UCA ILLS ALMONG SOLUMENT 202 ALLS ALLS ALLS ALLS ALLS ALLS ALLS ALL	3. PROJECT			<u>+</u> _		4. LOC	ATION		4					
E MARE D'ALLER CLOW DYLET 2 JUZ MO TYPES OF DRULING D D 2 UCA ILLY MO SAMELING FOUNDATION D DRUL 200 -	Ft. Ril-u	11-15	32.04				Dry	un	iner	· ۲	CBIO	lg -	180 + 181	
$\begin{array}{c} Clay Dyle . & Charles 55 \\ \hline Clay Dyle . & A Jew $	5. NAME OF DRILLER	1				6. MA	UFACTUR	ER'S DESI	GNATION O	F DRILL		-		-
7. SEE NOT TYPES OF DRILLING $2 \ 0.2 \ 0.4 \ 3 \ 0.02 \ 0.0$	Clay 1	oyer.												
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			202 UCA	Jurs		8. HOL			- -					-
$\frac{2444 + 244}{1646 + 164644 + 16464 + 16464 + 16464 + 16464 + 16464 + 16464 + 16464 + 16464 $	AND SAMPLING EC		*		bothe									
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			144 + 244	+ Stan			FACE ELE	VATION						-
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		an E	teel hund	augh	fere a									
12. OVERBURDEN THICKNESS 14. DEPTH GROUNOWATER ENCOUNTERED 13. DEPTH DRILLED NTO ROCK 16. DEPTH TO WATER AND ELAPBED THE AFTER GRILLING COMPLETED 14. TOTAL DEPTH OF HOLE 17. OTHER WATER LEVEL MEASUREMENTS (BPECIFY) 15. DEPTH OF HOLE 17. OTHER WATER LEVEL MEASUREMENTS (BPECIFY) 16. GEOTEDWICH, SUMMERS DISTURBED UNDISTURBED 16. GEOTEDWICH, SUMMERS DISTURBED UNDISTURBED 16. GEOTEDWICH, SUMMERS DISTURBED UNDISTURBED 17. OTHER (BPECIFY) OTHER (BPECIFY) OTHER (BPECIFY) 20. SAMPLES FOR OHEMCAL ANLYSIS S2 440 S2 470 22. OBPOSITION OF HOLE BACKFILLED MONITORING WELL OTHER (BPECIFY) 22. OBPOSITION OF HOLE BACKFILLED MONITORING WELL OTHER (BPECIFY) 22. OBPOSITION OF HOLE BACKFILLED MONITORING WELL OTHER (BPECIFY) 22. OBPOSITION OF HOLE BACKFILLED MONITORING WELL OTHER (BPECIFY) 22. OBPOSITION OF HOLE BACKFILLED MONITORING WELL OTHER (BPECIFY) 22. OBPOSITION OF HOLE BACKFILLED MONITORING WELL OTHER (BPECIFY) 22. OBPOSITION OF HOLE BACKFILLED MONITORING WELL OTHER (BPECIFY) 22. OBPOSITION OF HOLE DESCRIPTION FACTOR MONITORING WELL 23. OTHER DESCRIPTION FAC		Ĺ	14" (I.P.) HS	A T		10. DA	TE STARTE	D		11.				
13. DEPTH DRILLED MTO ROCK 13. DEPTH DRILLED MTO ROCK 14. TOTAL DEPTH TO WATER AND ELAPSED TIME AFTER ORILLING COMPLETED 14. TOTAL DEPTH OF HOLE 15. FLED 15. FLED 16. DEPTH TO WATER LAVE MADUREMENTS (SPECIPY) 15. FLED 15. TOTAL NUMBER OF CORE BOXES 20. SAMPLES FOR CHEMOLI ANULYSIS 20. SAMPLES 20. SAMPLES FOR CHEMOLI ANULYSIS 20. SAM		3	" CME sam	pler			<u> 5-6-</u> 9	12			3-6	1- '	92.	
14. TOTAL DEPTH OF HOLE 15. F. 212. 14. TOTAL DEPTH OF HOLE 15. F. 212. 15. GEOTECHNICAL SAMPLES 20. SAMPLES FOR CHEMICAL ANALYSIS 20. SAMPLES FOR CHEMICAL ANALYSIS 20. DISTURBED 20. DISTURBED	12. OVERBURDEN TH	HCKNESS				15. DE	PTH GROU	NOWATER	ENCOUNT	ERED				
15 Feet. 18. GEOTECHNICAL SAMPLES DISTURBED UNDISTURBED IN. TOTAL NUMBER OF CORE BOXES 20. SAMPLES FOR CHEMICAL ANALYSIS VOC METALS OTHER (SPECIPT) OTHER (S	13. DEPTH DRILLED I	NTO ROCK				16. DE	PTH TO WA	TER AND	ELAPSED T	IME AFT	ER DRILL	ING C	OMPLETED	-
15 Feet. 18. GEOTECHNICAL SAMPLES DISTURBED UNDISTURBED 18. TOTAL NUMBER OF CORE BOXES 20. SAMPLES FOR CHEMICAL ANALYSIS VOC METALS OTHER (SPECIPY) OTHER (S	14. TOTAL DEPTH OF	HOLE				17. OT			EASUREM	ENTS (SI	PECIFY)			-
12. DECTECHNICAL SAMPLES DISTURSED UNDISTURGED UNDISTURGED 18. TOTAL NUMBER OF CORE BOXES 20. SAMPLES FOR CHEMICAL ANALYSIS VOC METALS OTHER (SPECIFY) OTHER (SPECIFY) OTHER (SPECIFY) OTHER (SPECIFY) OTHER (SPECIFY) Z2. SIGNATURE OF INSPECTOR INAL P 11 g IDED INFORMATION OF MATERIALS INFO DESCRIPTION OF MA	15 f	eet.								•	· ·			
22. DISPOSITION OF HOLE 22. DISPOSITION OF HOLE 22. DISPOSITION OF HOLE 22. DISPOSITION OF HOLE 22. DISPOSITION OF HOLE 23. DISPOSITION OF HOLE 24. DEFTH 25. DE			DISTURBED	i	JNDISTUR	BED	19. TOTAL	NUMBER	OF CORE E	OXES				
22. DISPOSITION OF HOLE 22. DISPOSITION OF HOLE 22. DISPOSITION OF HOLE 22. DISPOSITION OF HOLE 22. DISPOSITION OF HOLE 23. DISPOSITION OF HOLE 24. DEFTH 25. DE							<u> </u>							
22 DISPOSITION OF HOLE 22 DISPOSITION OF HOLE BACKFILLED BACKFIL	20. SAMPLES FOR CH	EMICAL ANALYS	SIS VOC	META	LS	OTHER (SPECIFY)	OTHER (SPECIFY)	OTHEF	R (SPECIF	m	21. TOTAL CORI	
22 DISPOSITION OF HOLE BACKFILLED BACKFI			ar Ho					K.					RECOVERY	
HAR PILLS HAR PILLS										L				
ELEV. DEPTH DESCRIPTION OF MATERIALS FIELD SCREENING GEOTECH BAMPLE AMULTICAL BLOW ODWITS REMARKS ALIGHT BUTCH Scindy Silt. 3.0 4.5 0.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	22. DISPOSITION OF	HOLE	BACKFILLED	MONITORI	NG WELL	OTHER (S	PECIFY)	,						
ELEV. DEPTH DESCRIPTION OF MATERIALS OR CORE BOX No. SAMPLE No. COUNTS REMARKS 0 VA d $0 VA d$ $0 VA d$ $1 VB CONTS BOX NO SAMPLE NO. COUNTS REMARKS 0 VA d 1 VB COUNTS REMARKS OVA D 1 VB C$			that Plug					Sh	ona	л)	Ma	ħ	ren	
Light bown fine Surdy 3.0 4.0 Dark bown fine Surdy 5.0 4.5 - ND 1.10 p.m 6.0 Light bown fine Surdy 5.1t. 9.0 Light bown fine Sund 10.0 Light bown fine Sund 11.25 p.m 14.55 p.m 14.55 p.m 14.55 p.m 14.55 p.m 15.0 10.58 - 09 1 10.58 - 09 1 10.58 - 09 1 10.55 p.m 10.558 - 09 1 10.558 - 00 1 10.558													0514040	-
Light brown Sandy Silt. 3.0 4.0 Dark brown fine Sandy 4.5-ND 5.0 Light brown fine Sand. 4.5-ND 5.14. 4.0 Light brown fine Sand 12.25 pm 14.0 Light brown fine Sand. 14.25 pm 14.35 pm. 5.0 14.0 14.0 14.0 14.0 14.0 10.0		UES	C C	L0			1 OH COR	E BUX N9. 9	f SAMPLEN	α α				
	4.0 6.0 9.0 10.0	Dark b Dark b Dark b Light Silt. Light h	oun fine S oun silty S soun clay oun fine S	uy band Sand.	9-10 (2-2)	-NO 5 p.m						to Ncs	1006. 18-09 13	
	MRK FORM 55	T	PROJECT								HOLEN		<u></u>	-

		<u></u>	нтw	DRIL	LIN	GLC	DG				HOLE	Na. 58-10	٦
1. 0010	ANY NAME	· · · · · · · ·					NTRACTOR	۹			SHEET		-
		Nima	mental_					-	Brillin	-01	OF	SHEETS	
3. PROJE						4. LOC	CATION				b		-
R R	Rila .	y 11-15	37.04			1 ~~	~ CIP	and	e RH	a 180	415	s 1	
5. NAME	OF DRILLER	4				6. MW	NUFACTUR	ER'S DESI	GNATION O	4 180 DRILL			-
	lay	Auro						1 .					
		FDAILLING	20x UDA	The	1	8. HOL	E LOCATIC	× ×					-
	AMPLING EC		2 some Am										
		-	31/4 8 21/4	"Star	1200		FACE ELE	VATION		-	_		-
				ang		-							
		- F	Stor june			10. DA	TE STARTE	0	· · · · · · · · ·	11. DATE	COMPL	ETED	-
			······································				- 5-	92		2~	6-9	2	
12. OVEF	BURDEN TH	ICKNESS							ENCOUNTE				-
							,						
13. DEPT	H DRILLED I	NTO ROCK				16. DE	PTH TO WA	TER AND	ELAPSED TI	ME AFTER OR	ILLING C	OMPLETED	
										,			
14. TOTA	L DEPTH OF	HOLE				17. 01	HER WATE	RLEVELN	EASUREME	NTS (SPECIFY	0		-
		Fut									•		
18. GEOT	ECHNICAL		DISTURBED	u	NDISTUR	BED		NUMBER	OF CORE B	OXES		:	-
20. SAMP		EMICAL ANALY	ISIS VOC	METAL	.8	OTHER (SPECIFY)	OTHER	SPECIFY I	OTHER (SPEC	CIFY I	21. TOTAL CORE	-
(an a		Seni-		•						RECOVERY	
			8240		70							*	
22. DISPO	DSITION OF	HOLE	BACKFILLED	MONITORIN		OTHER (S	PECIFY)	23. SIGN	ATURE OF I	NSPECTOR	I		-
								\square	M				
			Hore Alug	·	i.			Ve	Shar	ir I			
			<u>_</u>		FIFL D S	CREENING	GEOTEO	1 SAMPI F	ANALYTIC	L BLOW			-
ELEV.	DEPTH	DE	SCRIPTION OF MATERIA	LS	RE	SULTS			SAMPLEN			REMARKS	
	Ь		C		OUA	đ	<u> </u>	•	1	9		h	
	-		k	La	1		ļ						
			boun sitt	with									
		slag.	•		1		1				1		
	-	L			1								
	4.0-	-			L	. N/N	ľ						
	5-0-	Ra.	sandy cla	u Silt		- ND - 93							ł
	-	10000	i sarry us	-J	17.1	- เ ง							
		,				0 pm				1			ļ
	1.5	-											
	-	7	Brown sitty	fine	a	-ND				1			
	F		~	s und	3-5-							513-10A	
	10-0-	I		-	1700		1				1 10	ias.	
						-	1						
	_	Brrn	silly fine	Sima									ł
			1	-C ,]			1			ļ
	1				14-14	5-NB	l	-				_	
	-											B-10B	
	15-0-	<u>T0</u>			094	L.					10	lab.	
	1												
Í	_												
					ľ		· .						
													ļ
	-												
							ł			1	1		
Í	-												
1	7						1						
							1						
[Ŀ					-				1			
l	7									1			
							L						٦
										HOLE	E 140.		
MRK	FORM 55		PROJECT										

1. COMP		•	HTW	DRIL	LIN	G L(DG					OLENO. DCSB-11
	ANY NAME			Т			NTRACTO		-			HEET 1
L	an E	wion	enter		Sh	rmn	ouc 1	Env.	Arill	ng	0	f sheets
						4. LOC	CATION		Brill	4		
Ft.	Riley	11-153	2-04				y U	ean	ers	Bidy	. 18	io + lgi
5. NAME	OF DRILLER					6. MA	NUFACTUR	ER'S DESI	GNATION O	FORILL		
	Clay	byer.										
	ND TYPES C		202 Jar				LELOCATIO	N				
AND SA	AMPLING EQ		2. m. K	Imper .	SCHHE	3						
			14" + 214			- 9. SUF	RFACE ELE	VATION				
		<u> 5</u>	rel Hand	Auger	<u>۲</u> .							
							S-S-			11.		MPLETED
10 OVER	BURDEN TH					_			ENCOUNT		50	-71
12. OVEN		ICANE 35										
13. OEPT	H DRILLED I					16. DE	PTH TO W		ELAPSED T	ME AFTE		NG COMPLETED
	L DEPTH OF	HOLE				17. 01	HER WATE	RLEVELN	AEASUREME	NTS (SP	ECIFY)	
		isfect	•								. *	
18. GEOT	ECHNICAL S		DISTURBED	U	NDISTUR	BED	19. TOTA	L NUMBER	OF CORE B	OXES		
			1									
O. SAMPI	LES FOR CH	EMICAL ANALYSIS	VOC	METAL	S	OTHER (SPECIFY)	OTHER (SPECIFY)	OTHER	(SPECIF)	
			m	1			- 2	le				RECOVE
			\$240				270					
22. DISPO	DSITION OF I	HOLE	BACKFILLED	MONITORIA	IG WELL	OTHER (S	SPECIFY)	23. SIGN	ATURE OF	INSPECT	OR	
			Hole Ding					<i> </i>].	That	1		
			4	<u> </u>	1		1			7	·	
ELEV.	DEPTH	DESC		8		CREENING SULTS			ANALYTIC SAMPLEN		LOW	REMARKS
4	ь	DEGOR	C C		OVA			•	1		9	h
	-	i) a dat ha sa	Sund				1					
		BOTH ST		3								
		my a	ny						1	1		
	3.0-	Brown 4	wy fine s	und	1							
					4-5		1					
			and ilan	5,11.	3-5-	a 7	1			1		
		Brown Se	- <u> </u>				ĺ .			1	1	
	6.0	Brown 40 	J	<u>,</u>	13-39							
	6.0	Tan Bron	un sitty fine	Sund.								
	6.01	Tan Bron	un sitty fine	Sund.								
	6.0 - 1.5	Tan Bron	un sitty fine ilty fine Su	Sund.								
	6.0 -	Tan Bron	un sitty fine	Sund.	33							
	2.5 -	Tan Bron Brown 3	un sitty fine ilty fine Sa	, Sund. nd	9-10 3-5-	- NO 92) کدی ک – ۱۱ م اه ۱ سلی
	2.5 -	Tan Bron Brown 3	un sitty fine	, Sund. nd	9-10	- NO 92						DCSB-11A ho 1ach.
	2.5 -	Tan Bron Brown 3	un sitty fine ilty fine Sa	, Sund. nd	9-10 3-5-	- NO 92						
	2.5 -	Tan Bron Brown 3	un sitty fine ilty fine Sa	, Sund. nd	9-10 3-5-	- NO 92						
	2.5 -	Tan Brown S Brown S	un sitty fine ilty fine Sa	, Sund. nd	9-10 3-5- 1410	- NO 92						to lub.
	2.5 -	Tan Bron Brown 3	un sitty fine ilty fine Sa	, Sund. nd	9-10 3-5- 1410	- NO 92 - ND.						ho lads. Designal B
		Tan Brown S Brown S	un sitty fine ilty fine Sa	, Sund. nd	9-10 3-5- 1410	- NO 92 - ND.						to lub.
		Tan Brown S Brown S	un sitty fine ilty fine Sa	, Sund. nd	9-10 3-5~ 1410 14-15 3-6-	- NO 92 - ND.						ho lads. Designal B
		Tan Brown S Brown S	un sitty fine ilty fine Sa	, Sund. nd	9-10 3-5~ 1410 14-15 3-6-	- NO 92 - ND.						ho lads. Designal B
		Tan Brown S Brown S	un sitty fine ilty fine Sa	, Sund. nd	9-10 3-5~ 1410 14-15 3-6-	- NO 92 - ND.						ho lads. Designal B
		Tan Brown S Brown S	un sitty fine ilty fine Sa	, Sund. nd	9-10 3-5~ 1410 14-15 3-6-	- NO 92 - ND.						ho lads. Designal B
		Tan Brown S Brown S	un sitty fine ilty fine Sa	, Sund. nd	9-10 3-5~ 1410 14-15 3-6-	- NO 92 - ND.						ho lads. Designal B
		Tan Brown S Brown S	un sitty fine ilty fine Sa	, Sund. nd	9-10 3-5~ 1410 14-15 3-6-	- NO 92 - ND.						ho lads. Designal B
		Tan Brown S Brown S	un sitty fine ilty fine Sa	, Sund. nd	9-10 3-5~ 1410 14-15 3-6-	- NO 92 - ND.						ho lads. Designal B
		Tan Brown S Brown S	un sitty fine ilty fine Sa	, Sund. nd	9-10 3-5~ 1410 14-15 3-6-	- NO 92 - ND.						ho lads. Designal B
		Tan Brown S Brown S	un sitty fine ilty fine Sa	, Sund. nd	9-10 3-5~ 1410 14-15 3-6-	- NO 92 - ND.						ho lads. Designal B
		Tan Brown S Brown S	un sitty fine ilty fine Sa	, Sund. nd	9-10 3-5~ 1410 14-15 3-6-	- NO 92 - ND.						ho icub. DCSB-11B to lab.

	HTW DRILLING LOG											
1. COMP	ANY NAME	E.						R	·		HEET 1	7
3. PROJE			nmental			4. LOC	ATION	Δ	o Í		F / SHEETS /	-
			DCF PAIS	I		Fe	DIMENTIC	- Ury	Clea	riche Fa	cility	\neg
	OF DRILLER											
7. SIZE A	ND TYPES O	F DRILLING		achless . auger		30	ELOCATIO	5 of	SEC	corner of	F Bldg 180	,
		3	14" (0.0.) Sta			9. SUR	IFACE ELE	VATION			v	
			hand	auger	-		TE STARTE			11. DATE CO	MPLETED 3-92	Ţ
12. OVER	BURDEN TH	ICKNESS							ENCOUNT		<u> </u>	1
13. DEPTI	H DRILLED I	NTO ROCK				16. DE	PTH TO W	TER AND	ELAPSED T	ME AFTER DRILL	NG COMPLETED	1
14. TOTAL		HOLE				17. OTI	HER WATE	RLEVELN	IEASUREME	NTS (SPECIFY)		
18. GEOT	ECHNICAL S	AMPLES	DISTURBED		UNDISTUR	BED	19. TOTAL	LNUMBER	OF CORE B	OXES]
20. SAMP	LES FOR CH	EMICAL ANALYS		META	LS	OTHER (S		OTHER (SPECIFY)	OTHER (SPECIF	Y) 21. TOTAL CORE RECOVERY	
			8240			827	10				· %	
22. DISPC	DSITION OF H	HOLE	BACKFILLED	MONITORI	NG WELL	OTHER (S	PECIFY)	ZI SIGO		INSPECTOR		
ļ			Hole plug.	<u> </u>	FIELD S	CREENING	GEOTEO		ANALYTIC	ery BLOW		4
ELEV.	DEPTH b	DES	CRIPTION OF MATERIAL	LS		SULTS d			SAMPLE N		REMARKS h	
		Dark 6	rown clayey	SILT								E
	20	light	brown silty	Line	†							E
			ed. SAND	i tre	4-9	5 feet JD		1				F
	5-			-		J U						F
Ý	1											F
												E
•					9-	10 feet 10			DCSB IZA	-		E
					/ ^	2						E
												E
	-	-0			14 -	15 feet D			DC 5 B- 12 B	· .		E
7	15-	TD			1 ″	D						F
	Ē											E
₽												E
	Ę										,	E
•		• .										E
	-						ļ ,					F
												F
				<u></u>						HOLEN	, <u> </u>	上
MRK 5	ORM 55	P	ROJECT	•						AULEN	<i>.</i>	H

}			HTW	DBII	I IN	GIC					OLE NO.	
1. COMP	ANY NAME	<u>. </u>			2 DRILL	ING SUBCO	NTRACTO	A ,	<u> </u>	s	<u>DC5B-13</u> heet 1	2
La 3. PROJE		nvironme	intal		Shan	1			rilling		F / SHEETS	4
F	<u>+. Ril</u>		F PA/SI	-		For	mer l	Dry C	leanin	z Facili DRILL	ty	
5. NAME		Clay Dy	ier			6. MAN	IUFACTUR	ier's desi	GNATION OF	DRILL	•	
	ND TYPES C	FORILLING 4	14" (I.D.) HS			a HOL	ELOCATK	N E at	Bldg	180		
,			" CME sam	μα		9. SUR	FACE ELE	VATION		- 100		
7						10. DA	TE STARTI	EQ		11. DATE CO		\neg
										3-10	-92	
12 OVER	IBURDEN TH										<u></u>	
13. DEPTI	H DRILLED I	NTO ROCK				18. DEI	РТН ТО W/	ATER AND	ELAPSED TIN	AE AFTER ORILLI	NG COMPLETED	
14. TOTAL	L DEPTH OF	HOLE 15	feet			17. OTI	HER WATE	ER LEVEL M	EASUREMEN	VTS (SPECIFY)		
18. GEOT	ECHNICAL S	AMPLES	DISTURBED	U	INDISTUR	RED	19. TOTA	LNUMBER	OF CORE BO	XES		
20. SAMP	LES FOR CH	EMICAL ANALYSIS	·	METAL	.\$	OTHER (S		OTHER (SPECIFY)	OTHER (SPECIF	n 21. TOTAL CO RECOVER	
			8240			827	0				*	
22. DISPO	DSITION OF I	HOLE	BACKFILLED	MONITORI	NG WELL	OTHER (S	PECIFY	23. SIGN	ATURE OF I	NSPECTOR		
			Hole plug		T			1/		y		
ELEV.	DEPTH b	DESC	RIPTION OF MATERIAL c	S		CREENING SULTS d		H SAMPLE E BOX No. 0			REMARKS	
	11	Brown-De	ark brown mot crete & bricks	Hed SIL	Ŧ							E
	20	Baur	silty Fine Si	AND	1							E
	-	train a	hins of conc		4-4	-fort						F
	5-	,	(FILL)		⁷ λ	5 feet 1D						Ē
												E
	7,0	Dark k	brown silty	SAND		<i>a</i> .						E
			/		9-1 N	io feet ID			DC5B- 13A			F
	10 -	Dark bro	un clayey s	ilty		1			1.5 11			Ē
		Darie Die	SAND	/								E
					14-1	5 feet			DCSB-			E
	15-	TD			N	Ď			13B			F
	E											E
	-						1					Ē
	-											E
	-1											F
	4	• ·										
	ᅴ											E
	H	•.									I	
MRK 5		PF	ROJECT	•	L	1				HOLEN).	н

COMMENTANCE 2. DELING SUBCONTACTOR SHETT Lick Control Shetting PLACE Shetting Steanlow She				HTW	DRIL	LIN	GLC)G			1	HOLENO. DCSB~14	_
Law Env: Dramentul Snumrock Bin, Drilling 0 SHETS Indier 11 15 23 - 04 Indian Indian Indian Indian Kildy 11 - 15 23 - 04 Indian Indian Indian Indian Stand THESOFORLION 5 1/4" Indian Indian Indian Indian Indian 2 0/07 Indian 3 0000 Indian Indian Indian 2 0/07 Indian 10 0000 Indian Indian Indian Indian 2 0/07 Indian 10 0000 Indian Indian Indian Indian 2 0/07 Indian 10 00000000000000000000000000000000000	1. COMPAN	Y NAME						_	2				_
NAME OF DRILER A MURIARUMERE DEBRANTON OF DRIL SEE AND TYPES OF DRILING SUP AND THE OF DRILED A DATE STATED A DATE STATED THE DEDITION OF THE OF THE DELING COMPLETED A DATE STATES DISTURBED UNDISTURED <li< td=""><td>La</td><td>E CHI</td><td>N. mar</td><td>nentul</td><td></td><td></td><td></td><td></td><td>•</td><td>rilina</td><td>i</td><td>of sheets</td><td>_</td></li<>	La	E CHI	N. mar	nentul					•	rilina	i	of sheets	_
NAME OF DRILER A MURIARUMERE DEBRANTON OF DRIL SEE AND TYPES OF DRILING SUP AND THE OF DRILED A DATE STATED A DATE STATED THE DEDITION OF THE OF THE DELING COMPLETED A DATE STATES DISTURBED UNDISTURED <li< td=""><td>PROJEC</td><td><u>т</u></td><td></td><td></td><td></td><td></td><td>4. LOC</td><td>ATION</td><td></td><td>1</td><td></td><td></td><td>_</td></li<>	PROJEC	<u>т</u>					4. LOC	ATION		1			_
$ \begin{array}{c} \text{NMECOTRUER} \\ \text{INVERSION OF DELLON} \\ \text{SUE AND TYPES OF DELLON } \\ \text{SUE AND TYPES OF DELLON AND TYPES OF DELLON & \\ \text{SUE AND TYPES OF DELLON } \\ SUE AND TYPES OF DELLON AND TYPES OF DELLON & \\ \text{SUE AND TYPES OF DELLON AND TYPES OF DELLON & \\ \text{SUE AND TYPES OF DELLON AND TYPES OF DELLON & \\ \text{SUE AND TYPES OF DELLON AND TYPES OF DELLON & \\ \text{SUE AND TYPES OF DELLON AND TYPES OF DELLON & \\ \text{SUE AND TYPES OF DELLON AND TYPES OF DELLON & \\ \text{SUE AND TYPES OF DELLON AND TYPES OF DELLON & \\ \text{SUE AND TYPES OF DELLON AND TYPES OF DELLON & \\ \text{SUE AND TYPES O$	Ft. 1	Rileu	11-15:	40. (2			102	n Ula	iner	RIda	.1804	(31	
$ \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c}$	NAME O	FDRILLER					6. MAN	UFACTUR	ER'S DESI	INATION OF			
AND BANELAGE COURSENT Sizen Line Street Name s. SUPPACE BEANTON 2. OVERBURGENT MICRONESS 10. DATE STATED 11. DATE COMPLETED 2. OVERBURGENT MICRONESS 16. DEFTH OROLONDWATER BUCCURETEDD 3-10-92 2. OVERBURGENT MICRONESS 16. DEFTH OROLONDWATER BUCCURETEDD 3-10-92 3. DEFTH OROLED INTO POCK 16. DEFTH OROLONDWATER BUCCURETEDD 3-10-92 3. DEFTH OROLED INTO POCK 16. DEFTH OROLENDED THE AFEED ORLING COMPLETED 4. TOTAL DEFTH OF MALE DISTURBED UNDISTURBED 18. TOTAL MARGEN OF CORE BOXES 2. DISPOSITION OF MALE DISTURBED UNDISTURBED 18. TOTAL MARGEN OF CORE BOXES 3 2. DISPOSITION OF HOLE BACKFILED MONITORING WELL OTHER (BRECIPY) OTHER (BRECIPY) OTHER (BRECIPY) TOTHER (
AND BANKLAG EQUIPAGENT Site of instance 2 OVERBURGENT THEORES Is DUPAGE ELEVATION Is DUPAGE ELEVATION Is DUPAGE ELEVATION 2 OVERBURGENT THEORES Is DUPAGE ELEVATION Is DUPAGE ELEVATION Is DUPAGE ELEVATION 2 OVERBURGENT THEORES Is DUPAGE ELEVATION Is DUPAGE ELEVATION Is DUPAGE ELEVATION 3 DEPTH OPALLED INTO POCK Is DEPTH OPALLED INTO POCK Is DUPAGE ELEVATION Is DUPAGE ELEVATION 1 DEPTH OPALLED INTO POCK Is DUPAGE ELEVATION Is DUPAGE ELEVATION Is DUPAGE ELEVATION 1 DEPTH OPALLED INTO POCK Is DUPAGE ELEVATION Is DUPAGE ELEVATION Is DUPAGE ELEVATION 1 DEPTH OPALLED INTO POCK Is DUPAGE ELEVATION Is DUPAGE ELEVATION Is DUPAGE ELEVATION 2 DEPTH OPALLED INTO POCK Is DUPAGE ELEVATION Is DUPAGE ELEVATION Is DUPAGE ELEVATION Is DUPAGE ELEVATION 2 DEPTH OPALLED INTO POCK Is DUPAGE ELEVATION Is DUPAGE ELEVATION Is DUPAGE ELEVATION Is DUPAGE ELEVATION 2 DEPTH OPALLED INTO POCK Is DUPAGE ELEVATION Is DUPAGE ELEVATION Is DUPAGE ELEVATION Is DUPAGE ELEVATION 2 DEPTH OPALLED INTO POCK Is DUP	SITE AN	D TYPES O		2 1/1 1 00 0	> 1/4"		8. HOL	ELOCATIC	N			· ···	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $						und.	-					x	
$\frac{3 \times 3}{4 \times 6 \times 5} UOA (1 \times - 4 \times 3 \times 5) \times 10^{-1} (1 \times 10 \times 10^{-1} \times 10$					an ng		9. 508			·			-
Amotec bottstate 2. OVERBURDENT THEONESS 11. DATE STATED 2. OVERBURDENT THEONESS 12. DEPTH ORILLED NTO ROCK 3. DEPTH ORILLED NTO ROCK 13. DEPTH TO WATER LAVE LANGUINERED 4. TOTAL DEPTH OF HOLE 17. OTHER WATER LAVE LANGUINEMENTS (BPECIPY) 4. TOTAL DEPTH OF HOLE 17. OTHER WATER LAVE LANGUINEMENTS (BPECIPY) 4. TOTAL DEPTH OF HOLE 18. DEPTH TO WATER LAVE LANGUINEMENTS (BPECIPY) 6. DEPTH OF HOLE 17. OTHER WATER LAVE LANGUINEMENTS (BPECIPY) 6. DEPTH OF HOLE DISTURBED 1. DESCRIPTION OF HOLE 17. OTHER (BPECIPY) 2. DEPOSITION OF HOLE DECORPTION OF HOLE 1. DESCRIPTION OF HOLE ELACIFILED 1. DEPTH OESCRIPTION OF HOLE NOTION WELL OTHER (BPECIPY) 2. DEPOSITION OF HOLE ELACIFILED 1. DEPTH OESCRIPTION OF MATERIALS FELD SCHEENING DECORPTION SUMMERTIALS 0. DESCRIPTION OF MATERIALS FELD SCHEENING DECORPTION SUMMERTIALS 0. DACK Group Soundy Suffy first SCHART 3. C Comy observed Suffy first <			F.	inger 2 22 UpA i	and +	2 50							
$\frac{3 - 10 - 42}{2}$ $3 $			H	LOS VOAL	1.			TE STARTE	<u>ה</u>			OMPLETED	
2. OVERBURDEN THEONESS 3. DEPTH DRILLED AND ROCK 4. TOTAL DEPTH OR ROLE 4. TOTAL DEPTH OF ROLE 5. DEPTH DRILLED AND ROCK 4. TOTAL DEPTH OF ROLE 5. DESTURBED 5. SAMPLES FOR CHEMICAL ANALYSIS 5. SAMPLES F			Ľ Ľ	mac 50111									
a. DEPTH DRULED NTO ROCK a. DEPTH TO WATER AND BLADGED TIME AFTER DRULING COMPLETED a. DEPTH TO WATER AND BLADGED TIME AFTER DRULING COMPLETED b. DEPTH TO WATER AND BLADGED TIME AFTER DRULING COMPLETED c. TOTAL DEPTH TO WATER AND BLADGED TIME AFTER DRULING COMPLETED c. TOTAL DEPTH TO WATER AND BLADGED TIME AFTER DRULING COMPLETED c. TOTAL DEPTH TO WATER AND BLADGED c. TOTAL BANKES c. DISTURBED c	2 01/588						-			ENCOUNTER			
A. TOTAL DEPTH OF HOLE 17. OTHER WATER LEVEL MEASUREMENTS (BPECIPY) A. GEOTECHNICAL SAMPLES DISTURGED UNDISTURGED 18. TOTAL NAMGER OF CORE BOXES D. SAMPLES FOR CHEMICAL AMALYSIS VOC METALS OTHER (SPECIPY) OTHER (SPECIPY) D. SAMPLES FOR CHEMICAL AMALYSIS VOC METALS OTHER (SPECIPY) OTHER (SPECIPY) OTHER (SPECIPY) 2. DISPOSITION OF HOLE BACKFILLED MONITORING WELL OTHER (SPECIPY) OTHER (SPECIPY) OTHER (SPECIPY) 2. DISPOSITION OF HOLE BACKFILLED MONITORING WELL OTHER (SPECIPY) OTHER (SPECIPY) OTHER (SPECIPY) 2. DISPOSITION OF HOLE BACKFILLED MONITORING WELL OTHER (SPECIPY) OTHER (SPECIPY) OTHER (SPECIPY) 2. DISPOSITION OF HOLE BACKFILLED MONITORING WELL OTHER (SPECIPY) OTHER (SPECIPY) NAMELY NOW 2. DISPOSITION OF HOLE BACKFILLED MONITORING WELL OTHER (SPECIPY) OTHER (SPECIPY) NAMELY NOW 3.0 DESCRIPTION OF MATERIALS FIELD SCREENING GEOTECH SAMPLE MANUTOCH BLOWNY 3.0 DESCRIPTION OF MATERIALS FIELD SCREENING GEOTECH SAMPLE MANUTOCH BLOWNY 3.0 DOWNY SUBJECT SUBJECT NAMELY NOW 4.0 DESCRIPTION OF MATERIALS FIELD		UNDENTA	CANE 33							CIVOUNEN			
A. TOTAL DEPTH OF HOLE 17. OTHER WATER LEVEL MEASUREMENTS (BPECIPY) A. GEOTECHNICAL SAMPLES DISTURGED UNDISTURGED 18. TOTAL NAMGER OF CORE BOXES D. SAMPLES FOR CHEMICAL AMALYSIS VOC METALS OTHER (SPECIPY) OTHER (SPECIPY) D. SAMPLES FOR CHEMICAL AMALYSIS VOC METALS OTHER (SPECIPY) OTHER (SPECIPY) OTHER (SPECIPY) 2. DISPOSITION OF HOLE BACKFILLED MONITORING WELL OTHER (SPECIPY) OTHER (SPECIPY) OTHER (SPECIPY) 2. DISPOSITION OF HOLE BACKFILLED MONITORING WELL OTHER (SPECIPY) OTHER (SPECIPY) OTHER (SPECIPY) 2. DISPOSITION OF HOLE BACKFILLED MONITORING WELL OTHER (SPECIPY) OTHER (SPECIPY) OTHER (SPECIPY) 2. DISPOSITION OF HOLE BACKFILLED MONITORING WELL OTHER (SPECIPY) OTHER (SPECIPY) NAMELY NOW 2. DISPOSITION OF HOLE BACKFILLED MONITORING WELL OTHER (SPECIPY) OTHER (SPECIPY) NAMELY NOW 3.0 DESCRIPTION OF MATERIALS FIELD SCREENING GEOTECH SAMPLE MANUTOCH BLOWNY 3.0 DESCRIPTION OF MATERIALS FIELD SCREENING GEOTECH SAMPLE MANUTOCH BLOWNY 3.0 DOWNY SUBJECT SUBJECT NAMELY NOW 4.0 DESCRIPTION OF MATERIALS FIELD			TOPOCY				16. DE	PTH TO W					-
IS F-eet A GEOTECHNICAL SAMPLES DISTURBED UNDISTURBED 19. TOTAL NUMBER OF CORE BOXES 2. BAMPLES FOR CHEMICAL ANALYSIS VOC METALS OTHER (SPECIPY) OTHER (SPECIPY) 2. DISPOSITION OF HOLE BACKFELED MONITORING WELL OTHER (SPECIPY) OTHER (SPECIPY) OTHER (SPECIPY) 2. DISPOSITION OF HOLE BACKFELED MONITORING WELL OTHER (SPECIPY) OTHER (SPECIPY) A. SIGNATURE OF INSPECTOR 2. DISPOSITION OF HOLE BACKFELED MONITORING WELL OTHER (SPECIPY) 22. SIGNATURE OF INSPECTOR Margy 2. DISPOSITION OF HOLE BACKFELED MONITORING WELL OTHER (SPECIPY) 23. SIGNATURE OF INSPECTOR 2. DISPOSITION OF HOLE BACKFELED MONITORING WELL OTHER (SPECIPY) 24. SIGNATURE OF INSPECTOR 2. DISPOSITION OF MATERIALS FIELD SCREENING GEOTECH SAMPLE MALTINE BLOW 2. DISPOSITION OF MATERIALS FIELD SCREENING GEOTECH SAMPLE MALTINE BLOW 3.0 DOARK Grup Brown Sandy Cheupty H:S - ND II SO II SO 3.0 Tran brown Sandy Cheupty H:S - ND II SO II SO 4.00 Tran brown Sandy Cheupty H:S - ND II SO BCSB - IH B 15.0 Tran brown Sandy II SO II SO II SO 16.0 </td <td>3. DEPIN</td> <td></td> <td>ITO HOCK</td> <td></td>	3. DEPIN		ITO HOCK										
IS F-eet A GEOTECHNICAL SAMPLES DISTURBED UNDISTURBED 19. TOTAL NUMBER OF CORE BOXES 2. BAMPLES FOR CHEMICAL ANALYSIS VOC METALS OTHER (SPECIPY) OTHER (SPECIPY) 2. DISPOSITION OF HOLE BACKFELED MONITORING WELL OTHER (SPECIPY) OTHER (SPECIPY) OTHER (SPECIPY) 2. DISPOSITION OF HOLE BACKFELED MONITORING WELL OTHER (SPECIPY) OTHER (SPECIPY) A. SIGNATURE OF INSPECTOR 2. DISPOSITION OF HOLE BACKFELED MONITORING WELL OTHER (SPECIPY) 22. SIGNATURE OF INSPECTOR Margy 2. DISPOSITION OF HOLE BACKFELED MONITORING WELL OTHER (SPECIPY) 23. SIGNATURE OF INSPECTOR 2. DISPOSITION OF HOLE BACKFELED MONITORING WELL OTHER (SPECIPY) 24. SIGNATURE OF INSPECTOR 2. DISPOSITION OF MATERIALS FIELD SCREENING GEOTECH SAMPLE MALTINE BLOW 2. DISPOSITION OF MATERIALS FIELD SCREENING GEOTECH SAMPLE MALTINE BLOW 3.0 DOARK Grup Brown Sandy Cheupty H:S - ND II SO II SO 3.0 Tran brown Sandy Cheupty H:S - ND II SO II SO 4.00 Tran brown Sandy Cheupty H:S - ND II SO BCSB - IH B 15.0 Tran brown Sandy II SO II SO II SO 16.0 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>117 07</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>							117 07						
2. GEOTECHNICAL SAMPLES DISTURBED UNDISTURBED 19. TOTAL NUMBER OF CORE BOXES D. SAMPLES FOR CHEMICAL ANALYSIS VOC METALS OTHER (SPECIPY) OTHER (SPECIPY) OTHER (SPECIPY) 21. TOTAL CORE RECOVERY 2. DISPOSITION OF HOLE BACKFILLED MONTORING WELL OTHER (SPECIPY) 22. BIGMATURE OF INSPECTOR HOL PLUG BACKFILLED MONTORING WELL OTHER (SPECIPY) 23. BIGMATURE OF INSPECTOR HOL PLUG BLEV. DEPTH DESCRIPTION OF INTERNALS PLOTENING COLORTS DOWN OF MATERNALS OVA d DOAR Gruy Brown Clauges silt Sound Standy Clauges HIS C OTHER SPECIPY 23. BIGMATURE OF INSPECTOR NOT DESCRIPTION OF INTERNALS PLOT OF INAMPLE MAILYTICK BLOW RELIGIENTS OVA d DOAR Gruy Brown Clauges silt Sound Standy Silt HIS C Thin brown Soundy Clauges HIS C Thin brown Soundy Silty And Sound Standy And Sound Standy Silty And Sound Standy Standy Standy Standy Standy Standy Standy Standy Stand	4. IUIALI	UEPIHOF		. L			". 01		n LEVEL, N	ICAOUTIEMEN			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $								10. 200				<u> </u>	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	B. GEOTE	CHNICAL S	AMPLES	DISTURBED		NUISTUR		IS. TOTAL	NUMBER	OF CORE BO	XES		
2. DISPOSITION OF HOLE 2. DISPOSITION OF HOL		······					OTUER		OT 152 -				
2. DISPOSITION OF HOLE 2. DISPOSITION OF HOLE 2. DISPOSITION OF HOLE BACKFLIED MONITORING WELL OTHER (SPECIFY) 2. DESCRIPTION OF MATERIALS CONTACT ANALYTICAL BLOW CONTACT ANALYTICAL CONTACT ANALYTICAL). SAMPLE	S FOR CH	EMICAL ANALY					Dreuiry)	UTHER (officity) (JINEH (SPECI		
2 DISPOSITION OF HOLE BACKFILLED BACKFIL				9 yun			ie					*	
How Plug D. Ang ELEV. DEPTH DESCRIPTION OF MATERIALS FIELD SCREENING GEOTECH SAMPLE MANAYTICAL BLOW ODUNTS RESULTS OVA d BLOW ONLY ODUNTS I BLOW ODUNTS I CICUPUS STIT REMARKS 3.0 Comp brown sandy Cleuply 4.5 I I I 3.0 Comp brown sandy Cleuply 4.5 I I 5.0 Comp brown sandy Cleuply 4.5 I I 5.0 Comp brown sandy Silty And Scand. I I 15.0 Then brown silty And Scand. I I 16.0 Then brown silty And Scand. I I 15.0 Then brown silty And Scand. I I 15.0 Then brown silty And Scand. I I 15.0 The brown silty And Scand. I I 15.0 I I I								PECIEN	23 8101		SPECTOR	<u> </u>	
ELEV. DEPTH DESCRIPTION OF MATERIALS FIELD SCREENING GEOTECH BANAPLE ANALYTICAL BLOW COUNTS REMARKS PELLY DEPTH DESCRIPTION OF MATERIALS PIELD SCREENING GEOTECH BANAPLE ANALYTICAL BLOW COUNTS REMARKS PALS SCREENING SCREENING GEOTECH BANAPLE ANALYTICAL BLOW COUNTS REMARKS PALS SCREENING SCREENING GEOTECH BANAPLE ANALYTICAL BLOW COUNTS REMARKS PALS SCREENING SCREENING GEOTECH BANAPLE ANALYTICAL BLOW REMARKS PALS SCREENING SCREENING GEOTECH BANAPLE ANALYTICAL BLOW REMARKS PALS SCREENING SCREENING GEOTECH BANAPLE ANALYTICAL BLOW REMARKS PALS SCREENING SCREENING SCREENING GEOTECH BANAPLE ANALYTICAL BLOW REMARKS PALS SCREENING SCREENING SCREENING GEOTECH BANAPLE ANALYTICAL BLOW REMARKS PALS SCREENING SCREEN	e. UI3PUS			BACAPILLED		#CLL	5 mm (3						
ELEV. DEPTH DESCRIPTION OF MATERIALS FIELD SCREENING GEOTECH SAMPLE ANALYTICAL BLOW COUNTS REMARKS PELL COUPLING STATEMENTS OF A DESCREENING GEOTECH SAMPLE ANALYTICAL BLOW COUNTS REMARKS PALSTS OF COMPLEXING STATEMENTS OF A DESCREENING OF CORE BOXING SAMPLE NO. 2010/15 REMARKS PALSTS OF COMPLEXING STATEMENTS OF A DESCREENING OF CORE BOXING SAMPLE NO. 2010/15 REMARKS PALSTS OF COMPLEXING SAMPLE STATEMENTS OF A DESCREENING OF CORE BOXING SAMPLE NO. 2010/15 REMARKS PALSTS OF COMPLEXING SAMPLE STATEMENTS OF A DESCREENING OF CORE BOXING SAMPLE NO. 2010/15 REMARKS PALSTS OF COMPLEXING SAMPLE				Hore Alua					I <i>V.</i>	Ana	UN .		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	T				<u> </u>								-
Dearth Group Brown clougey silt 3.0 Cray brown Sandy Clougly 4.5 Silt 5.0 Cray brown Sandy Silt 4.0 Cray brown Sandy Silt 4.0 Cray brown Silty Ane Scand. 1210 The brown Silty Ane to nedium Sand. 15.0 TO 15.0 To		NEBTU	DE		NS							REMARKS	
Dark Gruy Brown clayey silt 30 Orig brown Sandy Clayfy 4.5 - ND 50 Cry brown Sandy Silt 60 Orig brown Silty Are Scend. 1210 Tan brown silty fine to redium Sand. 1210 121	4		UE							f f			
4:5 - Sing brown sandy silt 5:0 - Gruy brown silty Ane Scind. 1:50 - NO 1:210 - NO 1:	<u> </u>		· · · · · · · · · · · · · · · · · · ·			1		1			1	1	,
4:5 - Sing brown sandy silt 5:0 - Gruy brown silty Ane Scind. 1:50 - NO 1:210 - NO 1:		-	Dark	Grey Brow	れ	1					1		
4:5 - Sing brown sandy silt 5:0 - Gruy brown silty Ane Scind. 1:50 - NO 1:210 - NO 1:			craye	y 5/1+		1					1		
4:5 - Sing brown sandy silt 5:0 - Gruy brown silty Ane Scind. 1:50 - NO 1:210 - NO 1:	I	3.2	•		·	1		[
4:5 - Sing brown sandy silt 5:0 - Gruy brown silty Ane Scind. 1:50 - NO 1:210 - NO 1:			Gruy br	run sandy c	icupy	1. ~							
6.0 Gruy-brown silty fine 5 cond. 1210 Thin brown silty fine to medium samd. 150 TD 150 TD 1535 IN IN IN IN IN IN IN IN IN IN			21/17				-					1	
6.0 Gruy-brown silty fine 5 cond. 1210 Thin brown silty fine to medium Samd. 150 TD 1		ᇬᅇᅼ	Cruy bri	sun sundy 5	/ * 1	111 2 0							
to 0 Tan brown gilty fine to medium sand. 10-ND 1210 1210 10-ND 1210 10-ND 1210 10-ND 1210 10-ND 1210 10-ND 1210 10-ND 1235 10-ND 1235 10-ND 1235 10-ND 1235 10-ND 1235 10-ND 1235 10-ND 1235 10-ND		6.0	-			1		1					
to 0 Then brown gilty fine to medium sand. 150 TO TO TO TO TO TO TO TO TO TO		1	Gray- 5	rown silty t	inc						1		
10:0 - Then brown silty fine to nedium Sand. 15:0 - TD $15:0 - TD $ $10 - ND $ $12:10 - ND $ $10:10 - ND $			Sand.			1					1		
to 0 Tan brown silty fine to medium sand. 10-10 1210 to 10b bc5B-14B to 10b bc5B-14B to 10b		-				9-10	- ~0					BLSB-INA	
150 Tan brown silty fine to medium sand. 150 TD 1535 150 TD 1535	I .										1	-	
15:0 TD 1235 15:0 TO 106.	16	····	•	· · · · · · · ·	fine to			ł					
истип Sund. 15:0 <u>тр</u> 15:0 <u>тр</u> 15:35 10:5-ND 15:35 10:5-ND		4	Tan b	own sity							1	1	
150 <u>TD</u> 1335 100 106. 100 106.		コ	medi	un sund.									
15.0 <u>TD</u> 15.0 <u>TD</u> 15.35 10 ia6.						1						1	
15:0 <u>TD</u> 13:35 10 ia6.		_				14-13	S-ND	ł				0698 - 14 B	Ś
		٦	TD			1235	5						
	4	>°~			<u> </u>	1							
	ŀ	-						1]	1	
		コ										1	
						1							
		-				[·				1	
		コ									· · ·		
												1	
		-				1							
		1											
												1	
		-											
	-	コ			*								
				PROJECT		L.,,					HOLEI	No.	_
		IN ac 55	1										

			HTW	DRIL	LIN	G L C	DG					HOLENO. SCSB-LS	
1. COMP	ANY NAME						NTRACTO	R				SHEET 1	-
		Envin	menter					•	· 12-1	llon		of sheets	
3. PROJE	CT					- LO	JAIRON				7		
tt	-t. Ril	-ey 11-	1532-04				yu	en	rers	681	<u>og l</u>	80+181	
5. NAME						6. MA	NUFACTUR	er's desi	GNATION O	FDRILL	•		
7 617E AI		y Dye	r. 314" + 2'/4	" < tor is	1 200	B. HO		NN	· - · · ·			<u> </u>	
AND SA	MPLING EC		stel hund	aught	r.								
			202 VOA	Jars.		9. SUI	RFACE ELE	VATION					
			250 ml Am	her Jo	43.								
							TE STARTE					OMPLETED	
			·····				3-10	_			5-10	>-92	
12. OVEH	BURDEN TH	ICKNESS					PIN GHOU	NUWAIEP	I ENCOUNTI	EHEU			
13. DEPTI	H ORILLED I	NTO ROCK				16. DE	PTH TO WA	TER AND	ELAPSED T	IME AFT	ERDALL	ING COMPLETED	
14. TOTAL	DEPTH OF	HOLE 15 F-CE				17. 01	HER WATE	R LEVEL N	AEASUREM	ents (Si	PECIFY)	·	
18. GEOTI	ECHNICAL S		DISTURBED	U	NDISTUR	BED	19. TOTAL	NUMBER	OF CORE E	OXES			
20. SAMPI	LES FOR CH	EMICAL ANALYS		METAL	S				SPECIFY)	OTHEF	7 (SPECIF		
			Q				-0000	Alle				RECOVE	
22. DISPO	SITION OF		BACKFILLED	MONITORIN			LTO SPECIFY	23 810	ATURE OF	INSPER	TOP		
									М				
			Hole Plus					V.	may	+			1
									ANALYTIC		slow .		
ELEV.	DEPTH b	DES	CRIPTION OF MATERIAL	.5	RE	SULTS d	1	E BOX No. •	SAMPLE N	ω. α	DUNTS g	REMARKS h	
		A	Grand Bran	un	<u> </u>		1		· · · ·		-		
		DONR	Orang Boor Mary.				1		· ·	I			
		Siry	uny.				1						
	1												
	40	Brown	Sandy S	,; l+	4-5-	-ND	[
[5.0-	-		•	Ono	5							
Í	Ē	Light	ony Brown	r	ļ								
		Silty F	only Brown										
	3	4	-										
	3				9-10	-ND	1					DISB-ISA	.
	10.0-	•			893							to Loub	
	··· >]												
		Jan H	soon sil	ty									
	Ξ		medium s										
	Ξ				14-15	-NP					ł	BC5 8-151	al
ի	5.0-	<u> </u>			095	0						to lab.	- [
ł	ㅋ	TD											
	1			:			1						ł
	-1												
	1												ŀ
	-1												ſ
	4												ļ
	F												
]						
	E						F						ļ
	7												<u>+</u>
	ORM 55		PROJECT								HOLEN	ю.	I
											1		

TEST BORING RECORD

JOB N DATE DATE DRILL LOGO	NUMBEF START COMPI LED BY GED BY	ABER <u>DCF92-01</u> A <u>11-1532</u> ED <u>4/2/92</u> LETED <u>4/16/92</u> LAYNE WESTERN JACK SMITHBACK A KEVIN PROCHASKA	REMARKS:		PAGE	E <u>1</u> 0	F <u>2</u>
ELEV. IN FEET	DEPTH IN FEET	DESCRIPTION		MONITORING CONSTRUCT	SYM- BOLS	LAB TESTS	SPT N VALUE
	.5 1.5 2.5	Grass and organic materials Gravel fill material Cobbles and gravel Soft, moist brown (10 YR 4/4) fine grain	and sandy		•		3
-		SILT	ioù sanùy				5 —
-							-
	15.0	Very loose, moist, brown (10 YR 4/3) fi	ML ne grained silty				_
_	20.0	SAND	<u>ML</u> _				
		Loose, moist, tan-rust (10 YR 5/2) poor medium SAND with gravel to cobble siz fragments					
	25.0	Hard to very hard, green-brown (5Y 4/2) we SHALE	athered				6 -
	28.6 29.7 30.0	Auger refusal- top of rock-coring begins Gray fractured LIMESTONE Greenish-gray clayey SHALE					9E -
	31.0 32.5 32.7	Greenish-gray clayey SHALE Reddish -brown clayey SHALE LIMESTONE Greenish-gray weather <u>SHALE</u>			~		35 -
	33.0	Reddish-brown clayey SHALE					1532.54

٠

		BERDCF92-01	REMARKS:		PAG	<u> 2</u> 0	F 2			
		R <u>11-1532</u>			17101	•				
		ED4/2/92								
		LETED4/16/92								
		LAYNE WESTERN								
		JACK SMITHBACK								
CHEC		YKEVIN PROCHASKA								
ELEV.	DEPTH			MONITORING WELL	SYM-	LAB	SPT			
IN FEET	IN FEET	DESCRIPTION		CONSTRUCTION	BOLS	TESTS	N VALU			
	35.0						VALU			
	37.0	Greenish-gray clayey SHALE with sand a limestone fragments	sized							
	07.0	Grey weathered LIMESTONE with fractu	res							
	39.0									
-	44 0	Gray competent LIMESTONE with a								
	41.0	Gray to dark gray LIMESTONE with								
	44.0									
-		Black to dark gray competent shaley	LIMESTONE							
	:	with a few vugs								
		· ·			1					
	48.6									
	40.0	BORING TERMINATED								
-		BORING TERMINATED								
-										
-										
,										
-										
							1532.5			
					<u> </u>					

BORING NUMBER	DCF92-02	REMARKS:	PAGE 1 OF 2
JOB NUMBER	11-1532		
DATE STARTED	4-16-92		
DATE COMPLETED	4-21-92		
DRILLED BY	LAYNE WESTERN		
LOGGED BY	JACK SMITHBACK		
CHECKED BY	KEVIN PROCHASKA		

ELEV. IN FEET	DEPTH IN FEET	DESCRIPTION	MONITORING WELL CONSTRUCTION	SYM- BOLS	LAB TESTS	SPT N VALUE
	.5	Grass and organic material				
	5.0	Dark brown sandy SILT SN				3 _
	5.0	Very loose, moist brown (7.5 YR 4/3) silty SAND				
_	10.0	Loose, moist brown (7.5 YR 4/4) fine grained silty SAND				5 _
_	15.0	Very loose, moist brown (10 YR 3/3) clayey and silty fine grained SAND				3 _
_	20.0 20.7	SM	••••••••••••••••••••••••••••••••••••••	1		_
	20.7 21.8	Stiff, moist gray-brown (2.5 Y 5/2) sandy CLAY SN Loose, moist gray-brown (2.5Y 5/2) clayey fine grained SAND				
-	25.0	Loose, moist rust-brown (5 YR 5/8) medium grained SAND SF				
		Very stiff, moist greenish-brown (2.5 Y 4/3) CLAY				
	28.0	Very hard, dry greenish-brown (5Y 4/3)]		
	28.9	weathered shale		1		
-	29.9	Auger refusal - Top of Rock - Coring Begins Reddish brown weathered SHALE				50/4" _ —
	33.0	Greenish-gray competent calcareous SHALE				
	35.0	Gray weathered LIMESTONE with green weathered shale				1532.54

BORING NUMBER JOB NUMBER DATE STARTED DATE COMPLETED DRILLED BY LOGGED BY CHECKED BY	DCF92-02 11-1532 4-16-92 4-21-92 LAYNE WESTERN JACK SMITHBACK KEVIN PROCHASKA	REMARKS:	PAGI	E_2_0	F <u>2</u>
ELEV. DEPTH IN IN FEET FEET	DESCRIPTION	MONITORIN CONSTRU		LAB TESTS	SPT N VALUE

	FEET					VALUE
		35.0	Gray to tan, weathered and fractured LIMESTONE with laminations and vugs	*		
	_	39.0 40.1	Tan competent LIMESTONE with a few vugs			_
		-0.1	Dark gray to black competent shaley LIMESTONE			
┟	-	45.5				_
			BORING TERMINATED			
	_					_
ŀ	- `					_
	-					_
					ŕ	
						1532.54

JOB N DATE DATE DRILL LOGO	NUMBEF START COMPL LED BY GED BY	BERDCF92-03 A11-1532 ED4-6-92 ETED4-7-92 LAYNE WESTERN JACK SMITHBACK YKEVIN PROCHASKA	REMARKS:		PAGE	E_1_0	F _ 2_
ELEV. IN FEET	DEPTH IN FEET	DESCRIPTION		MONITORIN CONSTRU	SYM- Bols	LAB TESTS	SPT N VALU
	.3	Cement Gravel, bricks, fill material mixed with l	prown sand		5		
	6.0 8.0	Brown (5 YR 4/3) silty SAND	SM				
-	15.0	Brown (10 YR 3.4) dry sandy SILT	ML				11
_	22.0	Stiff, moist brown (7.5 YR 3/4) sandy s	SILT ML_				
_	25.0	Stiff moist brown (7.5 YR 4/3) clayey a	nd sandy SILT ML				10
		Loose, moist/wet tan-brown (10 YR 5/ clayey fine grained SAND with a few limestone and chert fragments	4) SM				
	33.0	Moist, brown (10 YR 3/3) fine grained					1532.

JOB N DATE DATE DRILL LOGG	NUMBER STARTE COMPLI ED BY ED BY	BERDCF92-03 11-1532 ED4-6-92 ETED4-7-92 LAYNE WESTERN JACK SMITHBACK KEVIN PROCHASKA	REMARKS:		PAGE	<u>2</u> 0	F2_
ELEV. IN FEET	DEPTH IN FEET	DESCRIPTION		MONITORING WELL CONSTRUCTION	SYM- BOLS	LAB TESTS	SPT N VALUE
	35.0 36.0	Loose, moist brown-gray (2.5 YR 5/2 fine grained SAND Stiff, moist brown-gray (2.5 YR 5/2)					10
	42.5	Fractured LIMESTONE and CLAY	ML				
	45.5	BORING TERMINATED					
			•				
							1532.5

	DC92-04	REMARKS:	PAGE 1 OF 2
	11-1532		
DATE STARTED	4/4/92	1	
DATE COMPLETED	4/21/92		
DRILLED BY	LAYNE WESTERN		
LOGGED BY	THOMAS MATHEW		
CHECKED BY	KEVIN PROCHASKA	·	

	ELEV. IN FEET	DEPTH IN FEET	DESCRIPTION		SYM- BOLS	LAB TESTS	SPT N VALUE
	_	.5	Grass and organic material Very firm, moist reddish-brown (5 YR 4/2) silty CLAY		-		21 —
		9.7	Auger Refusal - Top of Rock - Coring Begins				21
	-	10.5	Weathered LIMESTONE Tan weathered competent LIMESTONE with vugs				50/5"—
		11.5 12.0	Greenish-tan competent SHALE Tan to gray competent LIMESTONE with vugs				
	-	15.0 16.0	Gray weathered SHALE				_
	-	18.5 19.0	containing calcite crystals Greenish gray competent clayey SHALE				
	_	22.5 23.0 23.7	Black competent SHALE Gray weathered LIMESTONE/SHALE with fractures Very hard, moist gray CLAY				
		25.9	Gray competent shaley LIMESTONE with vertical fractures				
┠	-	29.3 30.7	Greenish-gray competent clayey SHALE				_
		32.0	Very hard, moist reddish-brown CLAY				
		32.0 32.7	Greenish-gray competent clayey and calcareous SHALE				

BORING NUMBER	DC92-04	REMARKS:	PAGE_2OF_2
JOB NUMBER	11-1532		
DATE STARTED	4/4/92		
DATE COMPLETED	4/21/92		
DRILLED BY	LAYNE WESTERN		
LOGGED BY	THOMAS MATHEW		
CHECKED BY	KEVIN PROCHASKA		

ELEV. IN FEET	DEPTH IN FEET	DESCRIPTION	MONITORING WELI CONSTRUCTION	SYM- BOLS	LAB TESTS	SPT N VALUE
	35.7 36.8 37.2	See previous page Tan to gray competent LIMESTONE with laminations and vugs Very hard, moist gray-green CLAY mixed with shale				
-	40.4	Tan to gray competent LIMESTONE				
	40.4	Dark gray to black shaley LIMESTONE				
-		BORING TERMINATED				_
_						-
_						_
						_
-						
-						-

TEST BORING RECORD

JOB I DATE DATE DRIL	NUMBEF E START E COMPL LED BY GED BY	IBER DCF92-05 A 11-1532 ED 4/4/92 ETED 4/ 6/92 LAYNE WESTERN JACK SMITHBACK KEVIN PROCHASKA KEVIN PROCHASKA	REMARKS:			PAGE	E_1 0	F_2
ELEV. IN FEET	DEPTH IN FEET	DESCRIPTION		MONITOR CONSTR	ING WELL RUCTION	SYM- BOLS	LAB TESTS	SPT N VALUE
	.5	Grass and organic materials Very soft, dry brown (10 YR 5/2) claye Hard brittle dry silty CLAY	y SILT ML					1 -
-	17.0	Clayey SILT and CLAY	CL					
-	20.0	Loose, moist tan-brown (10 YR 6/6) fir grained sitty SAND	ML/CL					7

			4
29.0 30.0	Hard SHALE		45 -
00.0	Moist tan-brown (10 YR 6/6) fine grained silty SAND		
35.0	SM		1532.54

JOB N DATE DATE DRILL LOGO	NUMBER START COMPL ED BY GED BY	BER DCF92-05 11-1532 ED 4/4/92 ETED 4/ 6/92 LAYNE WESTERN JACK SMITHBACK KEVIN PROCHASKA	REMARKS:		PAGE	<u> 2 </u> 0	F_2
ELEV. IN FEET	DEPTH IN FEET	DESCRIPTION		MONITORII CONSTRI	SYM- BOLS	LAB TESTS	SPT N VALUE
_	35.0	Very hard, wet gray (5 Y 5/3) silty san with fractured limestone	dy CLAY CL		*		_
	41.0 42.0	Fracture SHALE BORING TERMINATE	D				
-							-
							-
							-
							- 1532.54

BORING NUMBER	DCF92-06 11-1532	REMARKS:	PAGE _1 OF _2
DATE STARTED	4/4/92		
DATE COMPLETED	4/18/92		
DRILLED BY	LAYNE WESTERN		
LOGGED BY	JACK SMITHBACK		•
CHECKED BY	KEVIN PROCHASKA		

ELEV. IN FEET	DEPTH IN FEET	DESCRIPTION		MONITORING WELL CONSTRUCTION	SYM- BOLS	LAB TESTS	SPT N VALUE
	.5	Grass and organic materials Loose, moist brown (10 YR 5/4) fine grained silty SAND					
		Dug up inactive communications line at 8.0'					6 —
	10.0	Loose, moist tan-brown (10 YR 6/6) medium grained silty SAND	_SM_				8 -
-	15.0	Dense, moist/dry tan (2.5 YR 6/6) medium grained SAND	— - SP		•		34 _
-	20.0	Loose, moist brown (10 YR 5/6) clayey to silty fine grained SAND S	— - M/SC				7 -
		Very stiff, moist green-brown (5 Y 3/2) clayey weathered SHALE					19 –
-	30.4 31.1 32.0 33.0	Auger Refusal - Top of Rock - Coring Begins Greenish-gray competent calcareous SHALE Reddish-brown competent SHALE Greenish-gray weathered SHALE Reddish-brown competent and weathered calcareous SHALE					-

JOB N DATE DATE DRILL LOGG	NUMBER START COMPL ED BY GED BY	IBER DCF92-06 11-1532	REMARKS:		PAGI	E_2_0	F_2
ELEV. IN FEET	DEPTH IN FEET	DESCRIPTION		MONITORING WELL CONSTRUCTION		LAB TESTS	SPT N VALUE
	35.0 37.5 39.9	See <u>previous page</u> Greenish-gray competent clayey SHAL Tan-gray weathered and fractured well LIMESTONE					
	43.1	Tan-gray competent LIMESTONE with Black to dark gray competent shaley L with a few vugs					
_	49.0	BORING TERMINATE)				-
-							
-							_

July 29, 1992

Memorandum for: Commander, Engineer District, Kansas City Attn: CEMRK-MD-H, Cpt. Carol Ann Charette Kansas City, MO 64106

Subject: Technical Memorandum DCF-003: Installation of Exploratory Monitoring Well DC92-07 at the Dry Cleaning Facility, Ft. Riley, Kansas. Amendment to DCF Draft Modified Well Installation, Section 4.0 Plan (page 4-1).

1. <u>Purpose</u>: The purpose of this memorandum is to describe the installation of a shallow bedrock monitoring well adjacent to existing monitoring well DC92-04. This well and information gathering during drilling will aid in characterization of the shallow bedrock zone. Pursuant to the requirements as noted in Section XV, Paragraph E of the Federal Facilities Agreement (IAG), Law Environmental, Inc. Government Services Branch submits the following modifications and/or changes in field work for the Dry Cleaning Facility. These changes were agreed to by the following representatives from the Corps of Engineers, Ft. Riley, KDHE and EPA Region 7:

Corps of Engineers:	Mr. Volker Schmidt
	Mr. John Cichelli
	Mr. Millard Stone
Ft. Riley:	Ms. Janet Wade
KDHE:	Ms. Rachel Miller
EPA:	Mr. Scott Marquess
Law Environmental:	Ms. Judy Hartness
•	Ms. Mary Ann Brookshire
	Mr. Kevin Prochaska
	Mr. Gregory Myers
	•••

2. <u>Issue/Background/Rationale:</u> Bedrock conditions encountered during the drilling of monitoring well DC92-04 (see attached log of DCF92-04) indicated a shallow fracture zone 16 feet below ground surface. Ground water entered this fractured zone during drilling activities. Ground water was observed entering the borehole after the drilling ceased. An oily sheen was observed on the water surface in the borehole and sample analysis by MRD laboratories indicated the material is old hydrocarbon substance. Based upon these observations during field work at the site, additional characterization is needed to evaluate whether ground water is present in this upper fracture zone, and if so, to collect a sample for chemical analysis.

Technical Memorandum DCF-003 July 29, 1992 Page 2

1

- 3. The well installation for monitoring well DCF92-07 will follow the protocols outlined in the Draft Modified Well Installation Plan of May, 1992, with the following exceptions:
 - The boring will be advanced into bedrock using a tri-cone bit.
 - Soil samples will not be collected.
 - The well screen interval will be from 11 to 21 feet below the ground surface.

Sincerely,

LAW ENVIRONMENTAL, INC.

Heri M. Proch

Kevin M. Prochaska, P.G. Project Manager

KMP:mlh

Attachment

Lu Am A

for Gregory P. Myers, P.G. Principal

APPENDIX F

NONITORING WELL DEVELOPMENT/ADDITIONAL DEVELOPMENT

			SHEET	OF	1
JOB NAME Ft. Riley, Kansas). <u>11-1532</u>		
BY REJ	DATE <u>5/03/92</u>	_ CHECKED	КМР	_ DATE 9/02	2/92
	WELL DEVEL	OPMENT DATA			
1. Well No. DCF92-01					
2. Date of Installation :					
3. Date of Development : 4/23, 24/92 -	5/1-3/92				
4. Static Water Level (TOC): Before Dev	velopment	42.04	it.: 24 Hours A	uter <u>41.97</u>	ft
5. Quantity of Water Loss During Drilling,	If Used	260	_ Gal.	·	
6. Quantity of Water Loss During installat	tion, If Used	24	Gal.		
	Start	Dur	ing	End	
7. Physical Appearance	V <u>eryTurbid</u>	<u>Clear</u>	<u>Clear</u>	<u>Clear</u>	
Specific Conductance (umhos/cm)	1325	1225			
Temperature (C ^e)	17	15	15	16	
Turbidity (NTU)	<u>>200</u>	9	9	19	
pH (s.u.)	7.3	7.3		7.2	
8. Screen Length ft.			(after	r cut-off was rem	oved)
9. Depth of Well (TOC): Before Develop	ment 49.65	ft.; A	fter Developmer		_ ft.
10. Type and Size of Well Development Ed	quipment : QED	<u>manuf. well w</u>	<u>izard; air co</u>	mpressor	
model SGH-E1010; well contr	<u>oller No. 3013</u>	with a PVC de	velopment p	ump	
11. Type of Surge Equipment:	h surge block	with 3/4 inch	Triloc 5 foot	extensions	
		<u> </u>			
12. Height of Well Casing Above Ground S	Surface :	1.76	ft.	(From Survey Da	ata)
13. Quantity of Water Removed :85	52 Gal.	Total Time for D	evelopment :	26/0 Hr./N	Ain.
14. Date & Time Water Sample Collected	: 4/28/92 17	55			
REMARKS:					

.

			SHEET	OF
JOB NAME Ft. Riley, Kans	8	JOB N	0. <u>11-1532</u>	
BY REJ	DATE 4/29/92	_ CHECKED	KMP	DATE 9/02/92
	WELL DEVEL	OPMENT DAT	A	
1. Well No. DCF92-02				
2. Date of installation : 4/21/92	<u></u>			
3. Date of Development : Initial Development	elopment 4/29/9	2		
4. Static Water Level (TOC): Before D	evelopment	41.65	ft.: 24 Hours	After 41.17
5. Quantity of Water Loss During Drillin	g, If Used	500	Gal.	
6. Quantity of Water Loss During Instal	lation, If Used	0	Gal.	· · · · ·
	Start	Du	iring	End
7. Physical Appearance	VeryTurbid	<u>Clear</u>	<u>Clear</u>	Clear
Specific Conductance (umhos/cm)	1300			_1330
Temperature (C ^e)	19	22		22
Turbidity (NTU)	>200	2.8	3.8	3.8
pH (s.u.)	6.6	7.1	7.1	7.1
8. Screen Length10.01	t.		(afte	er stick-up was cut)
9. Depth of Well (TOC): Before Devek	opment 48.10)ft.;	After Developme	ent 47.66 ft.
10. Type and Size of Well Development	Equipment : QED	manuf. well	wizard; air c	ompressor
model SGH-E1010; well con	troller No. 3013	with a PVC d	levelopment	pump
11. Type of Surge Equipment:	nch surge block	with 3/4 inch	Triloc 5 foot	extensions
12. Height of Weil Casing Above Ground	I Surface :	1.93	f	t. (From Survey Data)
13. Quantity of Water Removed :	175 Gal.	Total Time for	Development : _	10/0 Hr./Min.
14. Date & Time Water Sample Collecte	od: 4/29/92 13	00		
REMARKS:				

1532.54

LAW ENVIRONMENTAL, INC.
GOVERNMENT SERVICES DIVISION

			SHEET	1OF	1
JOB NAME Ft. Riley, Kans	as	JOB NO	11-1532		
BY REJ/DLG	DATE 4/10/92	CHECKED	КМР	DATE9/	02/92
	WELL DEVE	LOPMENT DATA			
1. Well No. DCF92-03	_				
2. Date of Installation : 4/07/92					
3. Date of Development : 4/10/92					
4. Static Water Level (TOC): Before [)evelopment	38.17 ft	.: 24 Hours	After <u>38.31</u>	
5. Quantity of Water Loss During Drillin	ng, If Used	0	_ Gal.		
6. Quantity of Water Loss During Insta	llation, if Used	10	Gal.		
	Start	Durin	Da	End	
7. Physical Appearance	V <u>ery Turbid</u>	M <u>illdyTurbi</u> d	Turbid	<u>Clear</u>	
Specific Conductance (umhos/cm)		1500			
Temperature (C ^e)	19	20	20	20	
Turbidity (NTU)	>200	53	50	20	
рН (s.u.)	7.1	<u> </u>		7.3	
8. Screen Length10.0	ft.				
9. Depth of Well (TOC): Before Devel	opment 47,2	1 ft.; Af	ter Developme	nt 47.18	ft.
10. Type and Size of Well Development	Equipment : QED	manuf. well wi	zard; air co	mpressor	
model SGH-E1010; well cor	troller No. 3013	with a PVC de	velopment j	oump	
11. Type of Surge Equipment: <u>Two-i</u>	nch surge block	<u>with 3/4 inch 1</u>	riloc 5 foot	extensions	
12. Height of Well Casing Above Groun	d Surface :	1.80	ft	. (From Survey	Data)
13. Quantity of Water Removed :	<u>600</u> Gal.	Total Time for De	velopment : _	10/12 Hr	./Min.
14. Date & Time Water Sample Collect	ed : <u>4/10/92</u> 16	45			
REMARKS: Initially, water h	ad a shale oil s	heen.			
······································					

À

Ş

JOB NAME Ft. Riley, Kansas BY REJ/BMC DATE			
BY REJ/BMC	DATE	CHECKED KMP	DATE 9/2/92
	WELL DE	VELOPMENT DATA	
Well No. DCF92-04	<u> </u>		
. Date of Instailation : 4/21	/92		
. Date of Development :		-	
. Static Water Level (TOC): Be	afore Development	ft.: 24 Hours	After
. Quantity of Water Loss During	Drilling, If Used	Gal.	
. Quantity of Water Loss During	installation, If Used	Gal.	
	Start	During	End
. Physical Appearance		/	<u></u>
Specific Conductance (umho	s/cm)		<u> </u>
Temperature (C ^o)			· · · · · · · · · · · · · · · · · · ·
Turbidity (NTU)	s/cm)	/	
pH (s.u.)			
Screen Length	ft.		
. Depth of Well (TOC): Before	Development	ft.; After Developm	entft.
0. Type and Size of Well Develo	pment Equipment :		
1. Type of Surge Equipment:			·····
		······································	
2. Height of Well Casing Above	Ground Surface :		ft. (From Survey Data)
3. Quantity of Water Removed :	Gal	. Total Time for Development :	Hr./Min.
4. Date & Time Water Sample C	Collected :		
REMARKS: Monitoring	well only produce	d 025. of water every 4 hour	s - 8 hrs.
		· · · · · · · · · · · · · · · · · · ·	
		·····	

2.64

GOVERNMENT SERVICES DIVISION

.

			SHEET	OF	
JOB NAME Ft. Riley, Kans	8	JOB I	NO. <u>11-1532</u>		
BY REJ/DLG	DATE 4/11/92	CHECKED_	КМР	DATE 9/02/9	2
	WELL DEVI	ELOPMENT DAT	A		
1. Well No	_				
2. Date of Installation : 4/06/92	<u>,</u>				
3. Date of Development :					
4. Static Water Level (TOC): Before D	evelopment	35.5	ft.: 24 Hours	After <u>35.39</u>	
5. Quantity of Water Loss During Drillir	ng, If Used	0	Gal.		
6. Quantity of Water Loss During Insta	llation, If Used	10	Gal.		
	<u>Start</u>	ם	uring	End	
7. Physical Appearance	Very Turbid	VeryTurbid	V <u>ery Turbid</u>	V <u>eryTurbid</u>	-
Specific Conductance (umhos/cm)	_1050	1000	1000	1050	
Temperature (C ⁹)	18	18	18	19	
Turbidity (NTU)	>200	>200	>200	>200	
pH (s.u.)	7.2	7.4	7.4	7.4	
3. Screen Length10.0	ft. (Before pad	was installed)	(After 1	oad was instailed)	
9. Depth of Well (TOC): Before Devel	• •	-	After Developme		•
10. Type and Size of Well Development	Equipment : QEI	D manuf. well	wizard; air co	ompressor	-
model SGH-E1010; well con	troller No. 301	3 with a PVC	development	pump	-
11. Type of Surge Equipment:	nch surge bloc	k with 3/4 inc	h Triloc 5 foot	extensions	_
					_
12. Height of Well Casing Above Groun	d Surface :	26	fi	. (From Survey Data)
13. Quantity of Water Removed :	18 Gal.	Total Time fo	Development :	9/25 Hr./Mir].
14. Date & Time Water Sample Collect	ed: 4/11/92 1	715			
REMARKS: 1st Developr			<u></u>		
			_	<u> </u>	_

· "·			SHEET	OF	2
JOB NAME Ft. Riley, Kansa	8	JOB N	0. <u>11-1532</u>		
BY REJ/COK	DATE <u>5/13/92</u>		КМР	DATE9/02/	/92
	WELL DEVEL	OPMENT DAT	Δ		
Well No. DCF92-05					
Date of Installation :					
. Date of Development :5/12-13/9	2				
. Static Water Level (TOC): Before Do	evelopment	35.85	ft.: 24 Hours	After 35.60	
. Quantity of Water Loss During Drilling	g, If Used	0	Gal.		
. Quantity of Water Loss During Install	ation, If Used	10	Gal.		
	<u>Start</u>	Du	iring	End	
Physical Appearance	<u>Very Turbi</u> d	Clear	<u>Clear</u>	Clear	
Specific Conductance (umhos/cm)		1250	1225	1250	
Temperature (C ^e)	21				
Turbidity (NTU)	>200		_15	17	
pH (s.u.)	7.8				
. Screen Lengthf	t.				
. Depth of Well (TOC): Before Develo	pment <u>42.77</u>	<u> </u>	After Developme	ont <u>42.12</u>	ft.
0. Type and Size of Well Development	Equipment : QED	manuf. well	wizard; air c	ompressor	
model SGH-E1010; well cont	troller No. 3013	with a PVC o	levelopment	pump	
1. Type of Surge Equipment:	<u>ch surge rings</u>	attached to c	levelopment	pump.	
2. Height of Well Casing Above Ground	Surface :	26	f	t. (From Survey Da	ta)
3. Quantity of Water Removed :1	15 Gal.	Total Time for	Development : _	10/15 Hr./M	lin.
4. Date & Time Water Sample Collecte	d: <u>5/13/92 10</u>	15			
REMARKS:2nd Developr	<u>ment. This deve</u>	elopment was	s performed a	after the surging	g
and purging event.					

LAW ENVIRONMENTAL, INC.

			SHEET	1 OF 1
JOB NAME Ft. Riley, Kansa	8	JOB N	0. <u>11-1532</u>	
BY REJ/DLG	DATE 4/23/92	_ CHECKED	KMP	DATE <u>9/02/92</u>
	WELL DEVE	LOPMENT DAT	Δ	
1. Well No. DCF92-06				
2. Date of Installation : 4/18/92	<u> </u>			
3. Date of Development :				
4. Static Water Level (TOC): Before D	evelopment	43.37	ft.: 24 Hours A	fter <u>43.51</u>
5. Quantity of Water Loss During Drillin	g, If Used	100	Gal.	
6. Quantity of Water Loss During Install	ation, If Used	24	Gal.	
	<u>Start</u>	Du	ring	End
7. Physical Appearance	V <u>eryTurbid</u>	<u>Turbid</u>	<u>Clearing</u>	Clear
Specific Conductance (umhos/cm)	1450	1275	1275	
Temperature (C ^e)	17	18	18	18
Turbidity (NTU)	<u>>200</u>	<u>_>200</u>		
pH (s.u.)	7.0	7.3	7.2	7.1
8. Screen Length f	t.			
9. Depth of Well (TOC): Before Devek	opment50.7	<u>8</u> ft.;	After Developmer	nt 50.75 ft.
10. Type and Size of Well Development	Equipment : <u>QED</u>	manuf. well	wizard; air co	mpressor
model SGH-E1010; well con	troller No. 3013	with a PVC d	evelopment p	oump
11. Type of Surge Equipment:	ich surge block	with 3/4 inch	Triloc 5 foot	extensions
-				
12. Height of Well Casing Above Ground	I Surface :	1.6	ft.	(From Survey Data)
13. Quantity of Water Removed :	386 Gal.	Total Time for	Development :	28/45 Hr./Min.
14. Date & Time Water Sample Collecte				
REMARKS: Initial developm			per Corps pro	otocol.
Second purging event remove				
during drilling and installation				

DEPARTMENT OF THE ARMY KANSAS CITY DISTRICT. CORPS OF ENGINEERS 700 FEDERAL BUILDING KANSAS CITY, MISSOURI 64106-2896

REPLY TO ATTENTION OF: LAW ENVIRONMENTAL

June 12, 1992

GOVERNMENT SERVICES

Hazardous and Toxic Waste Project Management Branch

Mr. Lou Karably Law Environmental, Inc. 115 Townpark Drive Suite 400 Kennesaw, Georgia 30144-5508

Dear Mr. Karably:

After discussion with my staff, I have determined that the wells at the three sites at Fort Riley have not been properly and/or completely developed. You are hereby directed to perform additional well development which is within your scope of work and IAW the work plans. The additional well development criteria/procedures for ground water monitoring wells at Fort Riley Sites (Pesticide Storage Facility, Dry Cleaning Facility, and South Funston Landfill), which was mutually established and agreed to between the Corps Of Engineers, Fort Riley, Law Environmental, EPA and KDHE, are as follows:

1. Surge for 15 minutes using a surge block.

2. Pump until water becomes translucent. Use QED pump on DCF and PSF wells 1, 2, 3, 4. Use a higher yielding pump on all SFL wells and PSF-05 well.

3. Record time and volume required to pump to a translucent state.

4. Repeat steps 1, 2, and 3 until time of pumping to a translucent state is stabilized over 3 consecutive surge/pump cycles within 30 seconds.

5. Record NTU, PH, specific conductance and temperature at end of last surge/purge cycle

6. Pump until water becomes clear. (Note: Pump from entire screen interval. Move pump up and down well screen, one time at two foot intervals until clear water appears at each 2 foot interval.

7. Measure NTU, PH, specific conductance, and temperature.

8. If NTU is equal to or less than 30 units, well development is complete. If NTU is greater than 30 units following additional well development effort, the USACE project manager will be contacted immediately with all pertinent data so that the issue can be revisited with Fort Riley and the regulators to determine if 1) well development should be continued or abandoned and/or 2) an alternate sampling procedure should be pursued to achieve the 30 NTU criteria.

The approved water source for well development of the wells at Dry Cleaning and Pesticide Storage site is either distilled water or McCormick well water (the same water used during drilling). We are awaiting a decision by EPA as to whether or not they will allow us to use well water from the development of the bottom of the screen in the shallow landfill wells for use in surging the upper portion of the screen in the same well.

If you have any questions, please call CPT Carol Charette, of my staff, at 816-426-7446.

Sincerely,

Wilbur H. Boutin, Jr. Colonel, Corps of Engineers

District Engineer

		SHEET <u>1</u>	_ OF1
JOB NAME	JOB NO.	11-1532	
BY D. Grey R. Jones DATE 6/23/92	_ CHECKED	KMP DATE	9/02/92
WEATHER: LOW: <u>75°</u> HIGH: <u>83</u> °	_ RAIN (inches):	OTHER	: <u>Sunny</u>

ADDITIONAL DEVELOPMENT FORM

 MONITORING WELL NO:
 DCF92-01
 DATE OF DEVELOPMENT:
 6/23/92

 STATIC WATER LEVEL:
 BEFORE DEV. (TOC)
 41.75'
 24 HRS. AFTER DEV.
 41.90'

 TOTAL DEPTH:
 BEFORE DEV. (TOC)
 48.94'
 AFTER DEV. (TOC)
 49.52'

 LENGTH OF WATER COLUMN:
 7.19'

SURGE/PURGE CYCLE #	TIME TO TRANSLUCENCE STATE	рН	COND.	TEMP. C	NTU	TOTAL GALS. REMOVED
1	12 min.	6.9	1250	24	51	58
2	12 min. 25 sec.	7.2	1400	24	46	
3	11 min. 45 sec.	7.2	1250	24	42	
Final pumping (Top)		7.1	1200	26	13	
Bottom		7.0	1200	26	5	₩
		_				
		_				
		_				
		_				

REMARKS:

SHEET	1	OF	<u> 1</u>	_
-------	---	----	--------------	---

JOB NAME Ft. Riley (DCF))		JOB NO.	·	11-1532	
BY D. Grey R. Jones	DATE_	6/24/92	_ CHECKED	КМР	DATE_	9/02/92
WEATHER: LOW:	_HIGH: _	92 °	_ RAIN (inches):		OTHER: _	P. Cloudy

ADDITIONAL DEVELOPMENT FORM

Monitoring Well No:	DCF92-02	Date of Development:	6/24/92	-
Static Water Level: Before	Dev. (TOC) <u>41.16'</u>	24 hrs. After Dev	41.27'	-
Total Depth: Before Dev. ((tTOC) 47.63'	After Dev. (TOC)	47.63'	
Length of Water Column:	6.46'	_		

SURGE/PURGE CYCLE #	TIME TO TRANSLUCENCE STATE	рН	COND.	TEMP.	NTU	TOTAL GALS. REMOVED
1	5 min. 0 sec.	7.66	1470	88.6	10	41
2	2 min. 0 sec.	7.68	1430	80.2	44	
3	1 min. 50 sec.	7.68	1420	75.8	21	
4	1 min. 35 sec.	7.66	1410	72.9	27.5	
Final pumping (Top)		7.65	1400	72.7	12	
Bottom		7.67	1410	73.1	6.5	
	·····					
		_				

REMARKS: _____

			SHEET _	<u> </u>	OF1
JOB NAME Ft. Riley (DCF)		JOB NO	11	-1532	
BY B. Craig_ D. Grey	DATE <u>6/15-17/92</u>	_ CHECKED	КМР	DATE_	9/02/92
WEATHER: LOW:70°	HIGH: <u>80</u> °	_ RAIN (inches): _		OTHER: .	Sunny

ADDITIONAL DEVELOPMENT FORM

Monitoring Well No:	DCF92-03	Date of Development: _	6/15-17/92
Static Water Level: Before	e Dev. (TOC) <u>37.92'</u>	24 hrs. After Dev	38.50'
Total Depth: Before Dev.	(tTOC) 47.15'	After Dev. (TOC)	47.15'
Length of Water Column:	9.23'		

SURGE/PURGE CYCLE #	TIME TO TRANSLUCENCE STATE	рН	COND.	TEMP. ℃	NTU	TOTAL GALS. REMOVED
1	78 min.	7.3	1300	17.6	145	606
2	50 min.	7.5	1250	24	196	
3	47 min.	7.8	1300	28	160	
4	58 min.	7.4	1310	26	170	
5	<u>41 min.</u>	7.5	1300	28	162	
6	34 min.	7.9	1310	25	140	
7	56 min.	7.6	1250	18	158	
Final pumping (Top)	30 min.	7.4	1300	17.5	19	
Middle	23 min.	7.4	1300	19	26.8	
Bottom		7.5	1310	20.5	50	¥

REMARKS: __

Added a total of 30 gallons during developing monitoring well

inorder to develop upper section of the screen.

			SHEET_	1(DF1
JOB NAME Ft. Riley (DCF)		JOB NO.	11	-1532	
BY R. Jones D. Grey					
WEATHER: LOW:75°	HIGH: 90°	_ RAIN (inches):		OTHER: _	

ADDITIONAL DEVELOPMENT FORM

Monitoring Well No:	CF92-04	Date of Development:	6/25/92
Static Water Level: Before Dev. (T	OC) <u>40.42'</u>	24 hrs. After Dev.	40.90'
Total Depth: Before Dev. (tTOC) _	44.42'	After Dev. (TOC)	44.35'
Length of Water Column:	4.00'		

SURGE/PURGE CYCLE #	TIME TO TRANSLUCENCE STATE	рН	COND.	TEMP. °F	NTU	TOTAL GALS. REMOVED
1	44 min. 0 sec.	7.8	1212	85	161	31
2	1 hr. 1 min.	7.9	1176	85	95	
3	58 min. 0 sec.	7.75	1247	82	66.2	
4	90 min.	7.82	1212	79	>200	
5	surged - 15 min.					¥
	· · · · · · · · · · · · · · · · · · ·					
					,	

REMARKS: Water recovered is drilling water. The monitoring well was not further

developed after 5 cycles.

			SHEE	т <u> 1 </u> (OF <u>1</u>
JOB NAME Ft. Riley (DCF)	·	JOB NO.		11-1532	<u></u>
BY S. Ruth T. Mathew	DATE <u>6/27/92</u>	CHECKED	КМР	DATE_	9/02/92
WEATHER: LOW:	HIGH:	RAIN (inches):		OTHER: _	

ADDITIONAL DEVELOPMENT FORM

Monitoring Well No:	DCF92-0	5	Date of Development: _	6/27/92
Static Water Level: Befor	e Dev. (TOC)	34.78'	24 hrs. After Dev.	34.94'
Total Depth: Before Dev.	(tTOC)	42.10'	After Dev. (TOC)	41.95'
Length of Water Column:		7.32'		

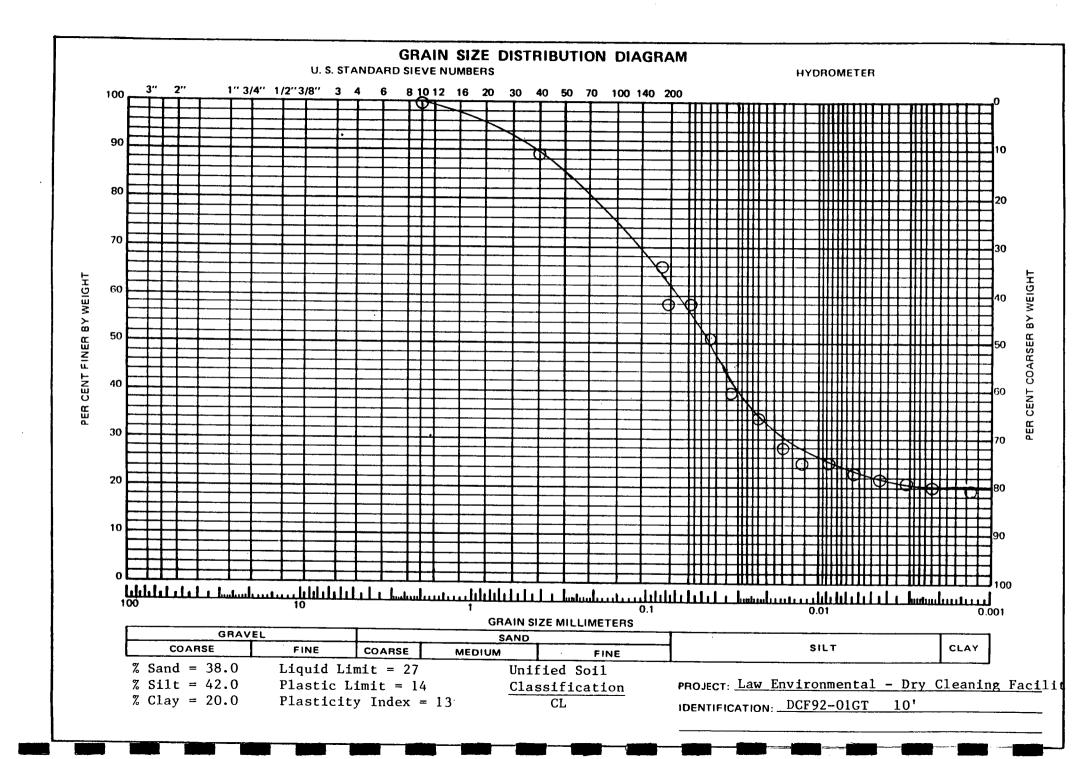
SURGE/PURGE CYCLE #	TIME TO TRANSLUCENCE STATE	рН	COND.	TEMP. °F	NTU	TOTAL GALS. REMOVED
1	34 min. 56 sec.	6.93	1200	18.3	92	138
2	29 min. 38 sec.	7.10	1300	17.6	105	
3	26 min. 33 sec.	7.11	1300	18.4	65	
4	26 min. 40 sec.	6.67	1200	17.2	96	
5	24 min. 05 se c.	6.90	1280	16.5	41	
6	23 min. 55 sec.	6.81	1280	17.9	65	
7	23 min. 50 sec.	6.91	1300	16.9	75	
8	29 min. 29 so c.	6.94	1300	17.7	122	`
Final pumping (Top)		7.87	1400	18.4	24	
Middle		6.92	1300	18.2	19	
Bottom		6.99	1350	17.5	28	
¥ 9	37 min. 21 sec.	6.97	1200	17.5	79	₩

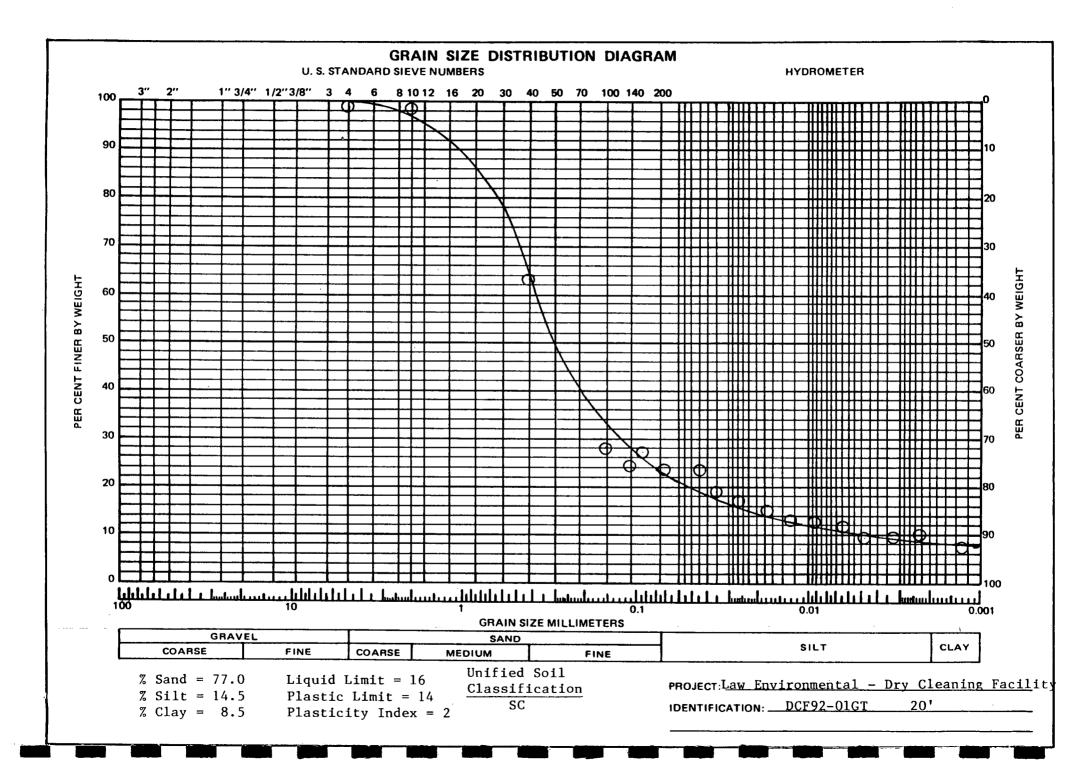
REMARKS: _____

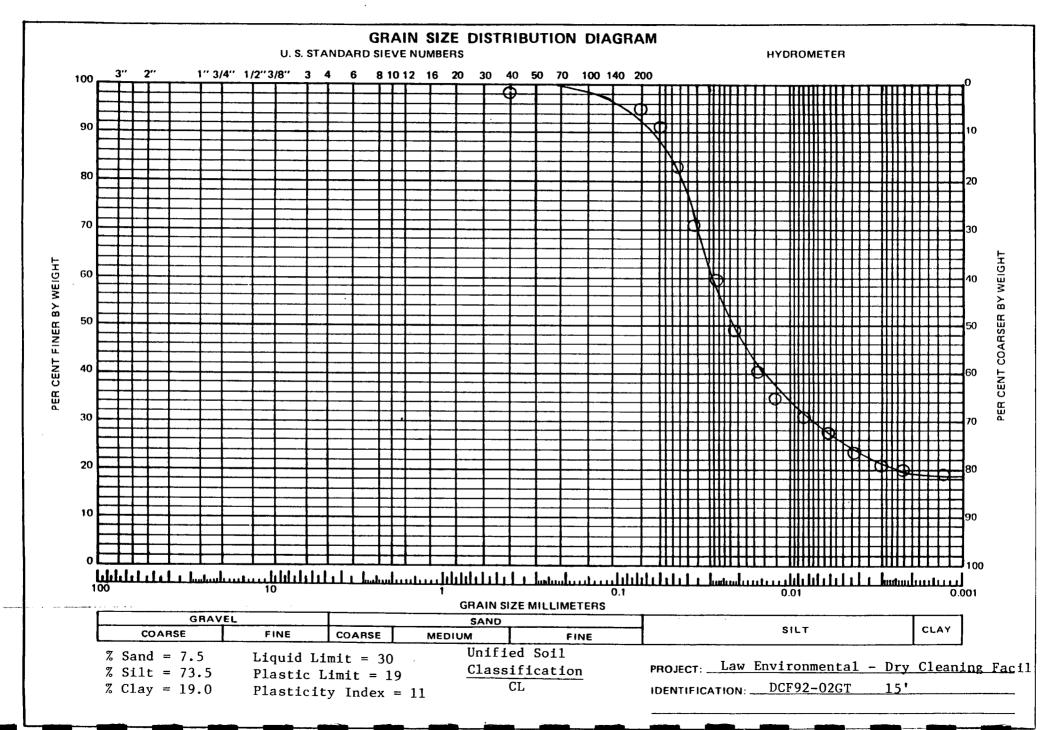
		SH	EET <u>1</u> OF <u>1</u>
JOB NAME Ft. Riley (DCF)	JOB NO	11-1532
BY D. Grey T. Mathew			
WEATHER: LOW: <u>80</u> °	_HIGH: 92 °	RAIN (inches):	OTHER: P. Cloudy

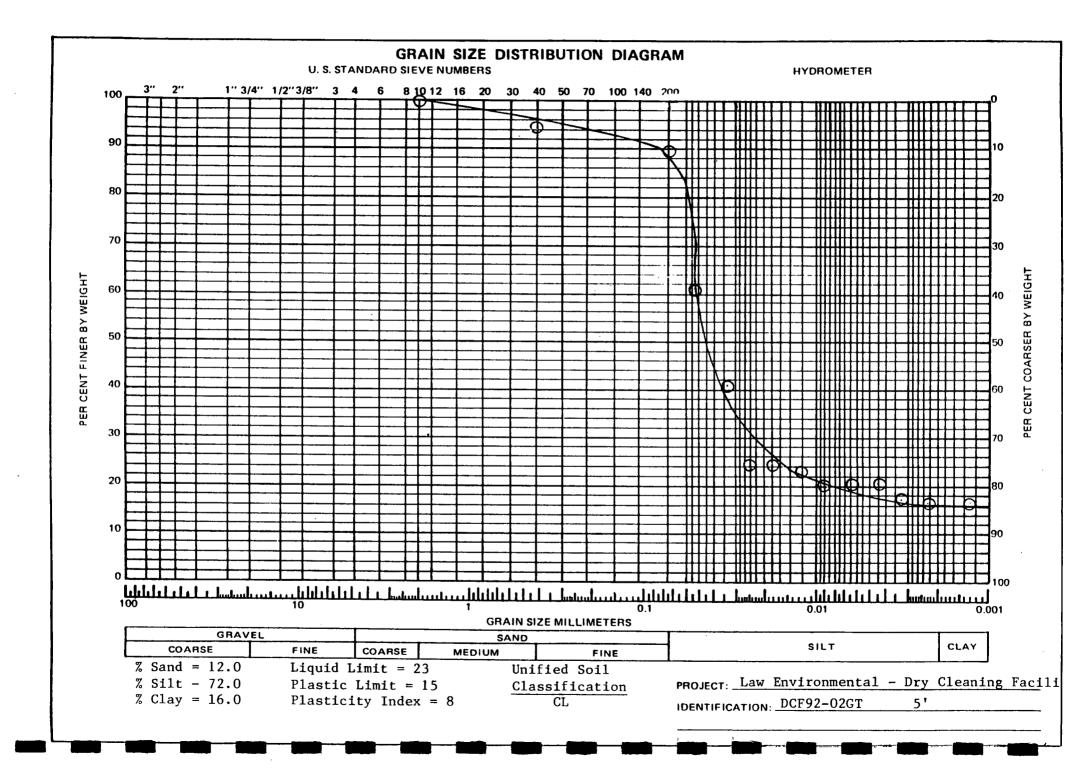
ADDITIONAL DEVELOPMENT FORM

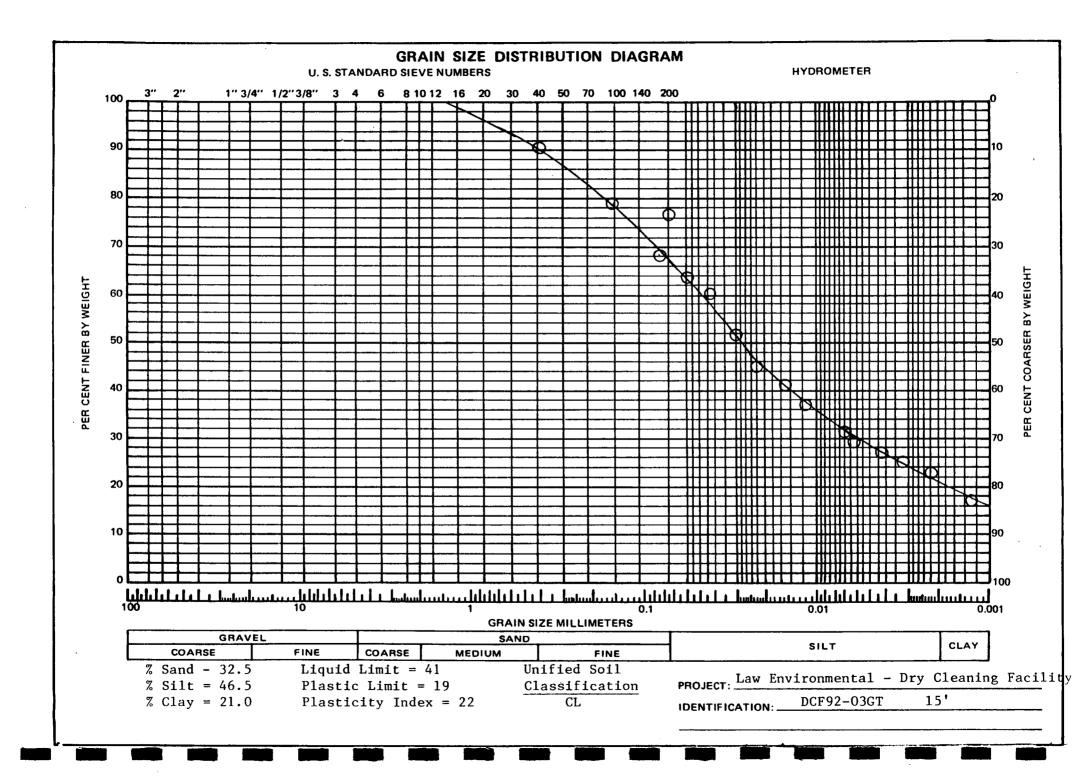
Monitoring Well No:DCF92-06	<u> </u>	Date of Development:	6/24/92
Static Water Level: Before Dev. (TOC)	43.52'	24 hrs. After Dev.	43.50'
Total Depth: Before Dev. (tTOC)	50.06'	After Dev. (TOC)	50.08'
Length of Water Column:	6.54'		

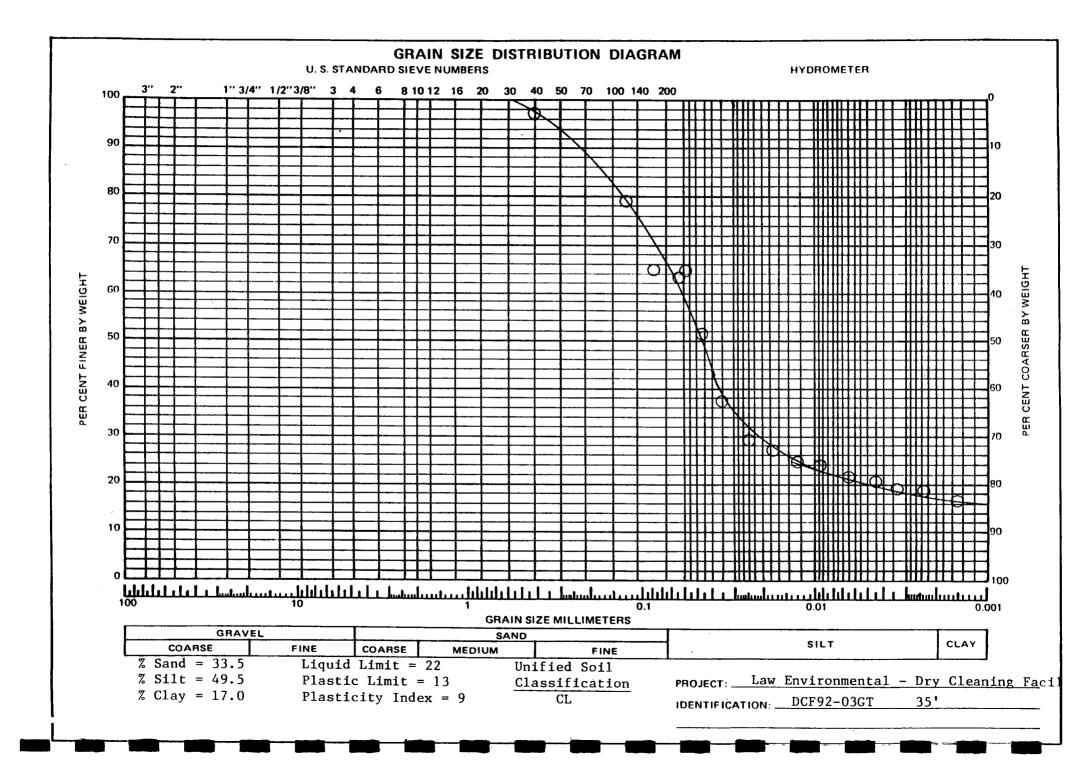

SURGE/PURGE CYCLE #	TIME TO TRANSLUCENCE STATE	рН	COND.	TEMP. °F	NTU	TOTAL GALS. REMOVED
1	7 min. 30 sec.	7.61	1050	184	92	35
2	4 min. 40 sec.	7.70	1280	82.9	97	
3	4 min. 30 sec.	7.67	1390	83	52	
4	4 min. 30 sec.	7.71	1410	82.7	67	
Final pumping (Top)		7.71	1450	84.5	15	
Bottom		7.74	1490	85.1	13.5	₩
`	······································					

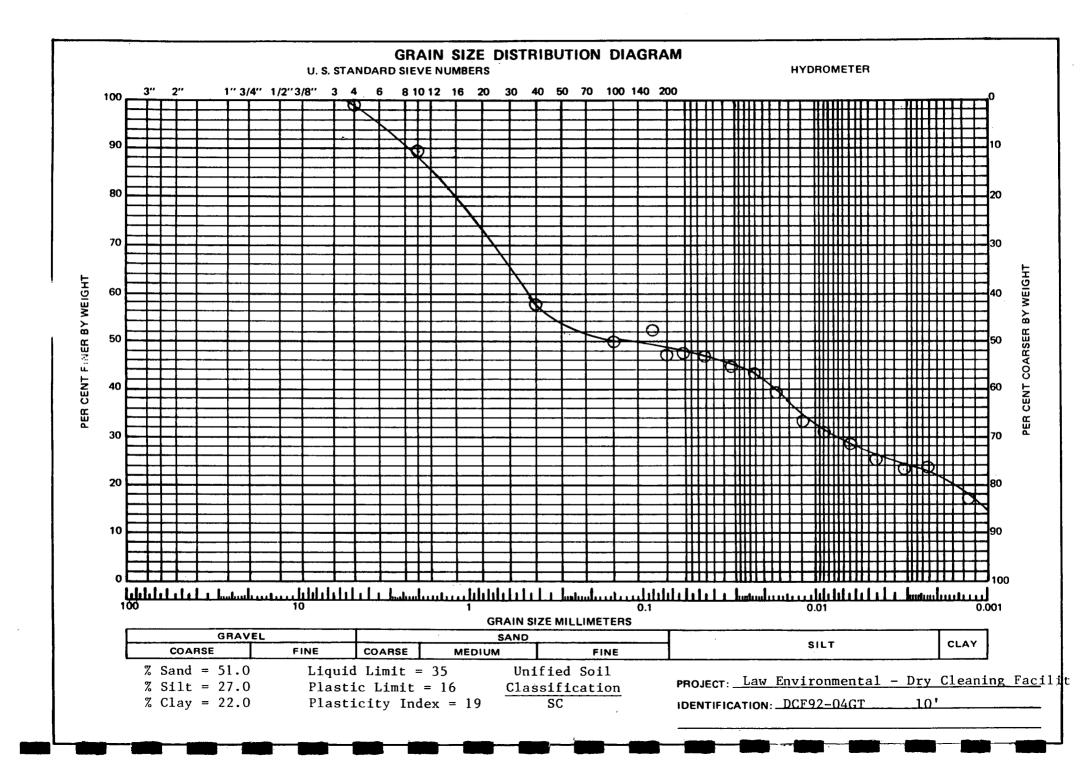

ł

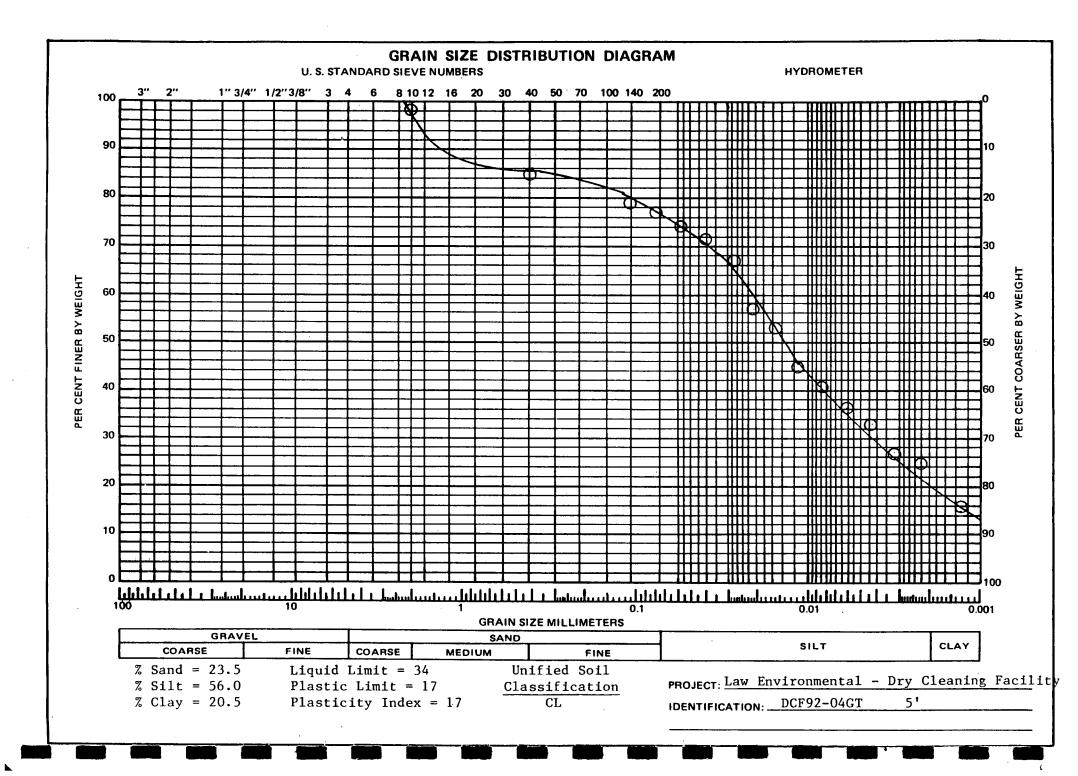

REMARKS: _____ Added a total of three gallons of DI water to monitoring well.

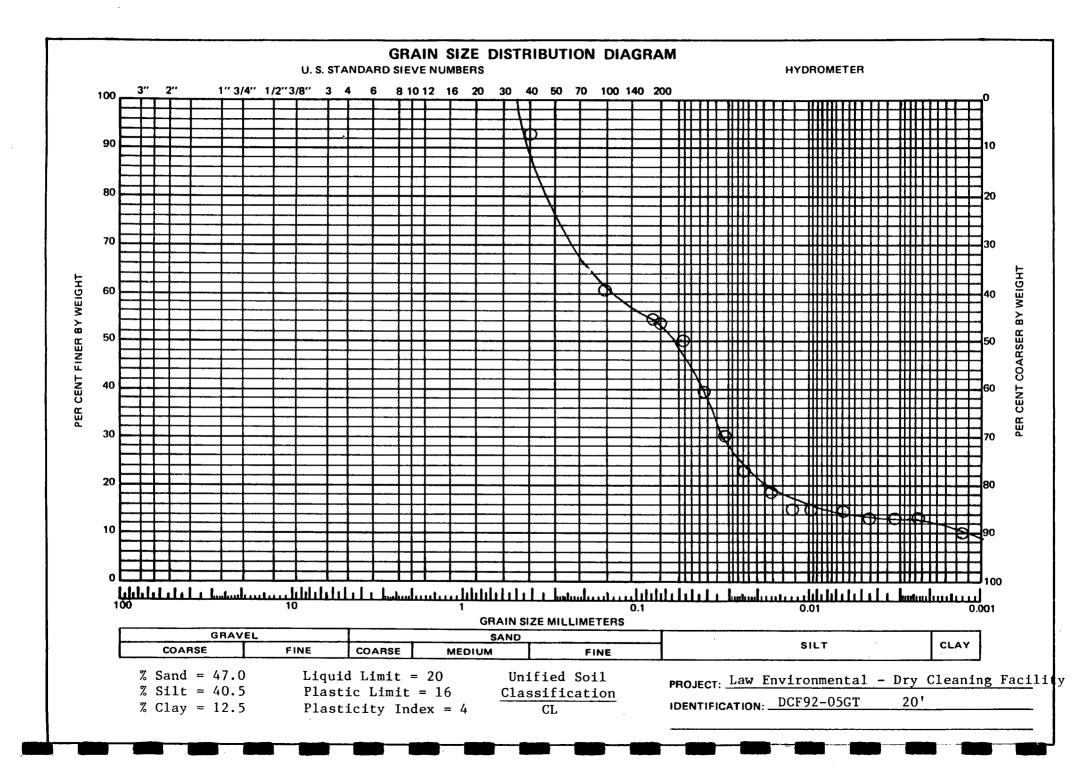

APPENDIX G

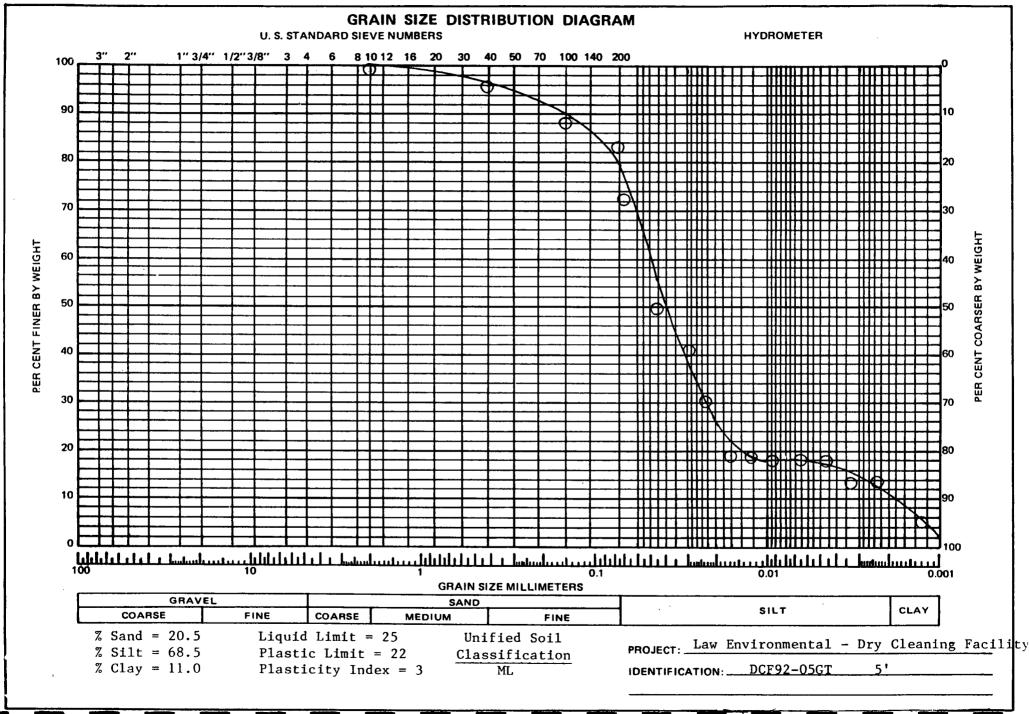

GEOTECHNICAL ANALYSIS

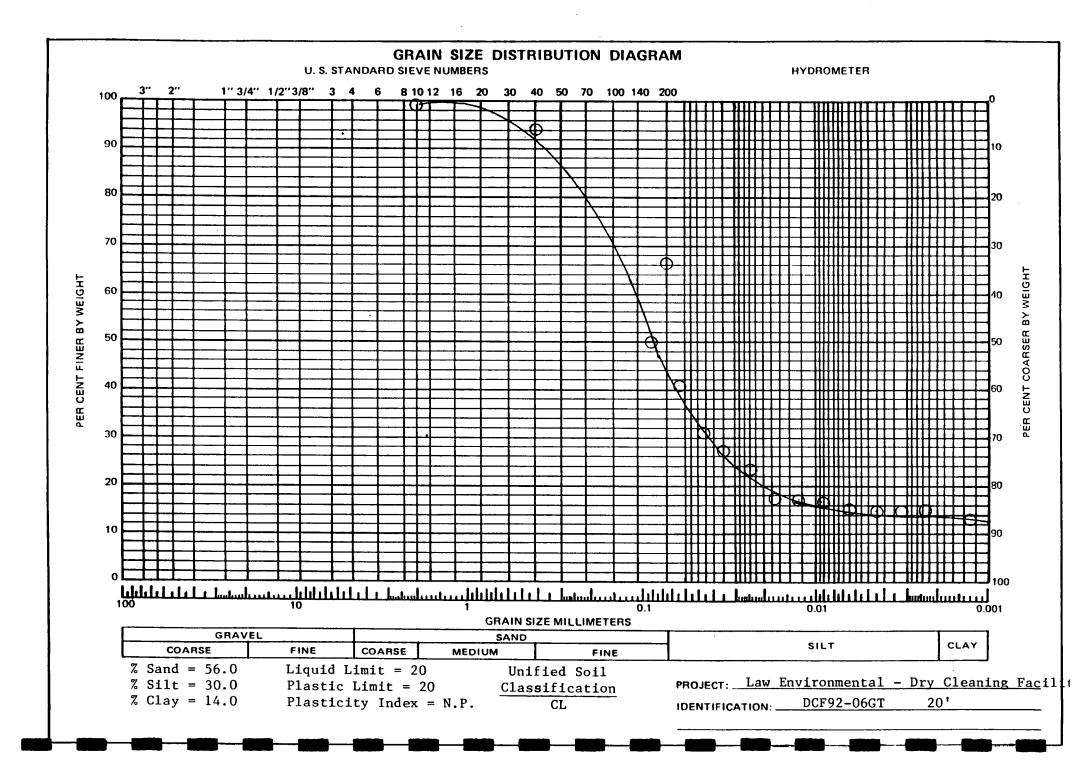












APPENDIX H

SURVEY DATA/SITE MAP

POINT NO.	NORTH	EAST	GROUND ELEVATION	TOP OF CASING ELEVATION
MW 1	268,085.86	2,343,473.10	1090.3	1092.06
MW 2	267,955.20	2,343,330.67	1087.1	1089.03
MW 3	267,872.86	2,343,372.46	1084.77	1086.57
MW 4	267,837.57	2,343,056.57	1085.6	1087.37
MW 5	267,803.45	2,343,354.16	1083.0	1082.74 .
MW 6	268,047.65	2,343,358.34	1090.8	1092.40
MW 7	267,848.66	2,343,051.14	1086.1	1087.98

DRY CLEANERS AREA MONITOR WELLS

DRY CLEANERS AREA SURFACE WATER POINTS

POINT NO.	NORTH	EAST	ELEVATION
SW 1	267,942.37	2,343,515.52	1061.8
SW 2	267,721.52	2,343,350.18	1055.5
SW 3	267,399.73	2,343,398.30	1045.5

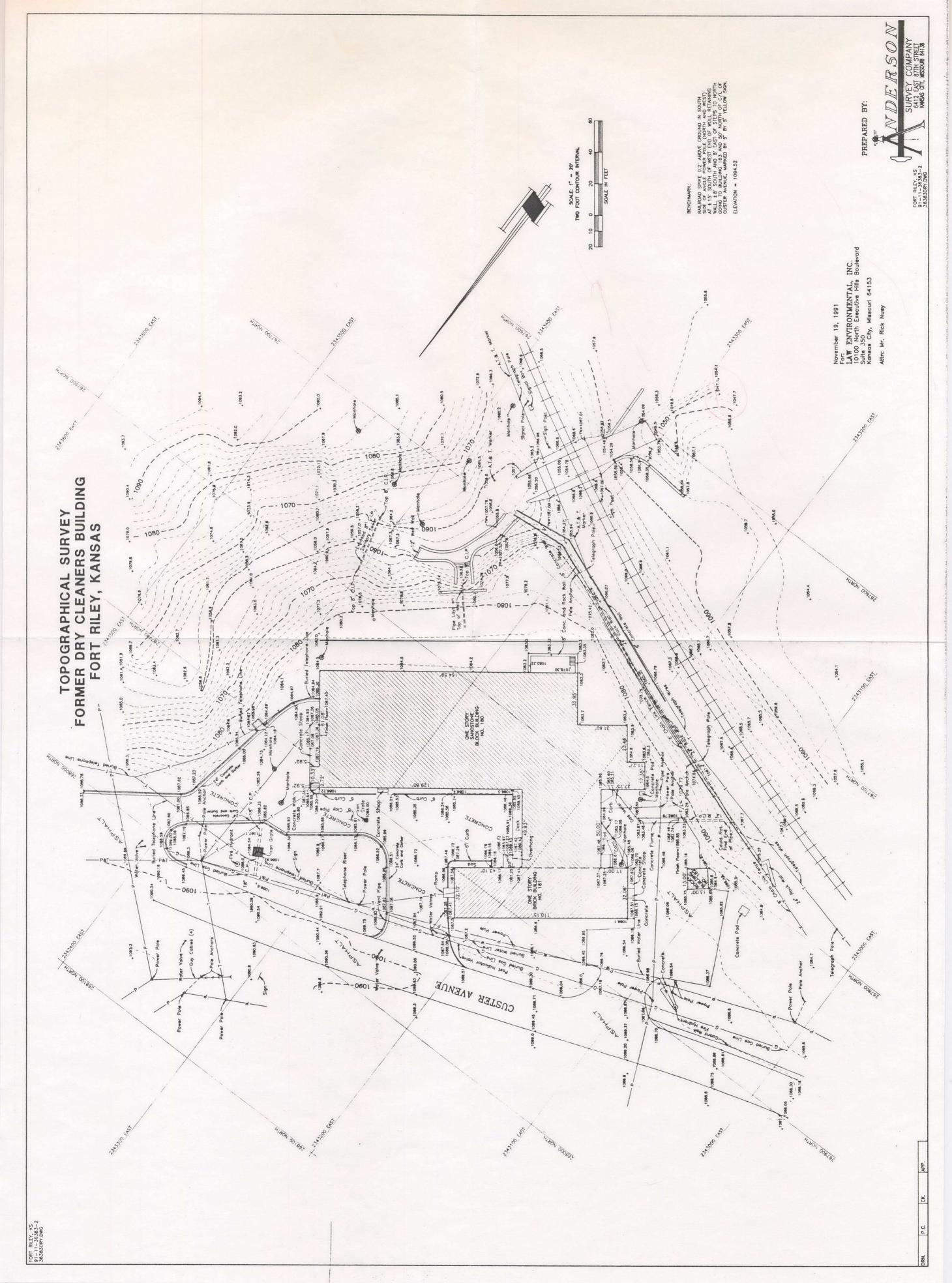
DRY CLEANERS AREA SEDIMENT SAMPLE

POINT NO.	NORTH	EAST	ELEVATION
SD 1	267,938.80	2,343,512.72	1062.1
SD 2	267,716.38	2,343,348.75	1055.8
SD 3	267,396.38	2,343,400.12	1046.0

DRY	CLE	ANERS	AREA
BC	DRE	HOLES	

	DONE		
POINT NO.	NORTH	EAST	ELEVATION
SB 1	267,914.57	2,343,162.67	1086.2
SB 2	267,947.68	2,343,288.17	1087.6
SB 3	267,968.67	2,343,409.62	1087.6
SB 4	267,939.91	2,343,374.60	1085.50
SB 5	267,909.35	2,343,325.26	1085.54
SB 6	267,922.79	2,343.249.75	1086.93
SB 7	267,844.06	2,343,237.77	1085.88
SB 8	267,859.31	2,343,093.56	1086.23
SB 9	267,814.12	2,343.163.72	1084.84
SB 10	267,749.04	2,343,231.84	1083.1
SB 11	267,751.02	2,343,303.95	1081.7
SB 12	267,822.10	2,343,376.45	1083.0
SB 13	267,921.22	2,343,393.66	1085.3
SB 14	267,732.17	2,343,381.80	1062.6
SB 15	267,587.34	2,343,267.24	1057.4

••


-

•

٠

.

•

APPENDIX I

MRD DATA/REVISED SAMPLING PROCEDURE

DEPARTMENT OF THE ARMY Missouri River Division, Corps of Engineers Division Laboratory Omaha, Nebraska

Total Fuel Hydrocarbons

FAMIS No: 471 Project: Fort Riley - Dry Cleaning Facility; Fort Riley, KS

QC sample Identifier: Method Blank Customer Sample No: NA Date sample Taken: NA MRD Lab Sample No: 920511MB Date Sample Received: NA Date Extracted: 11 May 92 Date Analyzed: 11 May 92

Analysis Method: EPA Method 8015 (Modified)

Sample Description: DI Water sample container Used: 40 mL vial

Analyst: M. Woster

RESULTS

A VOA Vial of DI water (44ml) was transferred to a 50 ml crimp-sealed septum top glass bottle and 5 μ L of p-bromofluorobenzene (BFB) surrogate spike solution was added. The bottle was sealed, then heated in a water bath at 90°C for one hour. One milliliter of headspace gas was injected into the gas chromatograph.

Analysis for	Sample Result(µg/L)	Detection Limits (µg/L)		
TFH, C6-C16	<u> </u>	50		
BFB Surrogate 1	Recovery: 100.0%			

u: Below Detection Limit

Approved By:

David & Splichel Date: 5-19-92

PRELIMINARY

DEPARTMENT OF THE ARMY Missouri River Division, Corps of Engineers Division Laboratory Omaha, Nebraska

PRELIMINARY

Total Fuel Hydrocarbons

FAMIS No: 471 Project: Fort Riley - Dry Cleaning Facility; Fort Riley, KS

QC Sample Identifier: Laboratory Duplicate Date Sample Taken: 21 Apr 92 Date Sample Received: 22 Apr 92 Date Extracted: 11 May 92 Date Analyzed: 11 May 92

Analysis Method: EPA 8015 (Modified)

Sample Description: Water Sample Container Used: 40 mL glass vial

Analyst: M. Woster

RESULTS

A VOA vial of sample (44 ml) was transferred to a 50 ml crimp-sealed septum-top glass bottle and 5 μ L of p-bromofluorobenzene (BFB) surrogate spike solution was added. The bottle was sealed, then heated at 90°C for one hour. Dne milliliter of headspace gas was injected into the gas chromatograph.

Analysis for	Sample Sample Result 1 Result 2		Detection Limits (µg/L)		
TFH, C6-C16	243	160	50		
BFB Surrogate Recovery (%)	89.2	67.5			
Average = $202 \mu g/L$ RPD = .41					
u: Below Detection L	imit				

Jan E. Splichal Date: 5-19-92 Approved By:

MAY 20 '92 12:43 CEMRK 816 426 2730

11-1532/1 11 Ory Cleans

DEPARTMENT OF THE ARMY Missouri River Division, Corps of Engineers Division Laboratory Omaha, Nebraska

> PRELIMINARY Total Fuel Hydrocarbons

FAMIS No: 471 Project: Fort Riley - Dry Cleaning Facility; Fort Riley, KS

Date Sample Taken: 21 Apr 92 Date Sample Received: 22 Apr 92 Date Extracted: 11 May 92 Date Analyzed: 11 May 92

Analysis Method: EPA Method 8015 (Modified)

sample Description: Water sample container Used: 40 mL glass vial

Analyst: M. Woster

Customer Sample No: Core Water (DC92-04)

MRD Lab Sample No: 920423-H016

RESULTS

VOA vial of sample (44 ml) was transferred to a 50 ml crimp-sealed septum-top glass bottle and 5 μ L of p-bromofluorobenzane (BFB) surrogate spike solution was added. The bottle was sealed, then heated at 90°C for one hour. one milliliter of headspace gas was injected into the gas chromatograph.

Analysis for	Result (µg/L)	Detection Limits $(\mu g/L)$	
TFH, C6-C16	243	50	
BFB Surrogate Recovery:	89.2%		

ab Comment: The sample contains C9 to C12 petroleum hydrocarbons, similar to highly weathered gasoline or mineral spirits residues.

h: Below Detection Limit

Approved By:

David & Splichal Date: 5-19-92

P.3/5

404-499-6800

July 10, 1992

Memorandum for: Commander Engineer District Kansas City Attn: CEMRK-MD-H, Cpt. Carol Ann Charette Kansas City, MO 64106

Subject: Technical Memorandum DCF-002, PSF-001, SFL-004: Sampling Procedure for Monitoring Wells at Southwest Funston Landfill (SFL), Pesticide Storage Facility (PSF) and the former Dry Cleaning Facility (DCF), Ft. Riley, Kansas. The sample collection procedure described below replaces the equipment and procedural descriptions in the following documents:

	SFL	PSF	DCF
Draft Modified Field Sampling Plan	Section 5.3, pg.5-28	Section 5.3 pg. 5-26	
Draft Modified Quality Assurance Plan	Section 4.1, pg.4-6	Section 4.1	
Draft Modified Chemical Data Aquisition			Section 4.4 pg. 4-29

1. <u>Purpose</u>: The purpose of this memorandum is to describe the change in sampling procedure for the monitoring wells. Pursuant to the requirements as noted in Section XV, Paragraph E of the Federal Facilities Agreement (IAG), this memorandum was prepared for the EPA, KDHE and the administrative record to document the following modifications and/or changes in field work for the Southwest Funston Landfill, the Pesticide Storage Facility and the former Dry Cleaning Facility. These changes were agreed upon by the following Project Managers from the Corps of Engineers, Ft. Riley, KDHE, Law Environmental, and EPA Region 7:

1530.50

Technical Memorandum DCF-002 July 10, 1992 Page 2

Corps of Engineers: Ft. Riley: KDHE: Law Environmental: EPA: Cpt. Carol Ann Charette Ms. Janet Wade Ms. Rachel Miller Mr. John Cook Mr. Scott Marquess

- 2. <u>Issue/Background/Rationale:</u> In an effort to collect less turbid samples from the groundwater monitoring wells at the above mentioned sites, a dedicated bladder pump system will be employed. The bladder pump is designed to deliver a flow stream of 100 mls/minute to help insure volatile organic compound integrity as well as maintaining a constant flow rate throughout the sampling process.
- 3. <u>Action</u>: The bladder pumps are manufactured by QED, Inc. model numbers T1200 and T1500; the bladder pump body will be constructed of Teflon/316 stainless steel and contain a teflon bladder. Each pump will be connected to polyethylene tubing with an inner teflon lining.

Installation

- The bladder pump will be placed in each well to optimize sampling volume and best represent aquifer conditions.
- For wells containing less than 5 feet of water, bladder pumps will be placed 1 foot above the bottom of screened interval. Bladder pumps will be placed 2 feet from the bottom of the screened interval in wells which contain less than 8 feet of water. In wells that contain 8 or more feet of water, the bladder pump will be placed at 5 feet above the bottom of the screened interval.

WELL TYPE	SITE	<u># OF PUMPS</u>	AVG. WATER <u>CLMN HEIGHT</u>	PLACEMENT OF BLADDER PUMP FROM BOTTOM OF SCREENED INTERVAL
Shallow	DCF	6*	7 feet	2 feet
Shallow	PSF	5*	5 feet	2 feet
Shallow	SFL	8	7 feet	2 feet
Intermediate	SFL	4 .	20 feet	5 feet
Deep	SFL	8	40 feet	5 feet

Technical Memorandum DCF-002 July 10, 1992 Page 3

* DCF-04, PSF-03 and PSF-04 wells will have bladder pumps placed at 1 foot above the screened interval.

- The bladder pumps will be placed well above the bottom of the screened interval to prevent possible interferences from fine particles and below the top of the water column to allow sufficient volume during sampling and purging. Eachbladder pump will have a protective screen to resist clogging or pump failure due to particulates.
- The bladder pump will be used to purge the well. Five casing volumes of water will be removed. Flow can be adjusted to yield up to a maximum of 1 gallon per minute (gpm) depending on water column height and well recharge. For example, a deep monitoring well at Southwest Funston Landfill with 40 feet of water would require 33 gallons (5 casing volumes) to be removed. If a maximum purge rate of 1 gpm could be established, this well would take 33 minutes to purge the required amount. However, due to slow recharge at the Pesticide Storage Facility and the Dry Cleaning Facility, a maximum gpm of 0.25 has been established. These wells typically have 7 feet of water which would require approximately 6 gallons of water (5 casing volumes) to be removed. At a gpm of 0.25 this would take 24 minutes to purge the required amount.
- After purging, each well will be sampled immediately providing parameters have stabilized (+/- 10% between two successive readings) and turbidity levels have reached 30 NTUS. If 30 NTUS cannot be reached the well will be allowed to stabilize. This would allow fine soil particles and silts to settle and would allow sufficient time for ground water to recharge to volumes required for sampling. The well will be checked periodically for water "clarity". All wells will be sampled within 5 hours after purging regardless of turbidity levels.
- If a well contains insufficient volume to meet the 5 casing volume purge criteria, the well will be purged dry three times and sampled when sufficient recharge has occurred.
- Sample collection occurs when the teflon bladders are inflated with air and ground-water is discharged. The sample does not come in contact with the air used to inflate the bladder; therefore, no contamination is introduced into the system via air.

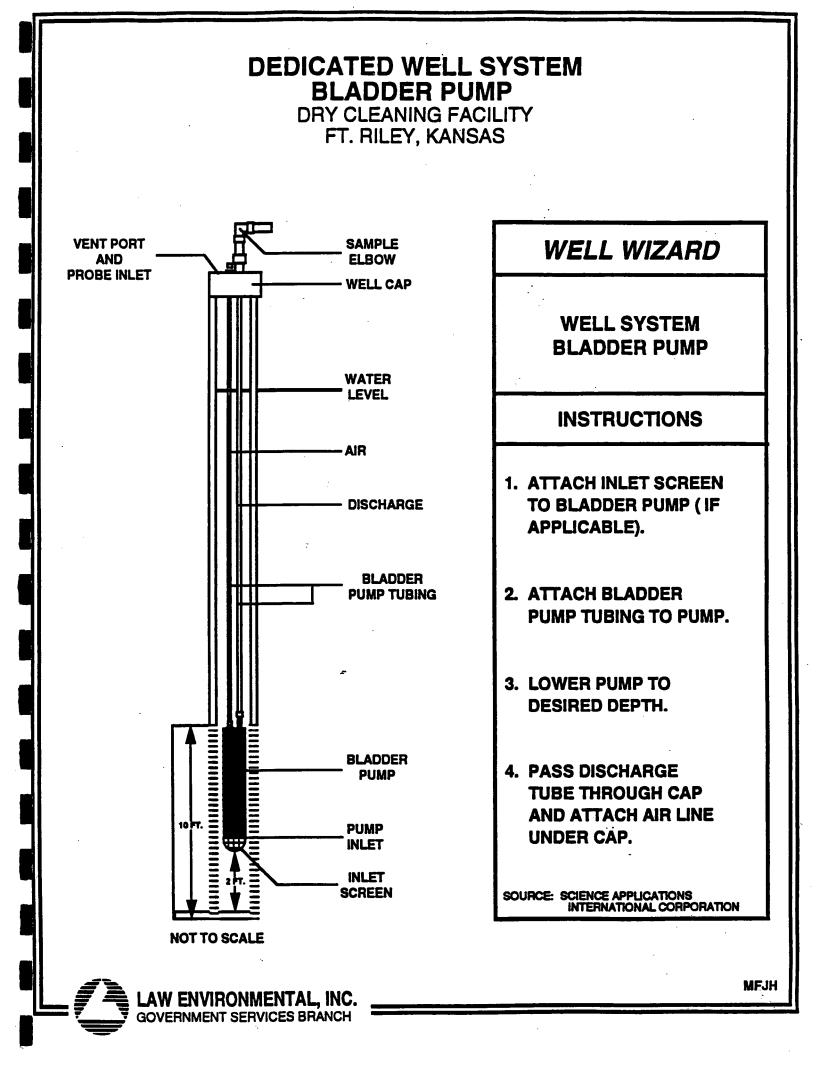
Technical Memorandum DCF-002 July 10, 1992 Page 4

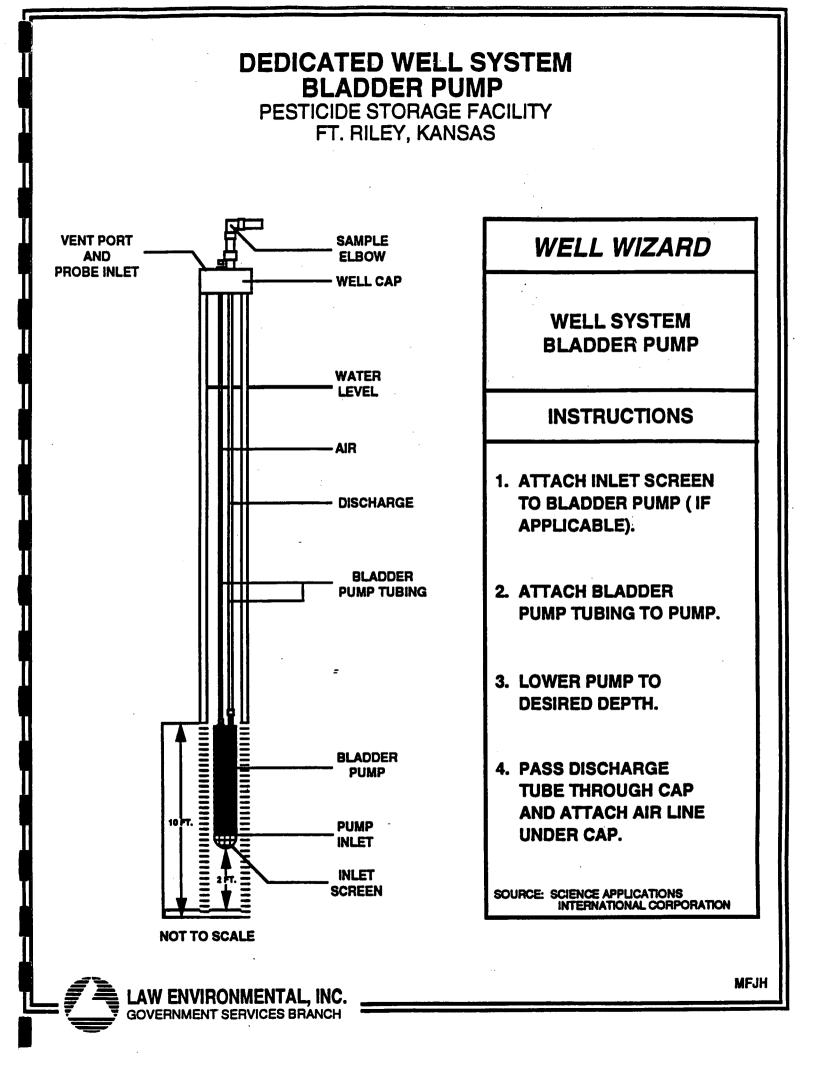
4. <u>Impacts/Conclusion</u>: The proposed modification to the Sampling Procedure will impact the schedule for the projects. Ground-water sampling for the Pesticide Storage Facility will begin approximately July 14 and end July 16, 1992. Sampling at the Dry Cleaning Facility will begin approximately July 17 to July 20, 1992. Ground water sampling for Southwest Funston Landfill will begin approximately July 21 and end by July 30, 1992.

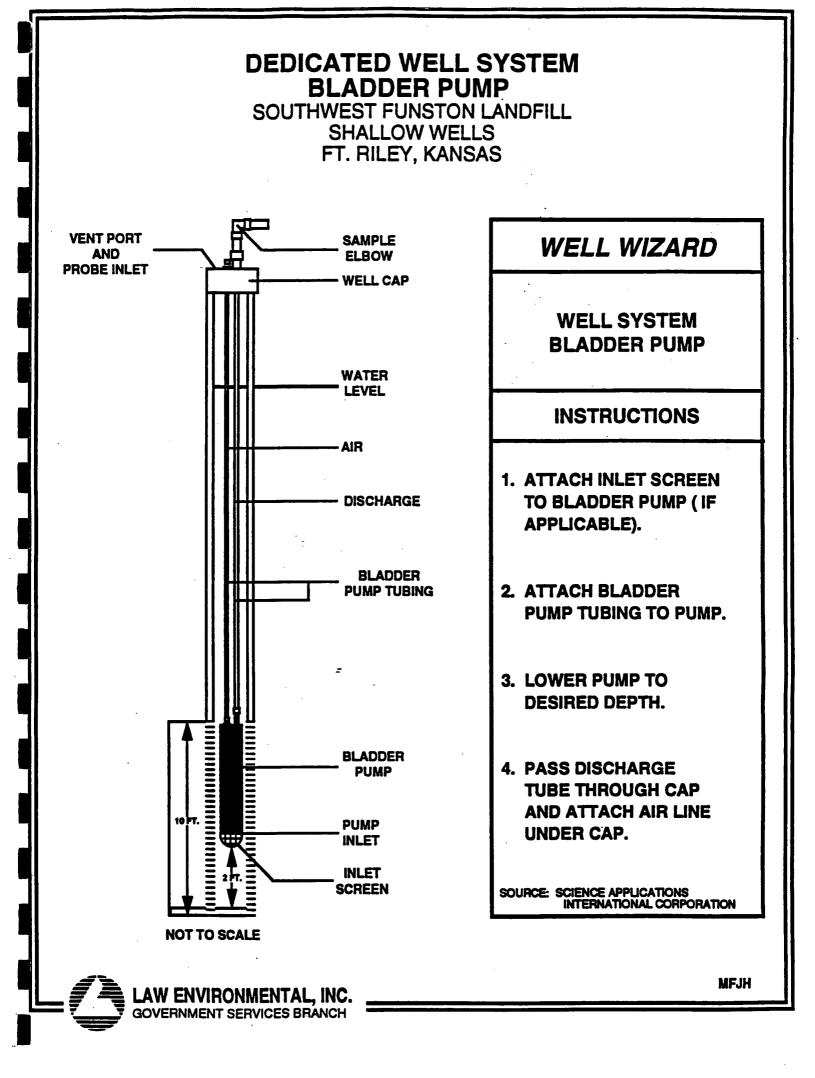
Sincerely,

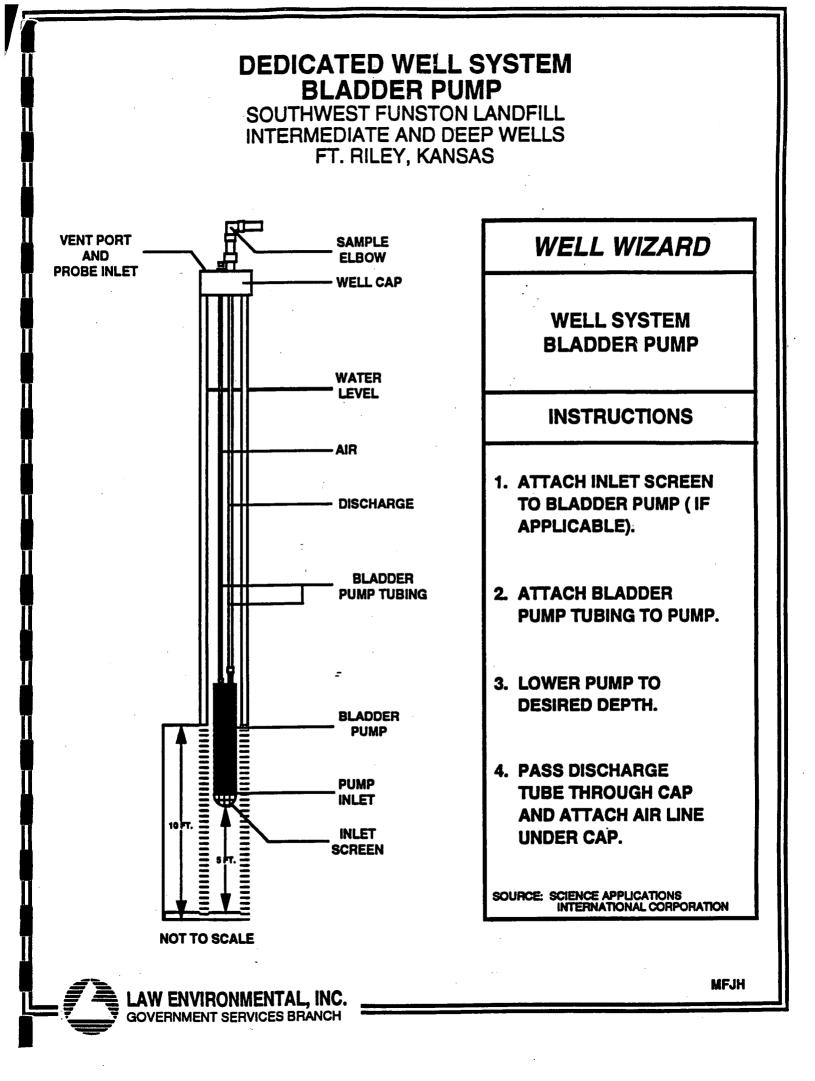
Law Environmental, Inc.

ditte a. Hartress


Judith A. Hartness Project Chemist


Gregory P. Myers, P.G. **Project Principal**


JAH/dsl


Attachments

cc: Scott Marquess, Region VII, EPA Janet Wade, DEH, Ft. Riley Cpt. Carol Ann Charette, COE

