DRAFT FINAL

PILOT TEST STUDY RESULTS REPORT DRY CLEANING FACILITIES AREA

Fort Riley, Kansas

Prepared for: United States Army Engineering District Kansas City 601 East 12th Street Kansas City, Missouri 64106-2896

Prepared by:

Louis Berger & Associates, Inc. 100 Halsted Street East Orange, New Jersey 07019

March 1996

DRAFT FINAL

PILOT TEST STUDY RESULTS REPORT DRY CLEANING FACILITIES AREA

Fort Riley, Kansas

Prepared for: United States Army Engineering District Kansas City 601 East 12th Street Kansas City, Missouri 64106-2896

Prepared by: Louis Berger & Associates, Inc. 100 Halsted Street East Orange, New Jersey 07019

March 1996

TABLE OF CONTENTS

TABLE OF CONTENTS

-		
		Page
1.0	INT	RODUCTION
	1.1	Overview
	1.2	Project Description
	1.3	Soons and Internet
	1.5	Scope and Intent
2.0	BAC	KGROUND
		2-2-10 01.2
	2.1	Site History
	_	
`	2.2	Site Geology
	2.3	
	2.5	Nature and Extent of Contamination
	2.4	Description of the SVE Treatment Technology 2-2
3.0	PILC	OT TEST OPERATIONS AND PROCEDURES
	3.1	Overview
	3.2	
	5.2	Pilot Test Modifications
	•	3.2.1 Deletion of Groundwater Extraction Component
		3.2.2 Extended 60-Day SVE Test 3-1
	- 3.3	Initial 30-Day Pilot Test 3-2
		3.3.1 Introduction
		3.3.2 Test Procedure 3-2 3.3.3 Vacuum Pressure Monitoring 3-2
	· •	3.3.3 Vacuum Pressure Monitoring 3-3 3.3.4 Soil Vapor Sampling 3-4
		3.3.5 Soil Vapor Generation and Control 3-4
	3.4	Extended 60-Day Pilot Test 3-5
4.0	EQUI	IPMENT AND MATERIALS 4-1
	4.1	
	4.1	Introduction
	4.2	30-Day Test System
		30-Day Test System
		4.2.1 SVE Well Construction 4-1

		I A A A A A A A A A A A A A A A A A A A	Page
۰.		4.2.2 Soil Vapor Extraction Unit	11
		4.2.3 Vapor Water Separator, Transfer Pump and Equalization Tank	4-1
		4.2.4 Vacuum Monitoring Probes	4-2
		4.2.5 GAC Treatment Units	4-2
		4.2.6 Pilot Test System Appurtenances	4-2
	4.3	Extended Test Study System	4-3
5.0	PILO	T TEST DATA RESULTS AND INTERPRETATIONS	5-1
	5.1	Overview	5-1
	5.0		
	5.2	Baseline Sampling and Test Results	5-1.
		5.2.1 Baseline Soil Sampling and Analytical Results	5-1
		5.2.2 Baseline Groundwater Sampling and Analytical Results	5_2
		5.2.3 Geotechnical Testing and Results	5-2
	5.3	Initial 30-Day Test Results	5_2
	•		• .
		5.3.1 Introduction	5-2
		5.3.2 SVE Well DCF94ES-1A	5-4
		5.3.3 SVE Well DCF94ES-2A	5-4
		5.3.4 SVE Well DCF94ES-3A	5-5
	· • .	5.3.5 SVE Well DCF94-21	5-5
		5.3.6 Combined SVE Well Operation	5-6
	5.4	Vacuum Probe Measurements	5-7
		5.4.1 Introduction	57
	•	5.4.2 SVE Well DCF94ES-1A	59
		5.4.3 SVE Well DCF94ES-2A	5-8
		5.4.4 SVE Well DCF94ES-3A	5-8
		5.4.5 Combined SVE Well Operation	5-8
	5.5	Extended Pilot Test Study Results	5-9
	5.6	Post Extraction Analytical Results and Comparison to Baseline Results	5-9
. ·	•	5.6.1 Post Extraction Soil Sampling and Analytical Results	5.0
	÷ .		
• .	. *		3-9
		5.6.3 Post Test—Quarterly Groundwater Sampling and Analytical Results)-10

• •		Page
6.0	WAS	TE GENERATION AND MANAGEMENT
	6.1	Soil
	6.2	Extracted Groundwater
	6.3	Extracted Soil Vapor
	6.4	Spent Granular-Activated Carbon (GAC) Units
· ·	6.5	Construction Debris and Miscellaneous Waste Materials
	6.6	Demobilization and Site Restoration
7.0	CON	CLUSIONS AND RECOMMENDATIONS
	7.1	Summary of Pilot Test Study Results
	•	7.1.1Overview7-17.1.2Initial 30-Day Pilot Study Results7-17.1.3Extended Phase Pilot Study Results7-27.1.4Conclusions7-2
	7.2	Recommendations
8.0	REFI	ERENCES

APPENDICES

Appendix A:	Technical Memorandum for Sustained Yield Test and Aquifer Pump Test
Appendix B:	Technical Memorandum for Sampling Activities and GC Methodology
Appendix C:	Draft Technical Memorandum-Extended Soil Vapor Extraction System Pilot Study
Appendix D:	Soil Boring Logs and As-Built Well Construction Details
Appendix E:	Geotechnical Laboratory Test Results
Appendix F:	Field GC Data—VOC Analytical Results
Appendix G:	Summary of Pilot Study Vacuum Probe Measurements
Appendix H:	Memorandum on DCF Pilot Test Study Post Extraction Soil and Groundwater
,	Sampling

LIST OF FIGURES Figure 1-1 General Vicinity Plan Figure 1-2 Site Plan Figure 2-1 DCFA and Vicinity Geologic Cross Section Figure 3-1 As-Built Pilot Test System Schematic Figure 3-2 Pilot Test System Plan, As-Built Figure 4-1 As-Built Well Screen Diagram Through Pilot Study Area Figure 5-1 Baseline Soil Sampling Locations and Analytical Results VOC Loading Rates, Air Flows and VOC Removals at SVE Well DCF94ES-1A Figure 5-2 During the Initial-Phase Pilot Test Study VOC Loading Rates, Air Flows and VOC Removals at SVE Well DCF94ES-2A Figure 5-3 During the Initial-Phase Pilot Test Study VOC Loading Rates, Air Flows and VOC Removals at SVE Well DCF94ES-3A Figure 5-4 During the Initial-Phase Pilot Test Study Figure 5-5 VOC Loading Rates, Air Flows and VOC Removals at SVE Well DCF94-21 During the Initial-Phase Pilot Test Study VOC Loading Rates and Air Flows for Combined Operation During the Initial-Phase Figure 5-6A **Pilot Test Study** Figure 5-6B VOC Removals for Combined Operation During the Initial-Phase Pilot Test Study Figure 5-7 SVE Well DCF94ES-1A Vacuum Pressure Distribution Contour Figure 5-8 SVE Well DCF94ES-2A Vacuum Pressure Distribution Contour Figure 5-9 SVE Well DCF94ES-3A Vacuum Pressure Distribution Contour Figure 5-10 SVE Combined Operation, Vacuum Pressure Distribution Contour Figure 5-11 VOC Loading Rates, Air Flows and VOC Removals During the Extended-Phase Pilot Test Study Figure 5-12 Post Extraction Soil Sampling Locations and Analytical Results Figure 5-13 Extent of PCE Contamination in Soil Baseline Conditions Figure 5-14 Extent of PCE Contamination in Soil Post Pilot Test Conditions Figure 5-15 PCE and its Breakdown Products Detected in Groundwater Samples Collected from Extraction Wells before the Pilot Test Study, June 1994 Figure 5-16 PCE and its Breakdown Products Detected in Groundwater Samples Collected from Extraction Wells after the Pilot Test Study, May 1995 PCE and its Breakdown Products Detected in Groundwater Samples, August 1994 Figure 5-17 Figure 5-18 PCE and its Breakdown Products Detected in Groundwater Samples, May 1995 Figure 7-1 VOC Loading Rates and Air Flows for Both Initial and Extended Pilot Test Study at DCFA Figure 7-2 Cumulative VOC Mass Removal During Initial and Extended Pilot Test Study at DCFA

LIST OF TABLES

Table 1-1	Chronology of Events Associated with the Pilot Test Study Program at the DCFA
Table 3-1	SVE Pilot Test Operation Schedule
Table 3-2	Field GC Quantification Limits
Table 5-1	Summary of VOC Loading Rates under Sustained Air Flow Rates for All SVE Operations During the Initial Pilot Test Study
Table 5-2A	Analytical Results of Baseline Soil Samples for DCFA Pilot Test Study
Table 5-2B	Analytical Results of Previous Soil Samples for DCFA Pilot Test Study
Table 5-2C	Baseline Groundwater Analytical Results at DCFA
Table 5-2D	Pre-Test Groundwater Analytical Results at DCFA
Table 5-3	Summary of Geotechnical Laboratory Test Results for DCF Pilot Test Study
Table 5-4	Summary of Total PCE Mass Removal (lbs) and % of PCE Removed over Total VOCs
•	from Each SVE Operations
Table 5-5	SVE Well DCF94ES-1A Mass Removal Rate Summary
Table 5-6	SVE Well DCF94ES-2A Mass Removal Rate Summary
Table 5-7	SVE Well DCF94ES-3A Mass Removal Rate Summary
Table 5-8	SVE Well DCF94-21 Mass Removal Rate Summary
Table 5-9	SVE Combined Operation Mass Removal Summary
Table 5-10	SVE Combined Well Operation Mass Removal Rate Summary During Extended Phase Operation
Table 5-11	Analytical Results of Post Extraction Soil Samples for DCFA Pilot Test Study
Table 5-12	Comparison of Soil Baseline and Post Extraction Sampling Depths, Locations, and Analytical Results at Soil Boring 4
Table 5-13	Comparison of Baseline and Post Extraction Soil Sampling Depths, Locations, and Analytical Results at Soil Boring 5
Table 5-14	Comparison of Baseline and Post Extraction Soil Sampling Depths, Locations, and Analytical Results at Soil Boring 6
Table 5-15	Post Test—Quarterly Groundwater Analytical Results at DCFA
Table 6-1	Equalization Tank Data (Field G.C.)
Table 6-2	Equalization Tank Data (Continental Analytical Data)
Table 7-1	Summary of VOC Loading Rates and Cumulative Removal of PCE and Total VOCs for Individual SVE Operations

TOC Page 5

LIST OF ACRONYMS

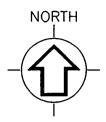
AOC	Areas of Concern
ARARs	Applicable or Relevant and Appropriate Requirements
ASTM	American Society of Testing Materials
BGS	Below Ground Surface
BLRA	Baseline Risk Assessment
C	Centigrade
CAS	Continental Analytical Service
CD	Construction Debris
CEMRD	U.S. Army Corps of Engineers—Missouri River Division
CEMRK	U.S. Army Corps of Engineers—Missouri River Division, Kansas City District
CERCLA	Comprehensive Environmental Response, Compensation and Liability Act
DCA	Dichloroethane
DCF	Dry Cleaning Facilities
DCFA	Dry Cleaning Facilities Area
DCFA-FS	Dry Cleaning Facilities Area-Feasibility Study
DCFA-RI	Dry Cleaning Facilities Area-Remedial Investigation
DoD	Department of Defense
DQCR	Daily Quality Control Report
DQO	Data Quality Objective
EPA	Environmental Protection Agency
F	Fahrenheit
FB	Field Blank
FFA	Federal Facilities Agreement
FID	Flame Ionization Detector
FS	Feasibility Study
GAC	Granular Activated Carbon
GC	Gas Chromatograph
GC/MS	Gas Chromatograph/Mass Spectrometer
gm	Gram
gpm	Gallons per Minute
Hg	Mercury
Hp	Horsepower
Hz	Hertz
IAG	Interagency Agreement
ID	Inside Diameter

LIST OF ACRONYMS (CONTINUED)

IFI	Initial Field Investigation
IRP	Installation Restoration Program
k	Soil Permeability to Air Flow
KS	Kansas
KDHE	Kansas Department of Health and the Environment
lbs	Pounds
LBA	Louis Berger & Associates, Inc.
LPGAC	Liquid-Phase Granular-Activated Carbon
MDL	Method Detection Limit
mg/kg	Milligram per Kilogram
mg/l	Milligrams per Liter
MH	Manhole
ml	Milliliter
MS	Mass Spectrometer
NA	Not Analyzed
NPDES	National Pollutant Discharge Elimination System
NPL	National Priorities List
OD	Outside Diameter
OVM	Organic Vapor Meter
oz	Ounce
△P	Pressure Difference
PA/SI	Preliminary Assessment/Site Investigation
PCE	Tetrachloroethylene
PE	Professional Engineer
PG	Professional Geologist
PID	Photoionization Detector
ppb	Parts per Billion
psi	Pounds per Square Inch
psig	Pounds per Square Inch Gauge
PVC	Polyvinyl Chloride
QA	Quality Assurance
QAPP	Quality Assurance Project Plan
QA/QC	Quality Assurance/Quality Control
QC	Quality Control
QCSR	Quality Control Summary Report
R	Radius of Influence
RCRA	Resource Conservation and Recovery Act

RF **Response Factor** RI **Remedial Investigation** scfm Standard Cubic Feet per Minute SS Sanitary Sewer ŠT Stormwater Sewer SVE Soil Vapor Extraction SVOC Semivolatile Organic Compound TAL Target Analyte List TIC Tentatively Identified Compound TCL Target Compound List TCE Trichloroethylene TDH Total Dynamic Head TM Technical Memorandum TOC **Total Organic Carbon TPH-GRO** Total Petroleum Hydrocarbon-Gasoline Range Organics TPM Technical Project Manager $\mu g/kg$ Micrograms per Kilogram $\mu g/l$ Micrograms per Liter μl Microliters U.S. Army Corps of Engineers USACE U.S. Army Construction Engineers Laboratory USCERL U.S. DOT U.S. Department of Transportation USE Underground Service Entrance U.S. EPA U.S. Environmental Protection Agency USGS U.S. Geological Survey UST Underground Storage Tank. VOA Volatile Organic Analysis VOC Volatile Organic Compound VPGAC Vapor-Phase Granular-Activated Carbon

LIST OF ACRONYMS (CONTINUED)


WCWater ColumnWWWastewater Treatment Plant

<u>SYMBOLS</u>

7

EXISTING FEATURES

SS	Sanitary Sewer Line
ST	Storm Sewer Line
CIP	Cast Iron Pipe
•	Manhole
2	Catch Basin
1060	Topographic Contour
TRIBUTARY B	Stream
	Surface Water Flow Pathway
++++	Railroad Track
-x x-	Fence
******	Curb With Gutter

ABBREVIATIONS

- PCE = TETRACHLOROETHYLENE
- TCE = TRICHLOROETHYLENE
- DCA = DICHLOROMETHANE

SAMPLING DATA

DCF94ES-2BV

PCE CONCENTRATION CONTOUR

EXTRACTION WELL SYSTEM

A-INDICATES SOIL VAPOR EXTRACTION WELL B-INDICATES GROUNDWATER EXTRACTION WELL

\$-

POST EXTRACTION BORING

BASELINE SOIL BORING

- \bigcirc GROUNDWATER MONITORING WELL
 - AQUIFER TEST/REMEDIATION WELL

DCF94PV-1 ▲ PASSIVE WELL

V

BLDG. REFERENCE POINT

5 VACUUM MONITORING PROBE WITH DISTANCE FROM WELL IN FEET 0 50 100 200 SCALE IN FEET 1" = 100'

- POTENTIOMETRIC SURFACE

1.0 INTRODUCTION

1.0 INTRODUCTION

1.1 OVERVIEW

This *Draft Final Pilot Test Study Results Report* for the Dry Cleaning Facilities Area (DCFA) presents the activities conducted and the findings obtained during the performance of the Pilot Test Study Program at the DCFA located at the Fort Riley Military Reservation in Fort Riley, Kansas. The Pilot Test Study program was performed under contract DACA41-92-D-0001 with the U.S. Army Corps of Engineers—Missouri River Division, Kansas City District (CEMRK) in support of the Fort Riley, Directorate of Environment and Safety, Installation Restoration Program.

The Pilot Test Study Program at the DCFA was developed as a result of previous investigations which had shown that the soil and groundwater beneath the DCFA had been impacted by volatile organic compounds (VOCs). These investigations included a Preliminary Assessment/Site Investigation (PA/SI) conducted in February 1993 and a Remedial Investigation (RI) performed in 1993 through 1995. The chronology of events leading to and the performance of the Pilot Test Study, including specific dates relating to pilot test activities, is provided in Table 1-1.

As stated in the *Draft Final Work Plan, Pilot Test Study, Dual Phase Extraction System (Work Plan)* dated June 1994, the original objectives of the pilot test were to: 1) evaluate the effectiveness of the selected treatment technology at the DCF site; 2) obtain the information necessary to design a system for the overall site remediation with continued site treatment operations by establishing an efficient site-specific system design; and 3) evaluate the potential of this remedial technology as a "Removal Action." The pilot study program was modified from dual phase extraction operation to a single phase soil vapor extraction (SVE) operation. The groundwater extraction component of the pilot test was deleted from the program as discussed below in detail.

For the purpose of this report, the "DCFA," "Pilot Study Area," and "Site" are defined as follows:

- **DCFA:** Area of current and former laundry and dry cleaning operations and related facilities.
- Pilot Study Area: Northeast corner of Building 180/181.
- Site: For the purpose of this pilot study result report, "site" is the same as the DCFA.

1.2 PROJECT DESCRIPTION

The location of the DCFA is shown in Figure 1-1, and the pilot study area is shown in Figure 1-2.

The SVE pilot study program was initiated on November 21, 1994 and completed on April 6, 1995 at the DCFA. The pilot study consisted of two phases: an initial 30-day SVE test conducted during the period of November 21, 1994 through December 20, 1994, and an extended 60-day test conducted during the period of February 8, 1995 through April 6, 1995. The purpose of the pilot study was to evaluate the efficacy of SVE as a remedial technology for the cleanup of soils impacted by VOCs, particularly tetrachloroethylene (PCE), at the DCFA.

Work performed during the pilot study was conducted in accordance with the *Work Plan* dated June 1994, with two major exceptions: the deletion of the groundwater extraction portion as proposed in the *Work Plan*, and the addition of the extended 60-day SVE test. The groundwater extraction component of the pilot test was deleted from the program due to poor groundwater yield and subsequent lack of effective hydraulic influence which was determined from a pump test conducted from August 15, 1994 to August 22, 1994. A discussion on the DCFA groundwater and hydraulic characteristics, which nullify the efficacy of groundwater extraction as a groundwater treatment mechanism at the site, has been provided in Chapter 3.0 of the *Draft Final Remedial Investigation Report, Dry Cleaning Facility Area (DCFA-RI)*, dated March 1995.

1.3 SCOPE AND INTENT

The purpose of this report is to present the test procedures and results of the SVE pilot test study performed at the DCFA at the Fort Riley Military Reservation in Fort Riley Kansas.

Specifically, this report discusses in detail the following items:

- Pilot test operations and schedules, including sampling, analysis and pilot test modification;
- Pilot test system construction, equipment and materials;
- Pilot test study results; and
- Evaluations and interpretations of the pilot study results.

The performance of the SVE pilot system and effectiveness of the selected SVE technology have been evaluated based on the test results obtained. The site history, geology, and the nature and extent of the site contamination have been presented in the *DCFA-RI* Report, and as such are only briefly summarized in this report. Details on the selection of the SVE technology, system design and system layout have been presented in the *Work Plan*, and are only briefly summarized herein.

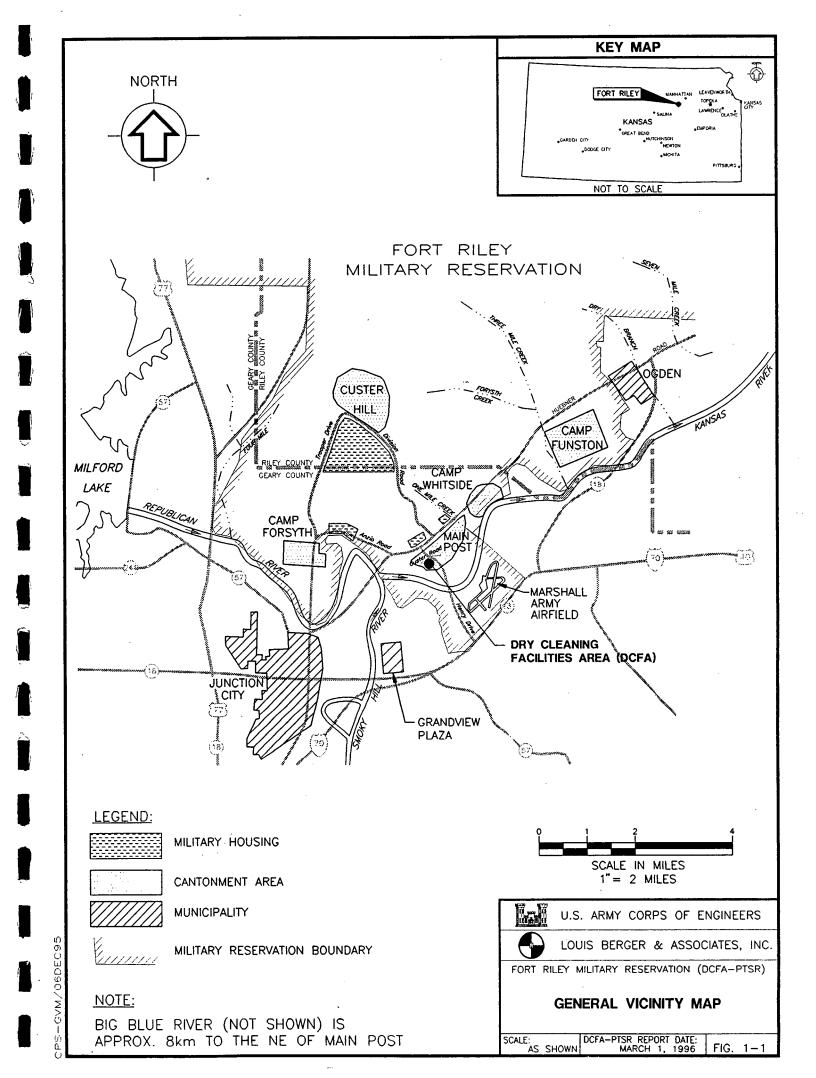
TABLE 1-1

CHRONOLOGY OF EVENTS ASSOCIATED WITH THE PILOT TEST STUDY PROGRAM AT THE DCFA

Date	Activity	Reports/ References
1914- 1988	Historical events and site activities during this period are provided in the <i>DCFA-RI</i> Report.	DCFA-RI Report (CEMRK 1995a)
August 1990	Fort Riley placed on the National Priorities List.	Federal Register Aug 30, 1990
June 1991	Federal Facilities Agreement (FFA) effective; requires site investigation of former dry cleaners.	IAG, U.S. EPA (1991)
1991-1992	PA/SI Planning Draft Planning Documents, Sep '91 Draft Final Planning Documents, Dec '91 Revisions to Planning Documents, Jan '92 Draft Modified Planning Documents, May '92 Draft Final Modified Planning Documents, Sep '92	
1991-1992	PA/SI Fieldwork Soil Gas Survey, Oct 29-Nov 2, '91 Soils Borings, Mar-Apr '92 Monitoring Well Installation, Apr '92 Monitoring Well Development, May-Jun '92 Groundwater Sampling, Jul '92 Exploratory Monitoring Well DCF92-07 installed (dry), Aug '92	
September 1992	Working Draft PA/SI is submitted. A decision was made to have the U.S. EPA and KDHE review this document instead of extending the schedule for submission of a Draft. A meeting was held on Oct 16, '92, during which the project managers for the parties to the IAG decided that the Working Draft would be approved as Final with comments attached.	
1992-1993	Periodic groundwater sampling of six monitoring wells installed during the PA/SI. Includes Nov '92, Feb '93, May '93 and Nov '93.	QCSRs (CEMRK 1992a; 1993a,b,d)
February-April 1993	 RI/FS Initial Field Investigations (IFI), Feb - Mar '93 Soil Gas Survey Sewer/Surface Water/Sediment Sampling Supplemental IFI Activities, Mar - Apr '93 Sewer Survey and Tracing Dry Cleaning Operations Sampling 	Results reported in Draft Final RI/FS Work Plan, July 1993 (CEMRK, 1993c)

Page 1-3

TABLE 1-1 (CONTINUED)


CHRONOLOGY OF EVENTS ASSOCIATED WITH THE PILOT TEST STUDY PROGRAM AT THE DCFA

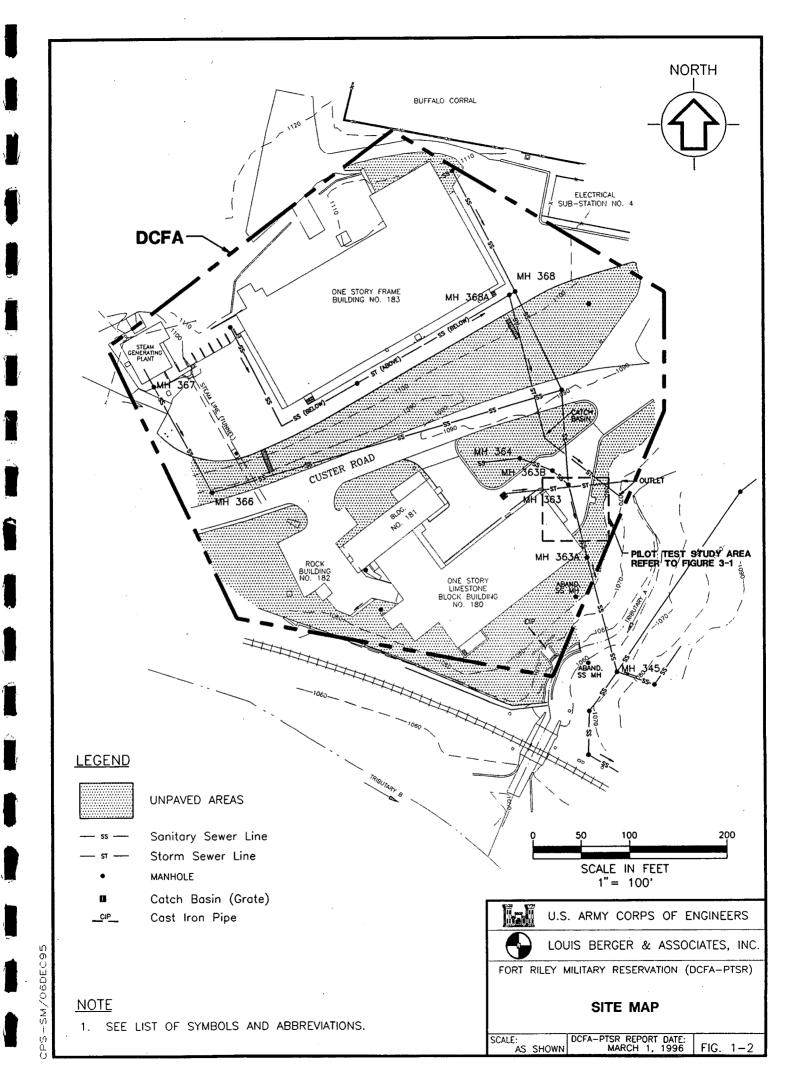

Date	Activity	Reports/ References
July 1993	Draft Final RI/FS Work Plan Submitted.	(CEMRK, 1993c)
October 1993	Revised Draft Final RI Sampling and Analysis Plan. (Result of change in Contractor performing work.)	(CEMRK, 1993g)
November - December 1993	RI fieldwork. Soil Borings, Surface Soil, Surface Water & Sediment Sampling	
December 1993	"Baseline" RI groundwater sampling including new RI monitoring wells.	QCSR (CEMRK, 1994a)
February 1994	Periodic groundwater sampling (PA/SI & RI wells, 1st round after "Baseline")	QCSR (CEMRK, 1994b)
May 1994	Sewer line repair. A portion of sanitary sewer line was replaced between manholes 365 and 363 (portion of line serving 183 above 180/182) due to suspected leakage of the aged line.	
May 1994	Soil sampling in conjunction with SVE Pilot Study.	
April 1994	USTs located. (Interview information about tanks unclear if removed or not. An electromagnetic survey performed by U.S. Army Construction Engineers Laboratory [USCERL] revealed the presence of the tanks. Previous methods had been unsuccessful.)	
May 1994	UST contents sampled.	
July 1994	UST removal (two removed, one abandoned in place) due to depth and proximity to building foundation and utilities.	
May 1994	Soil Vapor and Groundwater Extraction Pilot Studies initiated near Building 180/181.	CEMRK (1994c)
June 1994	Installation of soil vapor and groundwater extraction wells.	QCSR (CEMRK, 1994d)
	(Subsequent pumping tests performed on the groundwater wells proved extraction to be impractical due to extremely low yield rates; therefore, groundwater extraction pilot test terminated.)	

TABLE 1-1 (CONTINUED)

CHRONOLOGY OF EVENTS ASSOCIATED WITH THE PILOT TEST STUDY PROGRAM AT THE DCFA

Date	Activity	Reports/ References
June 1994	Periodic groundwater sampling (PA/SI and RI wells— 2nd round).	QCSR (CEMRK, 1994e)
June - July 1994	Supplemental Sewer (flow) Investigations.	
August 1994	Monitoring Well DCF94-22 installed (driven well point) as a replacement for DCF94-11, which had gone dry).	
August 1994	Periodic groundwater sampling (PA/SI & RI wells—3rd round).	QCSR (CEMRK, 1994f)
October 1994	UST area soil borings performed.	
November 1994	Draft RI Report.	
November - December 1994	Soil Vapor Extraction Pilot Test—initial 30-day test performed. Individual Vapor Extraction Test on Well 1A Individual Vapor Extraction Test on Well 2A Individual Vapor Extraction Test on Well 3A Individual Vapor Extraction Test on Well DCF94-21 Combined Vapor Extraction Includes All Wells	
January 1995	Periodic groundwater sampling (PA/SI & RI wells—4th round). Partial Demobilization of Pilot Study Equipment (Removal of GC Van, Probes, Well Pumps).	CEMRK (1995b)
January 1995	Additional surface water and sediment sampling.	CEMRK (1995c)
Feb - Apr, 1995	Soil Vapor Extraction Pilot Test—extended 60-day test performed.	
March 1995	Draft Final RI Report completed.	DCFA-RI Report (CEMRK, 1995a)
April 1995	Soil Vapor Extraction Pilot Test—Demobilization performed. Post Extraction Soil Boring for Pilot Study Completed.	CEMRK (1995d)

2.0 BACKGROUND

2.0 BACKGROUND

2.1 SITE HISTORY

As indicated in the *Work Plan* and in the *DCFA-RI*, the facilities within the DCFA have been used for the dry cleaning of uniforms since the 1930s. Dry cleaning operations at the site have incorporated the use of two solvents: Stoddard Solvent, a naphtha-based solvent used prior to 1966; and PCE, a VOC used in the dry cleaning process since 1966. Table 1-1 provides a chronology of events associated with DCFA operational history and environmental activities. A detailed description of the site history and dry cleaning facilities operations, as well as other site activities such as previous investigations, have been provided in sections 1.2.2 and 1.2.3 of the *DCFA-RI* Report.

2.2 SITE GEOLOGY

The subsurface conditions in the pilot test area consist of a relatively thin mantle of overburden consisting of either fill or residual soils. The residual soils consist of clays and silts interbedded with thin layers of clayey sand and sand. These soils vary in thickness from 30 to 40 feet throughout the site and are underlain by weathered rock extending into relatively more competent rock units. Figure 2-1 presents a geologic cross-section of the site.

During the installation of the extraction wells at the DCFA in May 1994, undisturbed and split spoon soil samples were collected for geotechnical testing. The results of these analyses indicate that the subsurface soils at the DCFA consist mainly of sandy silts and clays in the intervals tested based on geotechnical analysis (DCFA-RI, March 1995). A continuous clay layer, two to four feet thick, appears to extend across the site and occurs at a depth of approximately 18 feet below ground surface (BGS). Porosity of the soils range from approximately 40 to 50 percent, and water content ranges from 20 to 30 percent.

The underlying bedrock units consist primarily of limestone and shale. The bedrock formations identified within the site include the Bader, Easly Creek, Crouse, Blue Rapids and Funston formations. The Crouse Formation comprises an upper and lower limestone separated by a few feet of shale. An erosional feature occurs in the Crouse Formation as evidenced by the increased overburden thickness under and to the south of Building 180/181. This erosional trough feature controls the overburden groundwater flow in this area.

The groundwater table generally occurs within the bedrock in the northern portion of the site and in the unconsolidated soils in the southern portion of the site due to the presence of the erosional trough feature. Limited well development data indicate that the Crouse formation has limited "water-bearing" characteristics with limited hydraulic connectivity in isolated areas. Groundwater in the northern portion of the site occurs within the bedrock from 35 to 40 feet below grade. Flow direction is predominantly toward the southwest based on groundwater elevation measurements recorded between July 1992 and February 1993. The seasonal fluctuation of the groundwater at the site, based on 1992 field data, is approximately five feet.

2.3 NATURE AND EXTENT OF CONTAMINATION

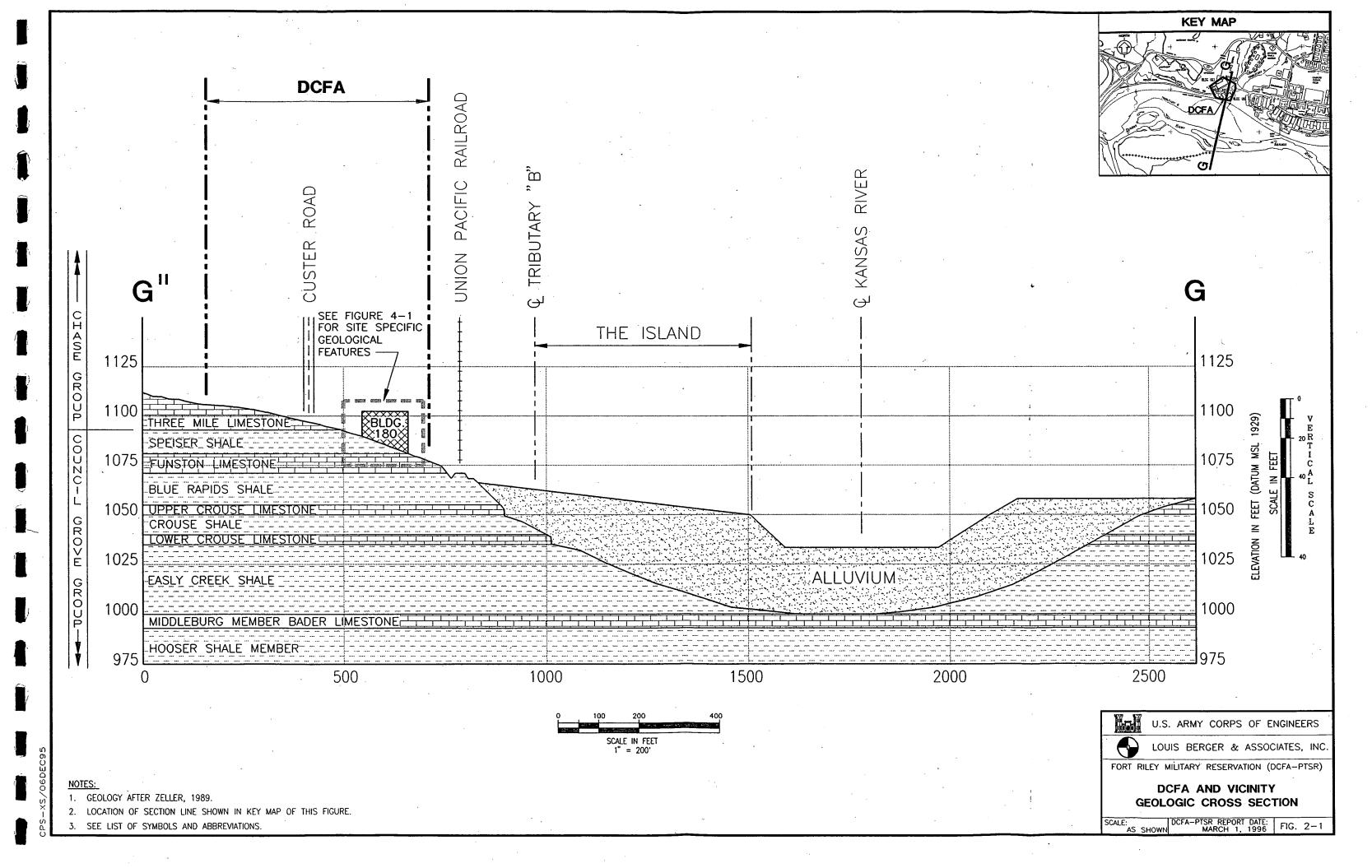
The nature of contaminants encountered within the DCFA consists primarily of VOCs, as indicated in the *DCFA-RI* Report. The most frequently detected VOCs during the PA/SI and RI activities were tetrachloroethylene (PCE) and its breakdown products, trichloroethylene (TCE) and dichloroethane (DCA).

PCE is the primary site-related contaminant of concern. PCE has apparently entered the environment through leaking storm and sanitary sewers, and possibly through accidental spills and discharges directly to the ground on the west side of Building 180/181. Sampling and analysis of soils and groundwater indicate that these media have the highest concentrations centered primarily in two areas: the northeast corner of Building 180/181, and immediately west of Building 180/181. The concentrations adjacent to the northeast corner of Building 180/181 may be attributable to the leaking sewer, while the concentrations to the west of Building 180/181 may be a result of spills and discharges that reportedly occurred at that location.

Contaminant concentrations in soil at the northeast side of the building from various sampling events (refer to the DCFA-RI Report, March 1995) show that PCE concentrations ranged from 960 μ g/kg to non-detection. Analyses of soil samples taken from the west side of the building generally indicate non-detectable PCE concentrations in soil at a depth less than 10 feet. No contamination was detected in any surface soil samples collected in this area. Groundwater PCE concentrations ranged from 1,600 μ g/l to 32 μ g/l and from 9.3 μ g/l to non-detection for samples collected from the northeast corner and the west side of Building 180/181, respectively.

2.4 DESCRIPTION OF THE SVE TREATMENT TECHNOLOGY

The pilot test system originally selected in the *Work Plan* for remediative study at the DCFA site was a dual-phase extraction system, which was designed to recover both contaminated groundwater and soil vapor. The groundwater extraction component of the pilot test was deleted from the pilot study program based on the results of a pump test conducted from August 15, 1994 to August 22, 1994, as discussed briefly in Section 1.1 and in detail in Section 3.2.1 of this report.


As a result of the deletion of the groundwater extraction component, the pilot study system essentially became a single-phase extraction system (i.e., an SVE system) as optioned in Section 4.4.1 of the *Work Plan*. SVE technology has been demonstrated to be successful at numerous sites as discussed in the *Work Plan*. Furthermore, the U.S. EPA has designated vacuum extraction as a presumptive remedy for remediating the vadose zone at sites contaminated with VOCs such as PCE. This is discussed in depth in the U.S. EPA document *Presumptive Remedies: Site Characterization and Technology Selection for CERCLA Sites with Volatile Organic Compounds in Soils* (U.S. EPA, 1993).

In the SVE system, soil vapor is extracted from an extraction well, or a cluster of extraction wells, as planned and implemented in this pilot study. The extracted soil vapor is then treated on site, as required in most cases, prior to ultimate discharge to ambient air. A vacuum pump, mounted at grade, is used to draw air through the extraction well from the adjacent VOC-impacted soils, thereby volatilizing the target contaminants in the process. The extraction well or wells are screened at a specified depth interval to cover the highest soil contaminants are transferred to the surface via piping for treatment by thermal oxidation or, as in this pilot study, by granular-activated carbon (GAC) adsorption prior to discharge to atmosphere.

SVE technology was selected for testing at the DCFA site for the following reasons:

The primary contaminant (PCE) at the site is highly volatile based on a Henry's Law constant of 1,035 atmospheres and a vapor pressure of 14 mm of mercury (Hg) at 20°C; and

Geotechnical testing indicated that the soil characteristics and soil permeability to air flow at the DCFA site were generally similar to those at other sites where SVE has been successfully used for soil remediation.

3.0 PILOT TEST OPERATIONS AND PROCEDURES

3.0 PILOT TEST OPERATIONS AND PROCEDURES

3.1 OVERVIEW

As previously indicated, the pilot test study at the DCFA consisted of two phases: an initial 30-day SVE test conducted during the period of November 21, 1994 through December 20, 1994, and an extended 60-day test conducted during the period of February 8, 1995 through April 6, 1995. The 30-day initial test included four individual SVE well tests and a combined well test employing all four wells. The extended 60-day test was a combined well test. Table 3-1 summarizes the pilot test operations schedule.

In general, all work performed during the pilot study was conducted in accordance with the *Work Plan*, with the following two exceptions: the deletion of the groundwater extraction portion as proposed in the *Work Plan* and the addition of the extended 60-day SVE test at the site. These modifications and their rationale are described below (Section 3.2). Other modifications such as the flow and vacuum levels applied to the SVE wells and duration during this pilot study which resulted from the actual subsurface soil permeability to air flow conditions are discussed in Section 5.0.

3.2 PILOT TEST MODIFICATIONS

3.2.1 Deletion of Groundwater Extraction Component

The groundwater extraction component of the pilot test system had consisted of wells DCF94ES-1B, -2B and -3B installed adjacent to the SVE well DCF94ES-1A, -2A and -3A, and the deep screened section of DCF94-21. These well locations are shown in Figure 3-1 which provides an "as-built" plan of the pilot test system.

The deletion of the groundwater extraction component was based on the results from three sustained yield pumping tests and one aquifer pump test. These tests were conducted over the period of August 15, 1994 through August 22, 1994. Details of the test procedures and results have been presented in *Technical Memorandum for Sustained Yield and Aquifer Pump Test* (August 23, 1994). This memorandum is provided in Appendix A of this report. In summary, results from the three sustained yield tests indicated that the sustainable yields were approximately 0.23 gallons per minute (gpm) for extraction well DCF94ES-1B, 0.16 gpm for DCF94ES-2B, and 0.34 gpm for DCF94ES-3B. A total of 0.72 gpm was sustained during the four-day aquifer pumping test which combined all three extraction wells. The recovery of only 0.72 gpm of groundwater and the resulting negligible influence on groundwater elevations in the pilot study area prompted the deletion of the groundwater extraction component from the pilot test study.

As a result of the pump test findings, the dual extraction pilot test study, as proposed in the *Work Plan*, was modified to a single-phase (i.e., SVE) pilot study, as discussed above.

3.2.2 Extended 60-Day SVE Test

The extended 60-day SVE test was performed to evaluate the longer-term impact of SVE operations at the site. Since the operational system was already on site, it was regarded as economically and environmentally prudent to continue SVE operations beyond its proposed 30-day operations to obtain more definitive data and to gain further, readily achieved reduction of the VOC levels in the vadose zone (refer to the Army's facsimile to U.S. EPA Region VII, dated February 6, 1995).

3.3 INITIAL 30-DAY PILOT TEST

3.3.1 Introduction

On November 21, 1994, a 30-day pilot test study program was initiated to evaluate the effectiveness of SVE treatment of soils at the DCFA. Details on the layout, procedures and protocol of the pilot test were presented in the *Work Plan*.

The pilot test study program involved the construction and operation of a SVE system consisting of four SVE wells for contaminant removal, a passive vent well to improve air movement and the effectiveness of SVE, a 250-gallon vapor/water separator for gas/liquid-phase separation, an equalization tank, connecting piping with necessary gauges, valves and controls, and a 30-horsepower (Hp) SVE unit as the vacuum source. The passive vent well was designated DCF94PV-1 and the four extraction wells were designated as DCF94ES-1A, 2A and 3A (referred to hereafter as SVE-1A, 2A and 3A, respectively), and DCF94-21. Figure 3-1 presents the layout and configuration of the constructed pilot test system. Figure 3-2 presents a detailed "as-built" pilot test system schematic.

The test, as proposed in the *Work Plan*, consisted of four individual tests at each SVE well (five days each) followed by a combined 12-day test engaging all four wells simultaneously. However, the actual duration of each test, as listed in Table 3-1, varied, based on the time required to achieve asymptotic conditions so that the optimum operating conditions (e.g., flow rate) could be determined. Optimum operating conditions were considered to represent the best case flow rate and corresponding vacuum level necessary to achieve maximum sustainable contaminant loadings.

The SVE wells were constructed as four-inch-diameter Polyvinyl Chloride (PVC) casings having 10 feet of PVC slotted screen set within the depth of soil indicating the highest concentration of VOCs. Prior to test startup, baseline soil sampling and analyses were conducted in May and October 1994 to establish initial soil contaminant isopleths and to confirm ideal well screen placement for the test. Results of the baseline sample analyses are presented in Table 5-2. Results of previous soil borings for the pilot test study are presented in Table 5-3. A presentation of the contaminants detected in the pilot test study borings is provided in Figure 5-1.

3.3.2 Test Procedure

Following the determination to abandon the groundwater extraction element of the pilot study, wells SVE 1A, 2A, 3A and DCF94-21 were tested, in sequence, under best sustained flow rates for contaminant removal. Each well was tested through the five-day period or until asymptotic levels of mass loading rates were achieved. Following the individual well tests, the combined extraction well test was conducted, During the combined test, the passive well, which was located at the center of the extraction well cluster, was activated for the first three days and then inactivated at the rest of the combined test. The intended utilization of this well and the duration of each test is discussed in Section 4.3 in the *Work Plan*. The purpose of testing this well is to evaluate its effects, if any, on air flow pathway.

The determination of asymptotic levels was accomplished through plotting the contaminant loadings (i.e., the VOC removal rates) against time for extracted soil vapor at each well head under given flows. The point at which the drawn curve became nearly constant, with respect to the x-axis (time) of the plot, marked the sought asymptotic extracted VOC loading rate. This point signaled completion of one well test and preparation for the next.

Throughout each test, extracted soil vapor samples were collected at various port locations in the system to evaluate VOC loading rates, vapor-phase carbon consumption, and discharge to atmosphere (system effluent quality). Details on the pilot system sampling are presented in Section 3.3.4. A discussion and presentation of the extracted vapor loading results are provided in Section 5.3.1.

At SVE 1A, the extracted flow rate was initiated on November 21, 1994 at 14:30, at 65 standard cubic feet per minute (scfm), and stepped systematically toward optimum recovery at 90 scfm. At optimum flow, the well was continuously operated for a period of 24 hours, at which time it was determined that the product of the VOC concentration in the extracted vapor and flow was relatively unchanged; hence, an asymptotic mass loading level was achieved. Test completion at SVE 1A occurred on November 25, 1994 at 11:07.

At SVE 2A, the extracted flow rate was initiated on November 25, 1994 at 11:07 at 54 scfm. Within hours of startup, however, the flow rate dropped, apparently due to the surrounding soil formation restricting air flow, thus increasing soil vacuum pressure. To reduce the vacuum pressure through the GAC units and relieve localized groundwater surging at the well, the flow rates were, in this case, systematically reduced to achieve a secure flow rate for sustained system operation. This was accomplished on November 27, 1994 at 12:30, at which time SVE 2A sustained an optimum flow rate of 28 scfm. Testing at this flow rate was continued for 45 hours until asymptotic loading levels were attained at 09:37 on November 29, 1994. The test was completed at 10:10 on November 29, 1994.

Wells SVE-3A and DCF94-21 were tested similarly to SVE 1A insofar as stepping up the initial flow rate toward an optimum rate. SVE 3A was engaged at an initial flow rate of 39 scfm and raised to a sustained flow rate of 77 scfm, whereas DCF94-21 was initiated at 40 scfm and raised to 100 scfm for operation toward asymptotic conditions. The SVE 3A test was started on November 29, 1994 at 10:10 and completed on December 2, 1994 at 13:15. Well DCF94-21 was subsequently engaged at 15:00 on December 2 and completed on December 6 at 17:00.

Following the individual tests, the combined SVE test was performed at a sustained flow rate under asymptotic conditions of 160 scfm. The combined test was operated from 10:00 on December 8 to 9:25 on December 20, totaling 12 days of operation.

3.3.3 Vacuum Pressure Monitoring

During each of the individual well tests and the combined well test, vacuum readings were obtained at the vacuum probes installed radially outward from each SVE well to evaluate subsurface vacuum levels. The as-built construction of the probes is discussed in Chapter 4.0. Figure 3-1 shows the location of the probe arrays.

Vacuum readings were collected via both magnehelic gauges and manometers for purposes of correlation. In general, the manometers were used to confirm the low vacuum pressures detected by the magnehelic gauges at the outermost probes. All readings collected were expressed in terms of gauge pressure for simplicity. Barometric monitoring of atmospheric pressure indicated an average pressure at the site of 14.2 pounds per square inch (psi). This data was used to compute flow rate from the ${}_{\Delta}P$ readings obtained between the internal well head and piping pressure.

Throughout each test, vacuum readings were recorded every 10 minutes within the first hour of initiating flow and then at half-hour intervals until vacuum pressure stabilized under the sustained flow rate. Readings were then collected hourly until the flow rate was stepped up, in which case the collection

Louis Berger & Associates, Inc.

frequency was repeated until the final optimum flow rate was established. The probes were capped when not used to prevent surface air infiltration (short circuiting).

It was originally intended, as indicated in the *Work Plan*, to use the vacuum monitoring data as a field permeability test to determine both the soil permeability to air flow and the effective radius of influence attainable from SVE at a given well. However, due to influences from the subsurface utilities and subsurface soil conditions as signified by data (discussed in detail in Section 5 and presented in Figures 5-7 through 5-10) obtained in the field, this could not be accomplished. Rather, to depict the influence on subsurface soils during the tests, vacuum distribution contours were constructed for each of the individual well tests and the combined SVE operation. A discussion on the results and the significance of the vacuum distribution contours is presented in Section 5.3.2.

3.3.4 Soil Vapor Sampling

During the SVE testing, the extracted soil vapor was sampled and analyzed for VOCs by an on-site gas chromatograph (GC). The instrument used was a Shimadzu GC-9A, which was housed in a temperature-controlled mobile van. A detailed description of the methodology of the portable GC analysis and justification for using on-site GC analysis has been documented in *Technical Memorandum for Sampling Activity and GC Methodology*, dated August 23, 1994, and is presented in Appendix B. Table 3-2 provides a list of the target VOCs selected for analysis by the instrument and the associated quality control (QC) quantitations.

For each of the four individual well tests, soil vapor samples were collected from four sample ports: the well head port, the total port (located at the influent side of the vapor/water separator), the primary (located after the first GAC unit), and the secondary (effluent) located on the exhaust stack as shown in Figure 3-2. Each sample port was constructed as an airtight tube installed for syringe extraction. Air samples were collected using a syringe by first filling the syringe and then purging the contained vapor back into the system pipe. This fill-and-purge procedure was typically conducted several times, after which a representative sample was collected for analysis.

The frequency of the sampling was approximately every hour during the individual well tests and three times a day during the combined test, with a decreased frequency of once a day toward the last four days of the test.

To determine mass loading rates, the air flow rates (scfm) were calculated by taking several field measurements concurrent with sample collection. First, vacuum was recorded in inches water using a water manometer, or inches mercury using a magnehelic gauge at the four sample ports described above. Then the pressure differential in the pipe was measured by connecting a manometer across the pitot tube. This measurement was ΔP . Lastly, temperature was recorded in degrees Fahrenheit, using a stainless steel dial thermometer inserted into the gauge port. Air flow for a four-inch-diameter pipe was computed from the vacuum, ΔP and temperature data at each port and converted to scfm by the following equation:

Page 3-4

$$Q = K \cdot N \cdot D^{2} \cdot \sqrt{\frac{A_{P}}{A_{T}}} \cdot \sqrt{\Delta P}$$

K	=	Flow Coefficient (dimensionless).
N	=	Correction factor depends on units of measurement using scfm and (ΔP) inches of water. N=128.52.
• • D •		Exact inside diameter of pipe in inches.
A _P	= .	Absolute pressure (psia); Atmospheric pressure must be added to the gauge pressure.
A _T	. =	Absolute temperature; Add 460 to degrees Fahrenheit to equal degrees Rankine.
ΔP	=	Pressure differential of flow sensor in inches of water.
Q	. = .	Volume flow rate in scfm.

Mass loading was calculated by multiplying the air flow by the VOC concentration at each respective location.

3.3.5 Soil Vapor Generation and Control

The soil vapor generated during the initial 30-day pilot study was treated through an off-gas treatment system. As depicted in Figure 3-1, the extracted soil vapor was first passed through a vapor/water separator, which was designed to separate water (in moisture and aerosol form) from the vapor. Although Liquid-Phase Granular-Activated Carbon (LPGAC) units were provided and remained on line in the treatment system, no water condensate was collected during the initial 30-day pilot study. The soil vapor discharged through the vapor/water separator was then drawn under vacuum into the Vapor-Phase Granular-Activated Carbon (VPGAC) units, where VOCs were treated through adsorption to the GAC surfaces. The treated soil vapor, referred to as off-gas emissions or effluent, was then discharged to atmosphere. As mentioned above, VOCs in the soil vapor were monitored at four different points (i.e., sampling ports) along the off-gas treatment system.

Based on the maximum effluent loading rate computed at 0.06 pound per day (lb/day), the pilot test system effluent was determined to be well below the Kansas Department of Health and the Environment (KDHE) regulatory discharge criteria of 2.3 pounds per hour (lbs/hr) for VOCs based on the 10-ton-per-year limit specified in the Kansas Air Quality Regulations (Section 28, Title 19).

In addition to the effluent monitoring, the pilot test area was field-screened with a photoionization detector (PID) for health and safety purposes. It should be noted that the vacuum blower was placed on the discharge side of the granular-activated carbon (GAC) units. Thus, the entire system was under vacuum, further minimizing a potential release of VOCs through system valves or piping. A description of the equipment design and placement is provided in Section 4.2.

3.4 EXTENDED 60-DAY PILOT TEST

The 60-day extended SVE pilot test study began on February 8, 1995 and ended on April 6, 1995. The test engaged all four SVE wells at the same time. All work was performed in the same manner as in the initial 30-day test, with the exception that the frequency of extracted vapor sampling was reduced and that the on-site GC analysis was discontinued. Also, based on the low loading rate results from the initial 30-day

pilot study, which indicated an averaged loading rate of 0.78 lb/day, it was determined that the extracted soil vapor could be sampled and analyzed on a weekly basis during the extended pilot study.

Two vapor samples per week (one archived, one analyzed) were collected from the SVE system, and sent to Continental Analytical Service (CAS) (instead of using on-site GC) for VOC analysis, using EPA 8010 and 8020. Total petroleum hydrocarbon-gasoline range organics (TPH-GRO) was analyzed during the first two weeks but was determined to be below detection limits in the samples collected. Therefore, TPH-GRO analysis was discontinued in the subsequent sampling events. The on-site GC unit was removed from the site during the extended pilot study. Detailed discussions on sampling frequency and analysis was documented in the *Draft Technical Memorandum-DCF Extended Vapor Extraction System Pilot Study*, dated February 8, 1995 (Appendix C).

Louis Berger & Associates, Inc.

DCFA Draft Final Pilot Test Study Results Report

TABLE 3-1

SVE PILOT TEST OPERATION SCHEDULE

		·		
	Operation Dates	SVE Well Tested	Operation Durations	
	November 21 to November 25, 1994	SVE-1A	92 hr 38 min	
	November 25 to November 29, 1994	SVE-2A	95 hr 3 min	
Initial 30-Day Pilot Test	November 29 to December 2, 1994	SVE-3A	75 hr 8 min	
	December 2 to December 6, 1994	DCF94-21	97 hr 55 min	
	December 8 to December 20, 1994	All Wells Combined	12 days	
Extended 60-Day Pilot Test	February 8 to April 6, 1995	All Wells Combined	2 months	

Page 3-7

Louis Berger & Associates, Inc.

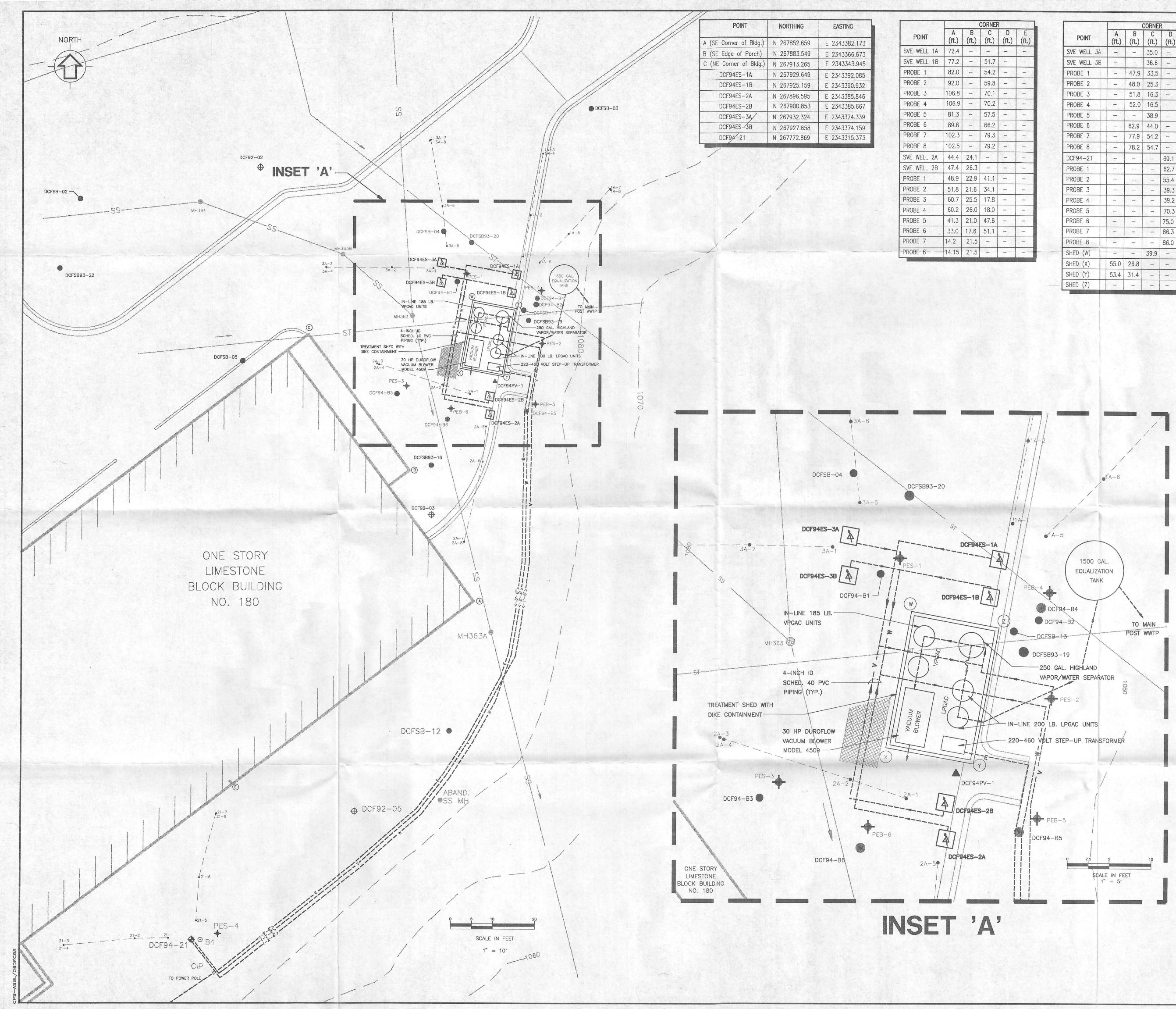
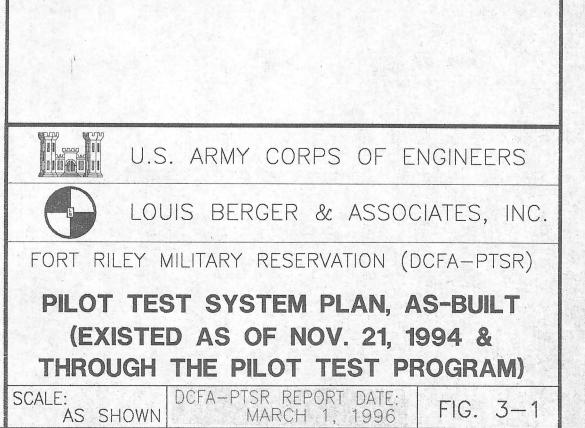

DCFA Draft Final Pilot Test Study Results Report

TABLE 3-2

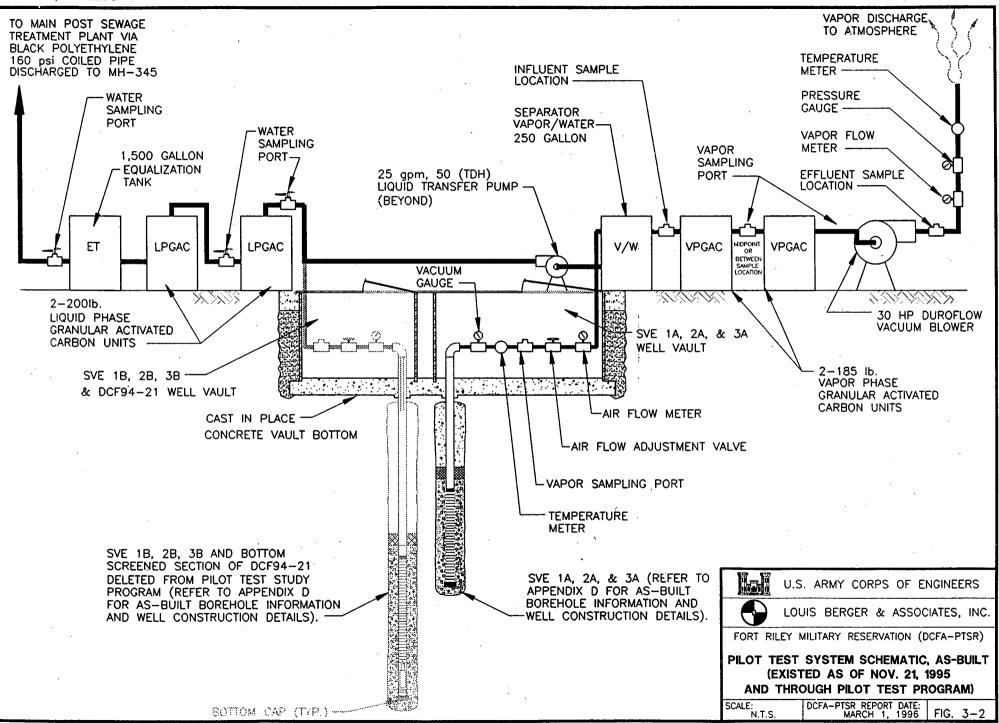
FIELD GC QUANTIFICATION LIMITS

Compound	Soil Headspace Detection Limit (µg/l)		
Dichloromethane	0.83		
Trans-1,2-Dichloroethylene	0.43		
Cis-1,2-Dichloroethylene	0.45		
1,1,1-Trichloroethane	0.68		
Trichloromethane	1.04		
Benzene	0.12		
Trichloroethylene	0.57		
Toluene	0.13		
Tetrachloroethylene	0.77		

Page 3-8



	CORNER				
POINT	A (ft.)	B (ft.)	C (ft.)	D (ft.)	E (ft.)
SVE WELL 3A	-	-	35.0		17-1
SVE WELL 3B		-	36.6		-
PROBE 1	-	47.9	33.5	-	-
PROBE 2	-	48.0	25.3	-	10-11
PROBE 3		51.8	16.3	÷	· · · · ·
PROBE 4	-	52.0	16.5	-	-
PROBE 5	-	-	38.9	_	-
PROBE 6	-	62.9	44.0		-
PROBE 7	-	77.9	54.2	-	-
PROBE 8	-	78.2	54.7		-
DCF94-21	-	-	-	69.1	38.1
PROBE 1		- 3	-	62.7	39.2
PROBE 2			_	55.4	42.8
PROBE 3	-		-	39.3	54.8
PROBE 4		-	-	39.2	54.9
PROBE 5	-			70.3	33.2
PROBE 6	-	=	-	75.0	23.3
PROBE 7	-	-		86.3	7.7
PROBE 8	. —	-	-	86.0	8.0
SHED (W)	_		39.9	_	-
SHED (X)	55.0	26.8	-		-
SHED (Y)	53.4	31.4	-	-	-
SHED (Z)	-		-	-	-


KEY MAP						
N 288250 E 2342750 N 288000 E 2342750	ELOC: 81	AREA OF DETAIL				
N 287750 E 2342750	BLDD TED	OT TO SCALE				
	LEGEND:					
	EXISTING GROUND SURFACE CONTOUR (FEET)					
5						
	<pre> V VAPOR LINE W/ FLOW DIRECTION </pre> <pre></pre>					
	 DOUBLE WALLED GROUNDWATER LINE W/ FLOW DIRECTION & DEPTH BELOW GRADE 					
4	EXTRACTION WELL SYSTEM A-INDICATES SOIL VAPOR EXTRACTION WELL B-INDICATES GROUNDWATER EXTRACTION WELL					
+	POST EXTRACTION BORING					
•	BASELINE SOIL BORING					
\oplus	GROUNDWATER MONITORING WELL					
•	AQUIFER TEST/REMEDIATION W	/ELL				
	STORM SEWER LINE					
	- SANITARY SEWER LINE					
% MH368	MANHOLE					
•	PASSIVE WELL					
۲	BLDG. REFERENCE POINT					

NOTES:

- 1. MONITORING WELL DESIGNATIONS REPRESENT LOCATION (i.e. DRY CLEANING FACILITIES (DCF) FOLLOWED BY DATE OF INSTALLATION AND WELL NUMBER.
- 2. WELL AND SOIL BORING SYMBOLS USED FOR THIS DRAWING WERE SELECTED FOR EASE OF VISUALIZATION.
- 3. SEE LIST OF SYMBOLS AND ABBREVIATIONS.

CPS-PTSS/06DEC95

. . .

4.0 EQUIPMENT AND MATERIALS

4.0 EQUIPMENT AND MATERIALS

4.1 INTRODUCTION

Figure 3-1 presents the layout and configuration of the pilot test system "as-built." Figure 3-2 presents the "as-built" system schematic. As shown in this figure, the system was constructed within a field-assembled woodshed. A diked concrete containment pad formed the floor of the shed and served as a mechanical pad for equipment support. As previously discussed, the originally proposed groundwater pump system and controls were disengaged following the decision to abandon the groundwater extraction component of the system. To minimize the potential for extracted vapor losses through pipe joints, valves and sample ports, the vacuum blower was installed at the discharge side of the VPGAC units. This allowed the entire pilot test system, from well heads to the SVE blower outlet, to be under vacuum. The size and specifications of each pilot test system unit operated during the pilot test study are described in the following sections.

4.2 **30-DAY TEST SYSTEM**

4.2.1 SVE Well Construction

The three wells SVE-1A, 2A and 3A and Passive Well DCF94PV-1 were constructed in accordance with the *Work Plan* using hollow stem augering equipment in unconsolidated formations. The SVE wells were constructed of four-inch inside diameter (ID) PVC Schedule 40 flush threaded joint risers extended to 25 feet below grade. The well screens were slotted PVC and 10 feet in length extending from approximately 15 feet to 25 feet below grade where the wells were terminated. Bottom caps were placed on the well risers to focus SVE laterally throughout the well screens. Figure 4-1 shows the as-built screen diagram through the pilot study area. As-built well construction details are provided in Appendix D.

The wells were installed within 12-inch-diameter boreholes with a filter of coarse No. 4 sand placed in the annular space between the well screen and borehole to maximize air flow. This packing media was favored over the originally proposed 3/16- to ¼-inch pea gravel based on field conditions which warranted consideration of finer materials to screen silts and sands.

Well DCF94-21 was constructed as proposed in the *Work Plan*, with a total depth of approximately 40 feet. The screened intervals for DCF94-21 were from 38 feet to 28 feet for groundwater extraction, and 26 feet to 16 feet for soil vapor extraction. DCF94-21 was constructed using No. 4 sand as packing material, which was similar to packing material for wells SVE-1A, 2A and 3A. However, the well was designated for SVE operations only, so that the originally proposed dual-phase capability of the well was abandoned.

4.2.2 Soil Vapor Extraction Unit

The SVE unit originally proposed in the *Work Plan* was similar to that installed with the exception of its placement in the system and power requirements. The unit selected for the pilot test system was a Duroflow Model 4509 with a design flow capacity of 550 scfm (with a low range potential of 1 scfm) against a total dynamic head of 10 inches mercury or 136 inches water suction. The low 1 scfm range operating requirement was not necessary, as the soil permeability to air flow was found to be significantly greater than expected, resulting in a "naturally" occurring high flow rate during testing.

The power performance specifications for the unit were 30 Hp with a demand of 460-volt, three-phase, 60hertz (Hz) service, which was provided by a step-up transformer wired to a 220-volt underground service entrance (USE) cable connected to a three-phase power pole installed at the site.

4.2.3 Vapor Water Separator, Transfer Pump and Equalization Tank

The vapor/water separator for the pilot test system was selected as a 250-gallon unit with level sensors and controls wired to a 25 gpm capacity transfer pump for removal of any condensate generated during the SVE operations. The vapor phase piping associated with this unit was connected to the VPGAC units, whereas the liquid phase piping from the transfer pump was connected to the LPGAC units located along the east wall of the treatment shed, as shown in Figure 3-1. The equalization tank which was installed to handle any condensate generated was a 1,500-gallon unit with a discharge pump for conveying the treated condensate to the Main Post Wastewater Treatment Plant.

4.2.4 Vacuum Monitoring Probes

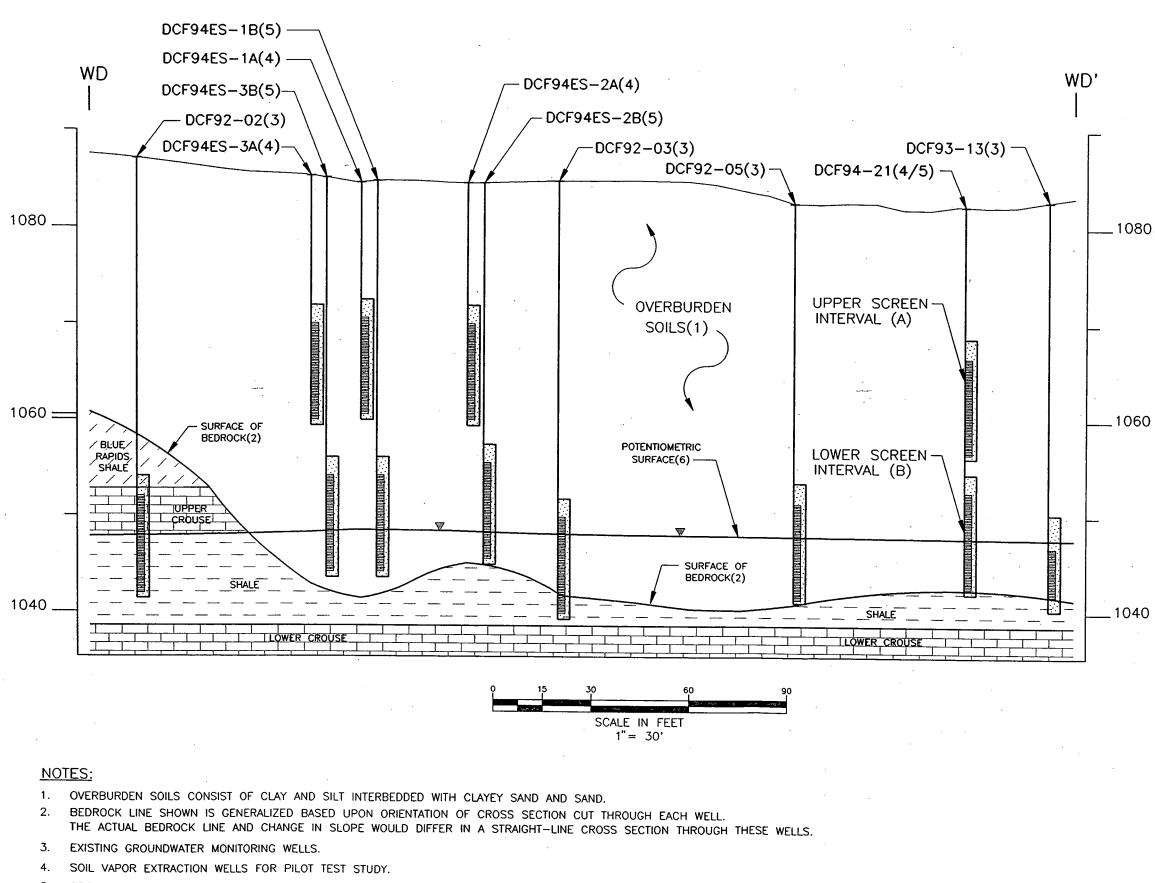
Vacuum pressure was monitored using vacuum probes and magnehelic gauges. Vacuum probes were constructed of ¹/₂-inch-diameter standard steel pipe. Eight vapor probes were installed at each of the four SVE wells, as shown in Figure 3-1. The probes were installed in two arrays at each well, each array consisting of four probes located as follows:

- The first vapor probe in each array was mounted five feet from the well and installed at a depth of approximately 25 feet.
- The second probe in each array was mounted 15 feet from the well and installed at a depth of 15 feet.
 - The third and fourth vapor probes in each array were installed 30 feet from each SVE well, at depths of seven and 25 feet, respectively.

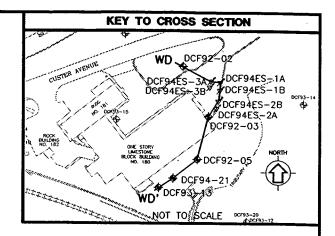
4.2.5 GAC Treatment Units

The in-line GAC units selected for treatment consisted of two 185-pound vapor-phase units and two 200pound liquid-phase units. The VPGAC units were placed between the vapor/water separator and SVE unit, and the LPGAC units were placed between the transfer pump and the equalization tank. All units were placed in series. The vapor-phase carbon was capable of withstanding pressures up to 12 pounds per square inch gauge (psig).

4.2.6 Pilot Test System Appurtenances


The valves, gauges and controls for the pilot test system were of various manufacture. Coiled hoses with sample ports were installed between the carbon units and the SVE and vapor/water separator units. All SVE piping was four-inch ID Schedule 40 PVC and was placed below ground where practical to avoid freezing of valves and gauges from entrained condensate collected during the winter operation. Heaters were placed in the treatment shed to safeguard the LPGAC and sound blankets were placed around the SVE unit to minimize noise.

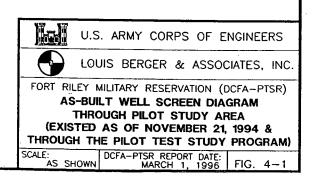
4.3 EXTENDED TEST STUDY SYSTEM


The extended pilot test used the same SVE system as in the initial 30-day test, with the following modifications:

- Vapor treatment units (i.e., GAC) were not used, since the average total GAC contaminant loading rate from the SVE wells generated at the end of the initial 30-day test was approximately 0.78 lb/day, well below the KDHE emission rate standard of 2.3 lbs/hr or 55 lbs/day.
- The on-site GC unit was removed. Vapor samples collected were sent to an off-site laboratory for VOC analysis as discussed in Section 3.4.1.

A partial demobilization was performed on January 21, 1995, i.e., before the extended pilot study. Activities included GC van removal, vacuum probe removal and removal of well pumps from the groundwater extraction wells. The vapor/water separator was kept on line to protect the SVE unit in the event of any moisture generation due to potential changes in soil conditions.

- GROUNDWATER EXTRACTION WELLS DELETED FROM USE IN THE PILOT TEST STUDY. 5.
- POTENTIOMETRIC SURFACE BASED ON 2/94 SAMPLING EVENT. 6.
- ALL SCREEN LENGTHS SHOWN ARE 10 FEET LONG, EXCEPT FOR WELL DCF93-13, WHICH IS 5 FEET LONG. · 7.
- SEE LIST OF SYMBOLS AND ABBREVIATIONS. 8.



LEVEL) SEA

MEAN (ABOVE .1060 EET Ζ ELEVATION

BOTTOM OF SCREEN ELAVATIONS								
WELL	SCREEN EL.							
DCF92-02 DCF94ES-3A DCF94ES-3B DCF94ES-1A DCF94ES-1B DCF94ES-2A DCF94ES-2B DCF92-03 DCF92-05 DCF92-05 DCF94-21(A) DCF94-21(B) DCF93-13	1042.90 1059.95 1044.28 1060.64 1044.16 1059.35 1046.20 1039.90 1041.30 1056.74 1044.24 1037.40							

.1040

5.0 PILOT TEST DATA RESULTS AND INTERPRETATIONS

5.0 PILOT TEST DATA RESULTS AND INTERPRETATIONS

5.1 OVERVIEW

The initial 30-day SVE operation consisted of four individual tests at each SVE well, followed by a combined test engaging all four wells simultaneously. The extended SVE operation employed all four SVE wells, and was essentially a continuation of the combined test conducted during the initial-phase operation.

During the initial 30-day SVE test, on-site VOC monitoring was conducted using a portable on-site GC. In addition to VOC monitoring, air flow and subsurface soil vacuum were also monitored over time to evaluate system performance and optimum flow. During the extended SVE operation, only VOCs in extracted soil vapor and air flow rates were monitored. VOC samples were submitted to an off-site laboratory for analysis, as the on-site GC unit had been removed. Throughout the pilot study, data obtained was maintained in a field log with corresponding collection times. Data management involved field plots and preliminary evaluation of VOC loading rates to guide the duration of the individual SVE operations. The individual operation schedule is presented in Table 3-1.

In summary, the DCFA SVE system was determined to be effective in VOC reduction. Twenty-one pounds of VOCs were removed from the pilot study area in the first 30-day SVE test, whereas approximately three pounds of VOCs were removed during the extended 60-day SVE operation. Based on the baseline soil analytical soils results, it was conservatively estimated that a total of 45-55 pounds of VOCs were present in the site soils before the pilot study operation began. Thus, approximately 50 percent of the contaminant mass has been removed from the site, as a result of the pilot test study program.

Based on the results from the individual well tests, VOC removal rates varied from well to well. A comprehensive summary of the pilot study operations schedule, sustained flow rates, VOC loading rates and cumulative VOC mass removals is presented in Table 5-1. As indicated in Table 5-1, VOC loading rates from wells SVE-1A and 3A were much higher than SVE well 2A and DCF94-21. A detailed discussion of each well response to SVE application is provided in Section 5.3.

5.2 BASELINE SAMPLING AND TEST RESULTS

5.2.1 Baseline Soil Sampling and Analytical Results

Soil samples were collected at various depths via split spoon sampling during installation of the four extraction wells in May 1994 to establish baseline soil conditions prior to the pilot test study. Baseline soil samples were collected again in October 1994 because the pilot test study had been delayed as a result of the sewer line repair and underground storage tank (UST) removal activities, which have been discussed in Section 3.3 of the *DCFA-RI* Report. Boring locations and sample depths for both sampling events are identified in Figure 5-1. The soil samples were sampled and analyzed in accordance with the *Work Plan* to establish the baseline of the pre-test soil contamination. These results and associated QA/QC data have been documented in a QCSR report, entitled *Analytical Data Reported for Baseline Soil Boring Samples and Soils from Underground Storage Tank Locations*, dated December 2, 1995.

Baseline analytical results were intended to be compared to post-extraction soil analytical results. On the basis of this comparison, the performance of the SVE system could be evaluated by determining the overall

reduction of soil contamination within the DCF pilot study area. Of the May and October sampling events, the analytical results for samples collected in October 1994 were used for mass reduction calculations. The October data was considered to be more representative for determining baseline conditions, as it was representative of conditions just prior to the pilot test startup. Results of October sampling are presented in Table 5-2A and Figure 5-1, while May data is provided in Table 5-2B for reference. As shown in Table 5-2A and Figure 5-1, PCE was detected in eight of nine baseline samples collected in October. PCE levels ranged from 4.5 to 100 μ g/kg, with the highest concentration, 100 μ g/kg, detected in soil boring DCF94-B4 at a depth of 17.5-19.5 feet below grade. Breakdown products of PCE, i.e., TCE and 1,2-DCA, were also detected in sample DCF94-B5-3 (collected at a depth of 15-17 feet below grade) at 4.7 μ g/kg and 3.4 μ g/kg, respectively. Sample descriptions (including soil boring number, sampling time and depth below grade) are provided in Tables 5-12, 5-13 and 5-14. These results confirm that the primary contaminant of concern at the DCFA site was PCE.

5.2.2 Baseline Groundwater Sampling and Analytical Results

Although the groundwater extraction component was deleted from the pilot study program as discussed in Sections 1.2 and 3.2, for documentation of any potential remediative effect from the pilot test system on groundwater quality, baseline groundwater sampling results are presented in Table 5-2C. The baseline samples were collected in June 1994. As discussed above, the pilot test study was delayed as a result of the sewer line repair and the UST removal activities. Therefore, analytical results of August 1994 pre-test quarterly sampling are considered to be more representative for determining the baseline conditions, and are provided in Table 5-2D. It should be noted, however, that well DCF94ES-1B, -2B -3B, and DCF94-21 were not sampled during the pre-test sampling event since the pumps and piping in place as part of the original plan for groundwater extraction were not yet removed to facilitate sampling. The August 1996 analytical results are compared to the post test - groundwater sampling results, to evaluate any potential remediative effects from the pilot test study on groundwater at the DCFA.

5.2.3 Geotechnical Testing and Results

In addition to the baseline sampling and analyses performed at the DCFA prior to the start of the Pilot Test Study program, samples were obtained during the advancement of the extraction well for geotechnical analysis. These samples which were collected in May 1994 included both undisturbed (Shelby tube) and split spoon samples. Analyses performed included grain size distribution, water content, Atterberg limits, dry density and specific gravity. Porosity and degree of saturation were computed based on these test data. The soils were classified using the Unified Soil Classification System (USCS). Results of these analyses are summarized in Table 5-3 and laboratory test results are presented in Appendix E.

These results support the geological profile described in Section 2.2. The results indicate that the soils consist predominantly of clays, sandy clays and silty sands in the intervals tested. The USCS symbol for these samples are mainly CL but some samples are classified as SM, SC, and ML.

5.3 INITIAL 30-DAY TEST RESULTS

5.3.1 Introduction

One of the principal pilot test objectives cited in the *Work Plan* was to obtain the optimum operational conditions for the system constructed at the site. This was to be established by determining the best flow rate (vacuum) at each SVE well so that the highest VOC removal rate could be achieved for the given system. In order to define optimum VOC recovery at each SVE well, system air flow was systematically

stepped up throughout each individual and combined well test, and allowed to operate over a certain time period until asymptotic conditions were obtained as discussed below.

Asymptotic conditions were attained when both air flow rate and VOC mass loading remained relatively unchanged over a certain time period. To determine the sought asymptotic condition in a timely manner for both air flow and VOC loading under each SVE operation, the VOC loading rate and air flow rate were reviewed on site to evaluate the changing trends over time. By definition, VOC loading rate is the product of air flow rate and VOC concentration. VOC concentrations were monitored and obtained by the on-site GC analysis as described in Section 3.3.4. At the same time, system air flow rate was recorded over time. The GC analytical data and the air flow rate data were then used to develop the extracted VOC loading rates as presented in Appendix F.

Three different air flow rates were used in most cases to determine the optimum operational condition for each SVE well. Based on the responses of VOC loading rates to air flow, SVE wells were divided into two groups. One group of wells, SVE-1A and 2A, showed a linear response to air flow, indicating that VOC loading rates in general increased linearly as flow rates increased. This was signified by the parallel relationship between the curves of air flow and VOC loading rates, and by the straight line of cumulative VOC removal during each air flow operation period. The second group, consisting of SVE-3A and DCF94-21, indicated a non-linear response to air flow. At a given air flow rate, VOC loading decreased over time (non-parallel relationship between flow and VOC loading rates). Some differences within each group also occurred. These are discussed in detail in sections 5.3.2 through 5.3.5.

The different responses to air flow observed necessitated case-specific determinations of optimum operation conditions. For wells with linear response, when both the maximum air flow and corresponding mass loading rate became simultaneously constant, the mass loading rate was considered the optimum VOC recovery at each SVE well for the test system. This is because such a mass loading rate was the maximum VOC removal rate that could be recovered from these wells for the given test system. The maximum air flow rates that the test system could deliver to these wells was considered the optimum operational flow for the pilot test system. Therefore, the optimum conditions for those wells with linear response were characterized by asymptotic conditions for both air flow and VOC loading under the highest operational flow conditions. For wells with non-linear response, an air flow rate that could sustain the highest leveled-off VOC loading rate was deemed as the optimum operational flow for the individual well.

For the combined well test, determination of optimum operational conditions was based, in part, on the optimum operational conditions for individual wells. This is not only because of the different responses, but also because of the interactions or interferences between wells (e.g., overlap of vacuum distribution and formation of preferential pathway). In addition, the magnitudes of VOC removal potentials from SVE wells were different, which signified that a weighted air flow distribution should be used in the combined test. The asymptotic conditions identified for each individual SVE well test and for the combined test are summarized in Table 5-1, and are discussed in detail in sections 5.3.2 to 5.3.6 below.

VOCs removed from individual SVE operations have been summarized in Table 5-1. Table 5-4 summarizes mass removals of the primary contaminant PCE, and its removal percentages to overall PCE mass present at the site prior to pilot study. PCE results were selected for reporting in Table 5-4 because PCE as previously indicated had been evaluated as the primary contaminant of concern at the DCFA site. The total PCE mass prior to the pilot study was estimated to be in the range of 40-50 pounds (see Appendix F-1 in the *DCFA-RI* Report), and was approximately 90-95 percent of total VOCs which, in turn, was estimated to be in the range of 45-55 pounds. As demonstrated in Table 5-4, PCE constituted the majority (approximately 94 percent) of the total mass removed over time. Detailed field data for each individual and combined SVE test is presented in Tables 5-5 through 5-9 for SVE wells 1A, 2A, 3A, DCF94-21, and

combined test, respectively. As indicated in the tables, approximately 21 pounds of VOCs were removed from the study area over the initial 30-day pilot study. The well tests yielded 4.79 pounds at SVE Well 1A, 0.60 pound at SVE-2A, 6.12 pounds at SVE-3A, 0.23 pound at DCF94-21, and 9.07 pounds at the completion of the combined test. The field GC data presenting a breakdown of the VOC constituent concentrations and flow rates is presented in Appendix F.

The data representing air flow and VOC removal is graphed in Figures 5-2 through 5-6, VOC removals for SVE-1A, 2A, 3A, DCF94-21 and combined test, respectively. Values for flow vary, with values ranging from 28 to 160 scfm.

5.3.2 SVE Well DCF94ES-1A

Table 5-5 summarizes the VOC loading rates and cumulative VOC removals from SVE well DCF94ES-1A under sustained air flow rates of 65, 75, 80 and 90 scfm. Results are plotted in Figure 5-2.

SVE operations at DCF94ES-1A began at 14:30 on November 21, 1994, with an initial air flow rate of 65 scfm, as indicated in Table 5-5 and Figure 5-2. Plotted VOC removal rates ranged from 0.78 to 1.06 lbs/day under the initial flow rate of 65 scfm, with a sustained loading rate of 1.0 lb/day. At the next stepped flow rates of 80 scfm, the VOC loading rates ranged from 1.17 to 1.24 lbs/day, but did not stabilize. The flow rate was then stepped to 90 scfm, at which time a VOC loading rate of 1.33 lbs/day was sustained. The total mass of contaminant removed was calculated as 4.79 pounds, recorded at the end of SVE-1A test at 11:07 on November 25, 1994.

As shown in Figure 5-2, VOC removal rates increased with increasing system flow through each stepped flow rate. The response of this SVE well to air flow was almost linear. This is signified by the fact that the VOC loading curve and the air flow curve are parallel to each other. This linear relationship between VOC loading and air flow rate was further evidenced by the straight line of the cumulative VOC removal curve. The linear relationship is the direct result of the relatively constant concentrations of total VOCs in the extracted soil vapor, as documented in the on-site GC data provided in Appendix F.

Given the linear relationship between the VOC loading rate and air flow for well DCF94ES-1A, the optimum operational flow was found to be the highest air flow rate that could be achieved at this SVE well, using the SVE test system. As a result, an air flow of 90 scfm was selected as the optimum flow rate for SVE-1A.

5.3.3 SVE Well DCF94ES-2A

SVE operations at well DCF94ES-2A (SVE-2A) started at 11:07 on November 25, 1994 with an air flow rate of 55 scfm and ended at 10:10 on November 29, 1994 with an air flow rate of 28 scfm. Table 5-6 presents VOC loading rates, air flows and VOC removals from this SVE well. These results are further plotted in Figure 5-3.

As shown in Figure 5-3, air flow rates were stepped down (instead of being stepped up as in DCF94ES-1A) from 55 scfm to 28 scfm over the test period due to operational restrictions. The 55 scfm flow rate had apparently caused development of excessive localized groundwater surging, resulting in a partial vapor lock. Therefore, the flow rate was required to be stepped down to seek a maintainable vacuum level. At the initial flow rate of 55 scfm, the corresponding VOC removal rate was 0.16 lb/day, but this loading rate did not stabilize. Unlike a typical SVE loading curve, which indicates a decreasing VOC removal rate over time, the VOC removal rates increased at the beginning of the SVE operation under each flow rate

operation. The opposite trends observed were not unexpected, however, and are considered to suggest that the VOC concentration distribution in soil vapor under vacuum was not at equilibrium or steady state. As shown in Figure 5-3, during the beginning of SVE operation, the air flow was not stable, indicating nonsteady state air flow in subsurface soil.

However, the overall VOC removal rates are shown to decrease almost linearly with decreasing system flow in the process of attaining a sustained flow. Calculated VOC removal rates ranged from 0.16 to 0.26 lb/day under the initial flow rate of 55 scfm, and from 0.13 to 0.22 lb/day at 35 scfm. At the final stage of SVE operation at this well, an air flow of 28 scfm was sustained (i.e., at steady state as shown in Figure 5-3), with an asymptotic VOC loading rate of 0.10 lb/day. These conditions of 28 scfm and 0.10 lb/day were selected as the optimum flow rate and asymptotic mass loading for SVE-2A. The total mass of contaminant removed was calculated as 0.60 pound recorded at the end of the SVE 2A individual well test, on November 29, 1994.

5.3.4 SVE Well DCF94ES-3A

SVE operations at well DCF94ES-3A began at 10:10 on November 29, 1994, and ended at 13:15 on December 2, 1994. Air flow rates applied ranged from 39 scfm to 77 scfm over the test period for SVE-3A.

Table 5-7 and Figure 5-4 present the VOC loading rates, air flows and VOC removals from SVE-3A. Unlike SVE-1A and 2A, a typical VOC loading rate curve, which suggests a decreasing VOC loading rate over time under a given air flow, was obtained under each air flow condition. As shown in the figure, VOC removal started with the highest loading rate of 3.44 lbs/day at the very beginning of SVE operation, and continued to decrease during the given 39 scfm flow rate. When the air flow was stepped up to 65 scfm, the VOC loading rate immediately increased from 1.05 lbs/day to 2.53 lbs/day, and then continued to decrease before the air flow rate was stepped up to 70 scfm. Although at 70 scfm the corresponding VOC loading rate was increased, the increase was not significant, as shown in Figure 5-4. Therefore, the 65 scfm air flow rate was considered the optimum air flow rate for SVE-3A.

It is should be noted that the subsurface air flow almost immediately reached its steady state under each given flow or applied vacuum condition. As shown in Figure 5-4, no significant fluctuation of measured air flow rates was observed. It is also important to note that, unlike well SVE-1A and 2A, which showed linear responses of VOC loading rates to air flows, SVE-3A indicated a non-linear response. As shown in Figure 5-4, the VOC loading curve for SVE-3A does not parallel the air flow rate curve. Rather, VOC loading rates continued to decrease when air flow rates were constant.

The total mass of VOCs removed was calculated as 6.12 pounds at the end of the SVE-3A individual well test, on December 2, 1994. As shown in Table 5-4, total VOC mass removed from this well is the highest among the four individual wells, suggesting that a weighted air flow should be allocated to this well so that a potential higher contribution from this well could be obtained in the combined well SVE operation.

5.3.5 SVE Well DCF94-21

SVE operation at well DCF94-21 started on December 2, 1994 and ended on December 6, 1994. Applied air flows ranged from 40 to 112 scfm over the test period for DCF94-21.

Results on VOC loading rates, air flows and total VOC removals for DCF94-21 are presented in Table 5-8, and plotted against time in Figure 5-5. As listed in Table 5-8, calculated VOC removal rates ranged from

0.12 to 0.02 lb/day under the initial flow rate of 40 scfm, with a sustained loading rate of approximate 0.02 lb/day. When the air flow rates were stepped up to 78, 86, 94 and 100 scfm, VOC loading rates ranged from 0.04 to 0.07 lb/day. No significant increase in VOC loading rates was observed. In fact, compared to other SVE wells, VOC removal rates from this well were far below other wells. Although 100 scfm and 0.07 lb/day were selected as the optimum flow rate and asymptotic mass loading for DCF94-21, contribution of VOC removal from this well was considered minor. The total mass of contaminant removed is identified as 0.23 pound at the end of SVE 21 well test, on December 6, 1994. As listed in Table 5-4, the total mass removed from this well is the lowest among the four SVE wells. The low VOC recovery at DCF94-21 is consistent with the baseline soil data confirming negligible VOC impact to soil at this location.

5.3.6 Combined SVE Well Operation

The combined SVE well operation was initiated on December 8, 1994 at an initial air flow rate of 150 scfm and was stepped from 150 to 160 scfm over the test period for combined SVE well operation. The test was terminated on December 20, 1994.

Table 5-9 and Figure 5-6 present the results of VOC loading rates, air flows and VOC removals for the test. As shown in Figure 5-6, the VOC removal rate decreased with increasing system flow through each stepped flow rate. The trend of decreasing loading rate over time is typical for SVE operations when SVE wells are placed in the center of contamination and effects of site heterogeneity are minimized. Stepping up air flow from 150 to 160 scfm did not increase VOC loading, suggesting that further stepping up of the air flow was unnecessary. As shown in Figure 5-6, measured air flow rates were stabilized at the very beginning of the SVE operations, indicating that a steady state subsurface air flow condition was established at the very beginning of each SVE operation. It should be noted here that the passive well, identified as DCF94PV-1 in Figure 3-1, had been tested during the combined test. The well was left open (i.e., not capped) during the first three days of testing. No noticeable effects were observed as shown in Figure 5-6. Therefore, the well was capped with an airtight well plug for the rest of the pilot test.

Calculated VOC removal rates ranged from 0.71 to 1.17 lbs/day under the initial flow rate 150 scfm, and from 0.46 to 0.73 lb/day at the air flow rate of 160 scfm. An asymptotic VOC loading rate of approximately 0.47 lb/day was attained at the 160 scfm air flow rate. Since no increase in VOC loading was observed when air flow was stepped from 150 to 160 scfm, an air flow rate of 150 was considered a better choice for any future combined well operation condition. The smooth transition of VOC loading rate from 150 scfm to 160 scfm for combined system operations.

The total mass of contaminants removed was 9.07 pounds over the combined well operations test. Mass removed from each individual well is presented in Table 5-4, together with air flow rate allocations, and corresponding VOC loading rate for each well. Of the 9.07 pounds of total VOCs removed, well SVE-3A contributed 7.40 pounds, approximately 80 percent of the total mass removed during the combined well operations. This result was expected. As discussed in Section 5.3.1.4, SVE-3A generated the highest mass removal during the individual well tests. The significant contribution from SVE-3A was attributed to the largest radius of influence that had been achieved at this well, as shown in Figure 5-9. Figure 5-10 further indicates that the vacuum distribution centered around the SVE-3A well during the combined test, suggesting that this well covered a wide area of impacted soil, including the highest contamination area at soil boring DCF94-B4.

Theoretically, total system air flow rate and allocation of this total flow to the four well heads during the combined well tests should be determined based on the optimum flows obtained during the individual well

tests as discussed in sections 5.3.1.1 through 5.3.1.5. In practice, however, this was not attainable for two reasons. First, each well response to air flow differed, as evidenced in the individual test data. The fact that some wells responded linearly and some non-linearly complicated the determination of true optimum total flow. Second, interactions or overlaps of vacuum distribution between wells forced the optimum total system flow to be determined on a trial basis. Before SVE started, all valves on the well heads were positioned on the locations which corresponded to optimum conditions for individual wells during the individual tests. The final distribution of air flow was the result of subsurface interactions of vacuum distributions or adjusted by the preferential pathway in the soil. The total air flow values are indicated in Table 5-9.

5.4 VACUUM PROBE MEASUREMENTS

5.4.1 Introduction

As indicated in the Work Plan, the intent of subsurface vacuum monitoring was to obtain values of the two important parameters: radius of influence (R) and soil permeability to air flow (k). These two parameters are factors necessary in spacing SVE wells and in sizing the SVE system.

However, results from field monitoring data precluded ordinary determination of R and k, due to subsurface soil heterogeneities (i.e., introduced or disturbed soils influencing preferential air pathways), short circuiting from below-grade utilities (i.e., sewer lines), and, vacuum probe anomalies such as probe blockage. At all well locations, readings at arrays along sewer piping responded instantaneously, while others developed slowly (i.e., no curves could be plotted). Furthermore, the actual vacuum distribution differed from the predicted response which formed the basis for probe placement. That is, for particular SVE well tests, probe responses occurred rapidly in unexpected areas, and radially outward from other SVE wells, while some of the probes closer to the test well showed a slow or no response. As such, data could not be sufficiently plotted to determine R and k. In lieu of plotting, vacuum distribution contours were constructed to illustrate SVE influence as shown in Figures 5-7 through 5-10.

Vacuum probe results were monitored continuously for 30 days during the initial-phase pilot study, at each of the vacuum extraction probes in the study area. Each probe was fitted with a vacuum gauge, and monitored for pressure in inches water (gauge). Vacuum probes were located in two arrays of four probes each, emanating from each SVE well, as shown in Figure 3-1.

All probes at each well were read at time intervals discussed in Section 3.3.3. A summary of vacuum probe measurements is presented in Appendix G. This summary demonstrates that vacuum probe measurements tended to generally increase, as expected, with increasing applied system vacuum. Overall vacuum readings ranged from 0 to 2.5 inches water (gauge) during the study period. Individual SVE well operations gave higher vacuum probe readings than at probes for wells that were not operating. It is also noteworthy that vacuum pressure measurements were significantly higher for combined well operation than for individual operations.

Tables 5-5 through 5-9 identify stabilized flow rates for each individual and combined SVE well operation in the study area. The vacuum pressure measurements determined to best represent each stabilized flow rate are plotted in Figures 5-7 through 5-10. The figures presented indicate that the extent of the SVE system, under individual and combined SVE well operation (with the exception of SVE-2A), encompassed the majority of the study area, though influence from preferential pathways through the soil column and along the sewer piping was evident.

5.4.2 SVE Well DCF94ES-1A

Figure 5-7 shows the vacuum distributions for the stabilized flow rate of about 65 scfm. Vacuum distributions at SVE-1A ranged from 0.1 to 0.9 inch water (gauge). The entire vacuum distribution area encompasses a 30- to 40-foot width, extending from approximately 35 feet north of SVE-1A to 45 feet southwest of the well.

The vacuum distribution is oriented in a northeast-southwest direction across the study area. In general, the contorted shape of the vacuum influence appears to be affected by preferred pathways for flow and does not follow the predicted extent of the subsurface vacuum. For example, the north probe array for SVE-1A indicates a response at the outermost probe, whereas the closest probe indicated no response. At the outermost probe of the west array for Well SVE-2A, an unexpected vacuum reading was recorded, suggesting an overall preferred air pathway along a northeast-southwest plane. Detailed contouring was not attainable due to limitations in the vacuum probe layout which was established prior to the test on the basis of a predicted response.

5.4.3 SVE Well DCF94ES-2A

Figure 5-8 shows the vacuum distributions for the stabilized flow rate at of about 28 scfm. Vacuum distributions at SVE-2A ranged from 0.05 to 0.1 inch water (gauge). The entire vacuum distribution area was determined to encompass a small area of approximately eight feet in width by 25 feet in length with an apparent preferential pathway in a north-south direction. The area of influence is thus far less than that of SVE-1A, which may explain the lesser contribution of this well to overall VOC recovery as discussed in Section 5.3.1.3.

5.4.4 SVE Well DCF94ES-3A

Figure 5-9 shows the vacuum distribution for the stabilized flow rate of 65 scfm. Vacuum distributions from SVE-3A ranged from 0.1 to 1.1 inches water (gauge). The entire vacuum distribution area encompasses a 20- to 25-foot width, which extends from approximately 40 feet northeast of SVE-3A to 50 feet south of the well.

The vacuum distribution area is oriented in a northeast-southwest direction across the study area similar to the vacuum influence noted for Well SVE-1A, thus confirming a preferential pathway in this direction. Vacuum distributions between 0.3 and 0.9 inch water (gauge) were observed with a preferred pathway noted at the south end of the vacuum influence along the sanitary sewer line. Below manhole (MH) 363, vacuum distributions appear to extend for approximately 40 feet south southeast along the sewer piping toward MH 363A.

5.4.5 Combined SVE Well Operation

Figure 5-10 shows vacuum distribution for the combined stabilized flow rate of about 160 scfm. Vacuum distributions from combined well operations were determined to range from 0.2 to 2.2 inches water (gauge). The entire vacuum distribution area encompasses an approximate 20- to 35-foot width, extending as noted in the individual tests, in a northeast-southwest direction.

The vacuum influence from the combined test indicates that wells SVE-1A and 3A are the principal extraction wells as the flow and vacuum influence are greatest at these well locations. No quantifiable influence was observed. This is believed to be due primarily to the limitations of the manometers, but

nevertheless representing a shift in flow balance or preferential pathway toward SVE-1A and SVE-3A. This preferential pathway seems to explain the relatively larger contributions from SVE-1A and 3A in the individual tests, and in the combined test, as discussed in Section 5.3.

5.5 EXTENDED PILOT TEST STUDY RESULTS

The extended 60-day SVE pilot study began on February 8, 1995 and ended on April 6, 1995. The pilot study engaged all four extraction wells (SVE-1A, 2A, 3A and 21) at the same time. The combined air flow ranged from 191 to 243 scfm.

As planned in *Draft Tech Memo* dated February 8, 1995 (Appendix C), extracted soil vapor was collected on a weekly basis. Vapor samples were taken from the total sampling port as used in the initial 30-day test. During the sampling events, temperature and vacuum levels were also collected to calculate the actual air flow rate. All samples were then sent to an off-site laboratory for VOCs and TPH-GRO analysis. The sampling procedure and methodology of laboratory analysis have been discussed in Section 3.4. In total, eight sampling events were conducted.

The analytical results are presented in Table 5-10 and graphed in Figure 5-11. As shown in Figure 5-11, low VOC loading rates with a decreasing trend were observed during the eight sampling events, which eventually ended in non-detection of the target VOCs as shown in Table 5-10 (i.e., week 7 analytical data). On the basis of non-detection of VOCs in the extracted vapor, the extended pilot study was terminated. The total amount of VOCs removed during the extended pilot study was estimated to be 3.41 pounds, as indicated in Table 5-1. TPH-GRO was not detected in the samples taken during the first two weeks; therefore, TPH-GRO analysis was discontinued after the second week's sampling.

5.6 POST EXTRACTION ANALYTICAL RESULTS AND COMPARISON TO BASELINE RESULTS

5.6.1 Post Extraction Soil Sampling and Analytical Results

The sampling locations and procedures have been documented in a memo dated April 13, 1995 (Appendix H). Three soil borings were advanced at locations close to the baseline soil borings DCF94-B4 to -B6, and three samples from each boring were collected in a similar manner as in the baseline sampling procedures. Sampling identification, location, sampling depths and analytical results are presented in Table 5-11. Results of the post extraction sampling are depicted in Figure 5-12. As indicated in Table 5-11 and Figure 5-12, the only target VOC detected was PCE. The concentrations of PCE in the samples collected ranged from non-detection to $23.0 \mu g/kg$. DCA and TCE, which were detected in the baseline sampling event, were not detected in any of the post-extraction samples. All these results and associated QA/QC data have been documented in a QCSR report, entitled *Pilot Study Post-Extraction Soil and Ground Water Quarterly Monitoring*, dated June 1995.

5.6.2 Comparison to Baseline Results

Tables 5-12 through 5-14 compare the post-extraction soil analytical results to the baseline soil analytical results for soil boring 4, 5 and 6, respectively. Figures 5-13 and 5-14 illustrate the extent of PCE (i.e., the primary contaminant) contaminations in soil, before and after the pilot test. As illustrated in the figures, a significant reduction of the size of the contamination zone has occurred. This is attributed to the SVE

operations, which resulted in an estimated 22.3 pounds of PCE and 24.23 pounds of total VOCs being removed as indicated in Table 5-4.

5.6.3 Post Test-Quarterly Groundwater Sampling and Analytical Results

As discussed in Section 5.2.2, although the groundwater extraction component was deleted from the pilot study program, post test - quarterly sampling analytical results are presented in Table 5-15 for documentation of any potential remediative effects from pilot test study on the groundwater quality. The groundwater samples were collected in the May 1995 quarterly sampling event, which was the closest event to the date of pilot test study program completion, thus best representing the post test groundwater conditions. Results of the baseline, pre-test and post test - quarterly sampling results are further presented in Figures 5-15 through 5-18. No remediative effect from SVE operations during the pilot study program was observed.

DCFA Draft Final Pilot Test Study Results Report

TABLE 5-1

SUMMARY OF VOC LOADING RATES UNDER SUSTAINED AIR FLOW RATES FOR ALL SVE OPERATIONS DURING THE INITIAL PILOT TEST STUDY

SVE Operation	Operation Type	Well No	Begin	End	Flow Rates (scfm)	Time (days)T	otal VOC Removed	Avg Loading Rate	Unit Loading Rate
			1. March States			- 212 y	(lb)	(lb/day)	(lb/scfm)
	Individual								
		1A	11/21/94 14:30	11/22/94 12:22	65	0.91	0.94	1.03	0.0159
			11/22/94 12:22	11/23/94 14:05	80	1.07	1.27	1.19	0.0148
		· · · · · · · · · · · · · · · · · · ·	11/23/94 14:05	11/25/94 11:07	90	1.88	2.58	1.37	0.0153
		2A	11/25/94 11:07	11/25/94 16:36	· 40	0.23	0.05	0.22	0.0055
			11/25/94 16:36		32	1.83	0.35	0.19	0.0060
			11/27/94 12:30		28	1.90	0.20	0.11	0.0038
		3A	11/29/94 10:10	11/30/94 12:04	40	1.08	1.98	1.83	0.0459
	·		11/30/94 12:04	12/01/94 16:03	62	1.17	2.40	2.06	0.0332
			12/01/94 16:03	12/02/94 13:15	75	0.88	1.74	1.97	0.0263
		DCF-21	12/02/94 15:00	12/03/94 14:50	40	0.99	0.02	0.02	0.0005
			12/03/94 14:50	12/04/94 14:18		0.98	0.06	0.06	0.0007
Initial			12/04/94 14:18	12/06/94 17:00		2.11	0.14	0.07	0.0007
	Combined							•	
		1 A * *	12/08/94 09:15	12/12/94 14:50	52	4.23	0.4	0.09	0.0018
н. С. С.		·	12/12/94 14:50	12/20/94 11:10	54	7.85	0.36	0.05	0.0008
· · ·		2A '	12/08/94 09:15	12/12/94 14:30	16	4.22	0.13	0.03	0.0019
'	•		12/12/94 14:30	12/20/94 11:10	20	7.86	0.12	0.02	0.0008
		3A	12/08/94 09:15	12/12/94 15:30	50	4.26	4,21	0.99	0.0198
			12/12/94 15:30	12/20/94 11:10	51	7.82	3.2	0.41	0.0080
·		DCF-21	12/08/94 09:15	12/12/94 15:30	43	4.26	0.21	0.05	0.0011
	•	,	12/12/94 15:30	12/20/94 11:10	49	7.82	0.47	0.06	0.0012
	Combined					9.52			
		1A	,						
Extended		2A	02/08/95 09:00	04/06/95 17:00	225	57.33	3.41	··· 0.06	0.0003
		3A .							
		DCF-21							

DCFA Draft Final Pilot Test Study Results Report

TABLE 5-2A

ANALYTICAL RESULTS OF BASELINE SOIL SAMPLES FOR DCFA PILOT TEST STUDY

Samples collected October 4-8, 1994 All results are μ g/kg, unless otherwise noted

Analyte	DCF 94-B6-2	DCF 94-B6-3	DCF 94-B6-4	DCF 94-B5-2	DCF 94-B5-3	DCF 94-B5-4	DCF 94-B4-2	DCF 94-B4-3	DCF 94-B4-4
Dichloromethane	<1.2	<1.2	<1.1	<1.2	3.4	<1.1	<1.3	<1.2	<1.1
Tetrachloroethylene	62	6.8	<1.1	4.5	16	1.8	22	100	9.8
Trichloroethylene	<1.2	<1.2	<1.1	<1.2	4.7	<1.1	< 1.3	<1.2	<1.1

Notes:

< Not detected above the reporting limit.

NA Not Analyzed.

For a complete list of analytes, see reference CEMRK, 1994c.

DCFA Draft Final Pilot Test Study Results Report

TABLE 5-2B

ANALYTICAL RESULTS OF PREVIOUS SOIL SAMPLES FOR DCFA PILOT TEST STUDY

Samples collected 5/24-25/94 All results are μ g/kg, unless noted

Analyte DCF DCF DCF DCF DCF DCF 94-B2-1 94-B2-2 94-B1-1 94-B2-3 94-B1-2 94-B1-3 Dichloromethane <5.8 < 6.3 13 < 6.0 < 6.3 < 6.1 Tetrachloroethylene < 5.8 < 6.3 < 5.4 17 16 < 6.1

Notes:

NA Not Analyzed.

For a complete list of analytes, see reference CEMRK, 1994b.

Louis Berger & Associates, Inc.

TABLE 5-2C BASELINE GROUNDWATER ANALYTICAL RESULTS AT DRY CLEANING FACILITIES AREA SAMPLES COLLECTED 6/6/94

Analyte	DCF93- 10	DCF93- 09	DCF93- 11	DCF93- 19	DCF92- 04	DCF93- 18	DCF93- 17	DCF92- 01	DCF92- 02
1,4-Dichlorobenzene	< 10	< 10	< 10	< 10	< 10	< 10	11	< 10	< 10
Bis 2-ethylhexyl phthalate	< 10	30	NA	< 10	< 10	14	<10	< 10	< 10
1,2-Dichloroethylene	3.5	5.3	78	5:5	2.1	< 0.5	< 0.5	< 0.5	< 0.5
Trichloromethane	< 0.5	1.1	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
Trichloroethylene	< 0.6	< 0.6	2.1	1.2	< 0.6	< 0.6	<0.6	< 0.6	< 0.6
Tetrachloroethylene	<1.1	<2.2	<1.1	2.3	<1.1	<1.1	< 1.1	<1.1	64

All results are μ g/l, unless noted

Notes:

< Not detected above the reporting limits.

NA Not analyzed.

For complete list of analytes, see reference CEMRK 1994b.

DCFA Draft Final Pilot Test Study Results Report

TABLE 5-2C (CONTINUED) BASELINE GROUNDWATER ANALYTICAL RESULTS AT DRY CLEANING FACILITIES AREA SAMPLES COLLECTED 6/6/94

Analyte	DCF93-20	DCF93-14	DCF92-06	DCF92-03	DCF93-13	DCF92-05
1,2-Dichloroethylene	3.8	< 0.5	< 0.5	2.3	<2.5	12
Trichloroethylene	9.9	< 0.6	< 0.6	5.0	35	7.6
Trichloromethane	< 0.5	< 0.5	< 0.5	7.6	<2.5	< 0.5
Tetrachloroethylene	2.2	<1.1	<1.1	230	160	62

All results are μ g/l, unless noted

Notes:

< Not detected above the reporting limits.

NA Not analyzed.

For complete list of analytes, see reference CEMRK 1994b.

Page 5-15

TABLE 5-2C (CONTINUED)BASELINE GROUNDWATER ANALYTICAL RESULTS AT DRY CLEANING FACILITIES AREA
SAMPLES COLLECTED 6/6/94

	· · · · · · · · · · · · · · · · · · ·				
Analyte	DCF94ES-1B- GW	DCF94ES-3B- GW	DCF94ES-2B- GW	DCF94-21-GW	DCF92-02
Chloroform	6.5	10	6.3	1.0	NA
cis-1,2-Dichloroethylene	5.4	1.9	9.6	12	NA
Trichloroethylene	3.3	1.5	8.1	4.5	NA
Tetrachloroethylene	46	62	280	62	NA
Fe, Total mg/l	0.4	0.1	0.7	11.0	< 0.1
Mn, Total mg/l	0.08	0.05	0.07	0.5	< 0.01
Total Suspended Solids mg/l	14	8	12	392	6

All results are μ g/l, unless noted

Notes:

< Not detected above the reporting limits.

NA Not analyzed.

For complete list of analytes, see reference CEMRK 1994b.

DCFA Draft Final Pilot Test Study Results Report

TABLE 5-2D PRE-TEST GROUNDWATER ANALYTICAL RESULTS AT DRY CLEANING FACILITIES AREA SAMPLES COLLECTED 29 AUGUST 1994

Analyte	DCF-93-09	DCF-93-10	DCF94-22	DCF-93-13	DCF-92-05 ^a	DCF-92-03 ^a
DCE	< 0.5	7.6	1.0	31	30	1.3
PCE	28	<1.1	<1.1	420	55	140
ТСЕ	3.9	< 0.6	< 0.6	200	7.6	4.4
Toluene	· <0.4	< 0.4	0.8	<4.0	< 0.4	< 0.4
CHCl ₃	< 0.5	<0.5	< 0.5	< 5.0	< 0.5	4.7

All results are μ g/l, unless noted

Analyte	DCF-93-20 DCF-92-01 DCF-93-19 DCF-92-02 ^a		DCF-92-02 ^a	DCF-92-06	DCF-94-22	
DCE	5.7	< 0.5	8.7	< 0.5	< 0.5	4.1
ТСЕ	14	< 0.6	2.8	< 0.6	< 0.6	< 0.6
PCE	10	<1.1	5.4	84	1.2*	<1.1
C ₂ H ₃ Cl	< 0.8	< 0.8	4.4	< 0.8	< 0.8	< 0.8

Notes:

< Not detected above the reporting limits.

NA Not analyzed.

For complete list of analytes, see reference CEMRK 1994d.

The source of this analyte may not be attributable to site conditions.

CHCl₃ Trichloromethane

C₂H₃Cl Vinyl Chloride

DCFA Draft Final Pilot Test Study Results Report

TABLE 5-3

SUMMARY OF GEOTECHNICAL LABORATORY TEST RESULTS FOR DCF PILOT TEST STUDY

Samples collected 5/94

Sample ID	Depth	Soil	Natural	Dry	1 S	Atterberg Limits (%)			%		de la companya de la Companya de la companya de la company
	Interval	Description	Moisture (%)	Density (pcf)	LL	PL	PI	USCS Class	Passing No. 200	Porosity (%)	Saturation (%)
DCF94ES-1-1	1 - 2	Clayey Sand w/Gravel	`		25	18	7	SC	25		
DCF94ES-1A-G	19.4 - 21.9	Sandy Lean Clay	18.1	102.5	24	14	10	CL	65	38.5	77.2
DCF94ES-1B-1	1-2	Sandy Lean Clay			25	15	10	CL	52		
DCF94ES-1B-2	14 - 21.8	Sandy Lean Clay			28	14	14	CL	70	·	
DCF94ES-1B-3	21.8 - 34	Sandy Silt			18	16	2	ML	60		
DCF94ES-2A-G	19.5 - 22	Lean Clay w/Sand	24.9	96.1	31	14	17	CL	74	42.7	89.7
DCF94ES-2B-2	19.7 - 24.7	Lean Clay w/Sand	<u> </u>		30	16	14	CL	75		• <u></u>
DCF94ES-2B-3	32 - 34	Silty Sand			NP	NP	NP	SM	40	,	
DCF94ES-3B-G	17 - 19.5	Silt	32	83.5	31	14	17	CL	98	49.9	85.8
DCF94ES-3B-1	3 - 5	Sandy Lean Clay		·	- 33 -	18	15	CĻ	58		
DCF94ES-3B-2	15 - 17	Lean Clay w/Sand			28	18	10	CL	82		
DCF94ES-3B-3	26.5 - 29.5	Sandy Lean Clay			23	16	7	CL ·	58		·
DCF94ES-21-G	19.5 - 21	Lean Clay w/Sand	21	92.8	33	15	18	CL	85	44.7	69.5
DCF94ES-21-1	3 - 5	Lean Clay	• ·	[·]	40	19	21	CL	92		
DCF94ES-21-2	15 - 17	Lean Clay			37	17	20	CL	93		
DCF94ES-21-3	34.5 - 38	Silty Sand			NP	NP	NP	SM	19		

Notes:

Samples analyses performed by Terracon Consultants, Inc.

Samples designated with G indicates an undisturbed sample (Shelby tube sample); all other samples are split spoon samples.

-- = analysis not performed.

NP = None plastic - Sample not tested for Atterberg Limits.

TABLE 5-4SUMMARY OF TOTAL PCE MASS REMOVAL (lbs) AND % OF PCE REMOVED
OVER TOTAL VOCs FROM EACH SVE OPERATIONS

	VE ations	Wells	Period of Operation	Total VOC Removed (lbs)	PCE Removed (lbs)	% of PCE Removed Over Total VOCs
		1A	11/21-11/25/94	4.79	4.46	93.11
	Individual	2A	11/25-11/29/94	0.60	0.58	96.67
ase	Indiv	3A	11/29-12/02/94	6.12	5.68	92.81
Phase		DCF-21	12/02-12/06/94	0.23	0.20	86.96
Initial		1A .	12/08-12/20/94	0.76	0.63	82.89
In I	Combined	2A	12/08-12/20/94	0.24	0.20	83.33
	Con	3A	12/08-12/20/94	7.40	6.72	90.81
		DCF-21	12/08-12/20/94	0.67	0.59	88.06
		Subtotal (Ini	tial Phase)	20.81	19.06	Average % of PCE Removed
1200						during Initial Phase = 89.33
i			02/08-02/17/95	1.03	0.87	84.47
ase			02/17-02/24/95	0.56	0.56	100.00
L H	ed	1A	02/24-03/03/95	0.31	0.31	100.00
g	bin	2A	03/03-03/10/95	0.40	0.40	100.00
nd D	Combined	3A	03/10-03/17/95	0.36	0.36	100.00
Extended Phase	0	DCF-21	03/17-03/24/95	0.58	0.58	100.00
田			03/24-03/31/95	0.00	0.00	100.00
			03/31-04/06/95	0.18	0.18	100.00
		Subtotal (Ex	tended Phase)	3.42	3.26	Average % of PCE Removed during Extended Phase = 98.06
	7.63	Total (Initial	& Extended Phase)	24.23	22.32	Average % of PCE Removed for Entire Pilot Test Study = 93.69

. . .

TABLE 5-5

SVE WELL DCF94ES-1A MASS REMOVAL RATE SUMMARY

Date, Time	Air Flow Range (Q-scfm)	VOC Rate Removed (lbs/day)	Total Contaminant Removed	
11/21/94 14:30	65	0.78	(lbs)	
11/21/94 14:45	65	0.78	0.00	
11/21/94 15:23	65	0.92	0.01	
11/21/94 16:01	65	0.92	0.03	
11/21/94 16:36	65	1.06	0.06	
11/21/94 17:16	65	1.06	0.08	
11/22/94 9:09	65	1.00	0.11	
11/22/94 10:28	65	1.00	0.79	
11/22/94 11:08	75		0.85	
11/22/94 11:45	75	1.18	0.88	
11/22/94 12:22	75	1.17	0.91	
11/22/94 14:24	80	1.17	0.94	
11/22/94 15:05	80	1.20	1.04	
11/22/94 17:32	80	1.14	1.07	
11/23/94 9:30		1.17	1.19	
11/23/94 9:30	80	1.20	1.98	
	80	1.23	2.04	
11/23/94 12:44	80	1.24	2.14	
11/23/94 14:05	80	1.29	2.21	
11/23/94 14:45	90	1.43	2.25	
11/23/94 15:03	90	1.46	2.29	
11/23/94 15:24	90	1.46	2.33	
11/23/94 16:03	90	1.44	2.37	
11/23/94 16:42	90	1.42	2.41	
11/23/94 17:20	90	1.46	3.43	
11/24/94 10:42	- 90	1.36	3.43	
11/24/94 12:09	90	1.41	3.51	
11/24/94 12:52	90	1.39	3.55	
11/24/94 14:25	90	1.32	3.64	
11/24/94 15:06	90	1.36	3.68	
11/24/94 16:00	90	1.33	3.73	
11/25/94 9:57	90	1.34	4.73	
11/25/94 11:07	90	1.34	4.79	

TABLE 5-6

SVE WELL DCF94ES-2A MASS REMOVAL RATE SUMMARY

Date, Time	Air Flow Range (Q-scfm)	VOC Rate Removed (lbs/day)	Total Contaminant Removed
11/25/94 11:07	55	0.16	(lbs)
11/25/94 11:07	53	0.16	0.00
11/25/94 11:52	54		0.00
11/25/94 12:28	50	0.20	0.01
11/25/94 12:28	50	0.24	0.01
11/25/94 14:59	46	0.26	0.03
11/25/94 14:59	40 46	0.25	0.04
11/25/94 15:39		0.26	0.05
	41	0.22	0.05
11/26/94 10:05	40	0.20	0.21
11/26/94 11:23	40	0.19	0.22
11/26/94 13:50	34	0.17	0.24
11/26/94 15:10	28	0.13	0.25
11/26/94 15:47	34	0,15	0.25
11/26/94 16:26	34	0.16	0.25
11/26/94 17:02	28	0.13	0.26
11/27/94 10:13	35	0.22	0.38
11/27/94 11:31	35	0.20	0.39
11/27/94 12:30	28	0.08	0.40
11/27/94 13:42	28	0.09	0.41
11/27/94 15:09	28	0.11	0.41
11/27/94 16:08	28	0.10	0.42
11/28/94 9:44	28	0.10	0.49
11/28/94 11:06	28	0.10	0.50
11/28/94 11:58	28	0.10	0.50
11/28/94 13:26	28	0.11	0.51
11/28/94 14:04	28	0.11	0.51
11/28/94 14:50	28	0.11	0.51
11/28/94 15:30	28	0.11	0.52
11/28/94 16:10	28	0.12	0.52
11/28/94 17:15	28	0.11	0.53
11/29/94 9:37	28	0.10	0.60
11/29/94 10:10	28	0.10	0.60

DCFA Draft Final Pilot Test Study Results Report

TABLE 5-7

SVE WELL DCF94ES-3A MASS REMOVAL RATE SUMMARY

Date, Time	Air Flow Range (Q-scfm)	VOC Rate Removed (lbs/day)	Total Contaminant Removed (lbs)
11/29/94 10:22	39	3.44	0.03
11/29/94 10:59	39	2.91	0.11
11/29/94 11:38	39	2.81	0.19
11/29/94 12:41	39	2.44	0.30
11/29/94 14:03	39	2.22	0.44
11/29/94 14:40	39	2.14	0.49
11/29/94 15:22	39	2.15	0.55
11/29/94 16:00	39	1.05	0.61
11/29/94 16:40	39	1.87	0.66
11/29/94 17:19	39	1.87	0.71
11/30/94 10:20	39	1.30	1.84
11/30/94 12:04	, 63	2.53	1.98
11/30/94 13:34	63	2.40	2.13
11/30/94 14:40	63	2.34	2.24
11/30/94 15:27	63	2.27	2.32
11/30/94 16:08	63	2.23	2.38
11/30/94 16:47	63	2.16	2.44
11/30/94 17:28	63	2.12	2.50
12/1/94 9:57	65	1.93	3.89
12/1/94 10:38	65	1.97	3.95
12/1/94 11:33	65	1.92	4.02
12/1/94 12:27	65	1.91	4.09
12/1/94 15:10	65	1.87	4.31
12/1/94 15:18	65	1.86	4.32
12/1/94 16:03	70	2.09	4.38
12/1/94 16:44	70	2.07	4.44
12/1/94 17:33	70	1.96	4.51
12/2/94 10:00	77	1.97	5.86
12/2/94 12:32	77	1.96	6.06

TABLE 5-8

SVE WELL DCF94-21 MASS REMOVAL RATE SUMMARY

Date, Time	Air Flow Range (Q-scfm)	VOC Rate Removed (lbs/day)	Total Contaminant Removed (lbs)
12/2/94 15:25	40	0.12	0.00
12/2/94 16:11	40	0.06	0.00
12/2/94 16:51	40	0.04	0.01
12/2/94 17:37	40	0.04	0.01
12/3/94 10:07	40	0.02	0.02
12/3/94 10:58	40	0.02	0.02
12/3/94 11:46	40	0.02	0.02
12/3/94 12:35	40	0.02	0.02
12/3/94 14:05	40	0.02	0.02
12/3/94 14:50	78	0.07	0.02
12/3/94 15:41	78	0.04	0.03
12/3/94 16:27	78	0.05	0.03
12/3/94 17:06	78	0.06	0.03
12/4/94 10:34	86	0.06	0.07
12/4/94 11:16	86	0.05	0.07
12/4/94 12:04	86	0.05	0.07
12/4/94 13:25	86	0.05	0.08
12/4/94 14:18	94	0.06	0.08
12/4/94 15:00	94	0.06	0.08
12/4/94 15:41	94	0.06	0.08
12/4/94 16:27	94	0.06	0.08
12/5/94 9:55	100	0.07	0.13
12/5/94 10:35	100	0.07	0.13
12/5/94 11:18	100	0.06	0.14
12/5/94 12:09	100	0.07	0.14
12/5/94 13:26	100	0.07	0.14
12/5/94 14:14	100	0.07	0.14
12/5/94 15:06	100	0.07	0.15
12/5/94 15:57	100	0.07	0.15
12/5/94 16:48	100	0.07	0.15
12/6/94 10:11	112	0.09	0.22
12/6/94 12:07	43	0.04	0.22

Page 5-23

DCFA Draft Final Pilot Test Study Results Report

TABLE 5-9

SVE COMBINED OPERATION MASS REMOVAL SUMMARY

Date; Time	Air Flow Range (Q-scfm)	VOC Rate Removed (lbs/day)	Contaminant Removed (lbs) Combined Operation (12/8/94-12/20/94)		
12/8/94 10:00	150	1.72	0.0		
12/9/94 10:43	150	1.48	1.5		
12/10/94 10:06	150	1.28	2.8		
12/10/94 16:19	150	1.15	3.1		
12/11/94 10:54	150	1.04	3.9		
12/12/94 11:15	150	0.89	4.8		
12/12/94 16:25	150	0.81	5.0		
12/13/94 10:02	150	0.71	5.5		
12/13/94 13:49	150	0.72	5.6		
12/13/94 14:26	160	0.73	5.6		
12/13/94 15:29	160	0.73	5.7		
12/13/94 16:28	160	0.71	5.7		
12/14/94 9:43	160	0.67	6.2		
12/14/94 12:51	160	0.59	6.2		
12/14/94 14:49	160	0.58	6.3		
12/14/94 17:02	160	0.55	6.3		
12/15/94 9:45	160	0.59	6.8		
12/16/94 9:27	160	0.55	7.3		
12/17/94 9:32	160	0.49	7.8		
12/18/94 9:46	160	0.47	8.3		
12/19/94 9:43	160	0.46	8.7		
12/20/94 9:25	160	0.46	9.1		

Page 5-24

DCFA Draft Final Pilot Test Study Results Report

TABLE 5-10

SVE COMBINED WELL OPERATION MASS REMOVAL RATE SUMMARY DURING EXTENDED PHASE OPERATION

Sampling Date	Air Flow Rate	Chemical Concentrations (µg/l)		VOC Loading Rates (lb/day)		Total VOC Loading	
	(scfm)	PCE	Cis-1,2 DCE	PCE	Cis-1,2 DCE	Rates (lb/day)	
02/09/95 9:00 (week 1)	191	6.2	1.1	0.11	0.02	0.13	
02/17/95 9:00 (week 2)	213	4.2	0.0	0.08	0.00	0.08	
02/24/95 9:00 (week 3)	224	2.2	0.0	0.04	0.00	0.04	
03/03/95 9:00 (week 4)	226	2.8	0.0	0.57	0.00	0.57	
03/10/95 9:00 (week 5)	230	2.5	0.0	0.05	0.00	0.05	
03/17/95 9:00 (week 6)	241	3.8	0.0	0.08	0.00	0.08	
03/24/95 9:00 (week 7)	233	ND	ND	0.00	0.00	0.00	
03/31/95 9:00 (week 8)	243	1.3	0.0	0.03	0.00	0.03	
04/06/95 9:00 (week 9)	243	1.3	0.0	0.03	0.00	0.03	

Page 5-25

ND Not Detected

DCFA Draft Final Pilot Test Study Results Report

TABLE 5-11

ANALYTICAL RESULTS OF POST EXTRACTION SOIL SAMPLES FOR DCFA PILOT TEST STUDY

Samples collected 04/27-28/95

All results are μ g/kg, unless otherwise noted

Boring/ Sample Location		DCF-95-B4			DCF	-95-B5			DCF-95-B6	
Analyte	DCF95- PEB-4-1	DCF95- PEB-4-2	DCF 95- PEB-4-3	DCF 95- PEB-5-1	DCF95- PEB-5-2	DCF95- PEB-5-3	DCF95- PEB-5-4	DCF95- PEB-6-1	DCF95- PEB-6-2	DCF95- PEB-6-3
Tetrachloroethylene	13.0	3.8	23.0	4.3	8.2	<1.0	4.2	5.0	<1.2	<1.1

Notes:

< Not detected above the reporting limit.

DCA and TCE were detected in baseline soil samples, but were not detected in post extraction soil samples.

For a complete list of analytes, see CEMRK, 1995d.

TABLE 5-12

COMPARISON OF SOIL BASELINE AND POST EXTRACTION SAMPLING DEPTHS, LOCATIONS, AND ANALYTICAL RESULTS AT SOIL BORING 4

Boring	Boring 4							
Sampling Order	1			2		3		
Sampling Events (B/P)	В	Р	В.,	Р	В	P		
Sampling Time	10/4-6/94	4/27-28/95	10/4-6/94	4/27-28/95	. 10/4-6/94	4/27-28/95		
Sample ID	DCF-94-B4-2	DCF-95-PEB-4-1	DCF-94-B4-3	DCF-95-PEB-4-2	DCF-94-B4-4	DCF-95-PEB-4-3		
Sampling Depth	1.0'-2.0'	1.3'-1.9'	17.5'-19.5'	15'-17'	31.0'-32.0'	36.8'-39.3'		
Analyte			······································					
Dichloromethane	<1.3	<1.1	<1.2	< 1.2	<1.1	<1.2		
Tetrachloroethylene	22	13	100	3.8	9.8	23		
Trichloroethylene	<1.3	<1.1	<1.2	<1.2	<1.1	<1.2		
Total Solids (%)	91	90	84	84	89	85		

Notes:

B Baseline soil sampling event

P Post-extraction sampling event

- Dichloromethane and Trichloroethylene were not detected in any post-extraction soil samples.

TABLE 5-13

COMPARISON OF BASELINE AND POST EXTRACTION SOIL SAMPLING DEPTHS, LOCATIONS, AND ANALYTICAL RESULTS AT SOIL BORING 5

Boring						
Sampling Order	-1			oring 5		3
Sampling Events (B/P)	В	Р	В	Р	B	Р
Sampling Time	10/4-6/94	4/27-28/95	10/4-6/94	4/27-28/95	10/4-6/94	4/27-28/95
Sample ID	DCF-94-B5-2	DCF-95-PEB-5-1	DCF-94-B5-3	DCF-95-PEB-5-2	DCF-94-B5-4	DCF-95-PEB-5-3
Sampling Depth	1.0' - 2.0'	0' - 1.0'	15.0' - 17.0'	15.6' - 17'	31.9' - 33.9'	33.9' - 34.4'
Analyte					· · ·	
Dichloromethane	<1.2	<1.2	3.4	<1.3	<1.1	<1.0
Tetrachloroethylene	4.5	4.3	16	8.2	1.8	<1.0
Trichloroethylene	< 1.2	<1.2	4.7	<1.3	<1.1	<1.0
Total Solids (%)	85	85	76	78	89	96

Notes:

B Baseline soil sampling event

P Post-extraction sampling event

- Dichloromethane and Trichloroethylene were not detected in any post-extraction soil samples.

TABLE 5-14

COMPARISON OF BASELINE AND POST EXTRACTION SOIL SAMPLING DEPTHS, LOCATIONS, AND ANALYTICAL RESULTS AT SOIL BORING 6

Boring	Boring 6							
Sampling Order		1		2	U. And	3		
Sampling Events (B/P)	B	P	В	P	В	Р		
Sampling Time	10/4-6/94	4/27-28/95	10/4-6/94	4/27-28/95	10/4-6/94	4/27-28/95		
Sample ID	DCF-94-B6-2	DCF-95-PEB-6-1	DCF-94-B6-3	DCF-95-PEB-6-2	DCF-94-B6-4	DCF-95-PEB-6-3		
Sampling Depth	1.2' - 3.0'	1.0' - 1.9'	15.0' - 17.5'	15' - 17'	32' - 32.5'	29.8' - 32.5'		
Analyte	· ·					1		
Dichloromethane	<1.2	<1.2	< 1.2	<1.2	<1.1	<1.1		
Tetrachloroethylene	.62	5.0	6.8	<1.2	<1.1	<1.1		
Trichloroethylene	<1.2	<1.2	<1.2	<1.2	<1.1	<1.1		
Total Solids (%)	82	85	81	84	95	85		

Notes:

B Baseline soil sampling event

P Post-extraction sampling event

– Dichloromethane and Trichloroethylene were not detected in any post-extraction soil samples.

TABLE 5-15 POST TEST—QUARTERLY GROUNDWATER ANALYTICAL RESULTS AT DCFA

SAMPLES COLLECTED 1 MAY 1995

Analyte	DCF 94-22	DCF 93-10	DCF 93-09	DCF 92-01	DCF 92-06
1,2-Dichloroethylene	4.4	14	1.5	< 0.5	< 0.5
Meta &/or Para-Xylene	0.9	< 0.6	< 0.6	< 0.6	< 0.6
Tetrachloroethylene	1.2	6.8	21	<1.1	1.5
Trichloroethylene	< 0.6	9.1	2.6	< 0.6	< 0.6

All result are μ g/l, unless noted

SAMPLES COLLECTED 2 MAY 1995

All results are μ g/l, unless noted

Analyte	DCF 93-13	DCF 92-05	DCF 94-21	DCF ES 94- 02B	DCF 92-03	DCF 92-02	DCF ES 94- 03B	DCF 93-20
1,2- Dichloro ethylene	25	4.2	4.4	0.9	0.9	<0.5	<0.5	18
Bromo dichloro methane	2.1	<0.5	< 0.5	<0.5	<0.5	< 0.5	< 0.5	< 0.5
Tetra chloro ethylene	210	34	28	54	89	15	100	3.4
Toluene	< 0.4	< 0.4	< 0.4	< 0.4	< 0.4	< 0.4	< 0.4	< 0.4
Trichloro ethylene	190	2.2	2.2	2.1	1.5	<0.6	0.9	21
Trichloro methane	1.2	<0.5	<0.5	1.3	1.8	1.4	1.5	<0.5

Notes:

< Not detected above the reporting limits.

NA Not analyzed.

For complete list of analytes, see reference CEMRK 1995d.

DCFA Draft Final Pilot Test Study Results Report

Louis Berger & Associates, Inc.

TABLE 5-15 (CONTINUED) POST TEST—QUARTERLY GROUNDWATER ANALYTICAL RESULTS AT DCFA

SAMPLES COLLECTED 2 MAY 1995

All result are μ g/l, unless noted

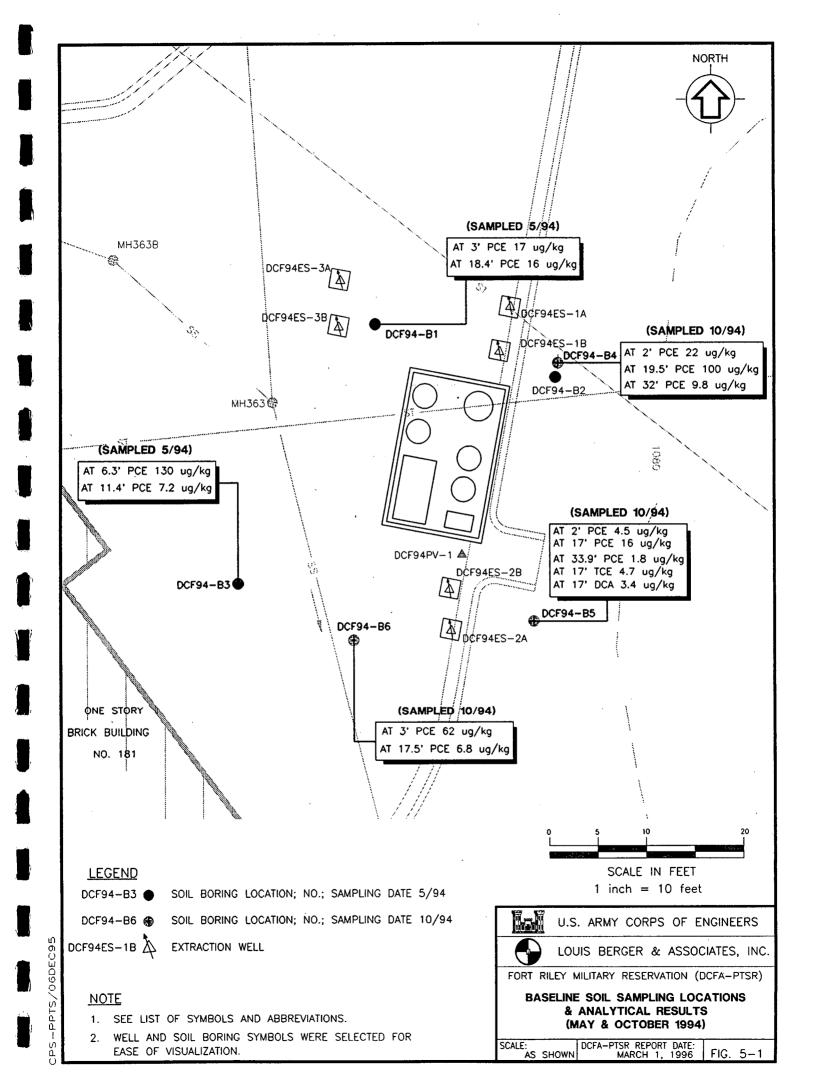
Analyte	DCF ES 94-01B
1,1,1-Trichloroethane	0.7
1,2-Dichloroethylene	11
1,4-Dichlorobenzene	3.7
Benzene	0.9
Bromodichloromethane	0.6
Tribromomethane	1.5
Chlorobenzene	2.0
Dibromochloromethane	1.3
Ethylbenzene	1.7
Meta &/or Para-Xylene	4.4
Ortho-Xylene	2.1
Tetrachloroethylene	35
Toluene	1.3
Trichloroethylene	3.0
Trichloromethane	1.6

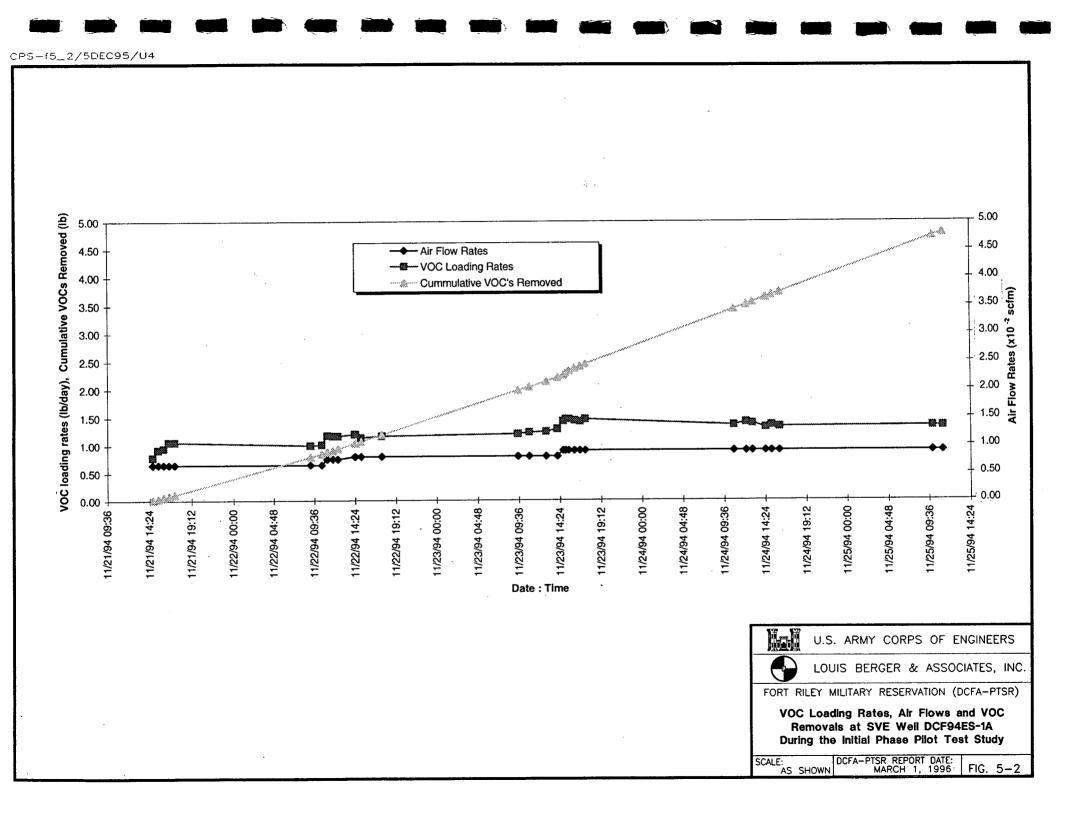
Page 5-31

TABLE 5-15 (CONTINUED) POST TEST—QUARTERLY GROUNDWATER ANALYTICAL RESULTS AT DCFA

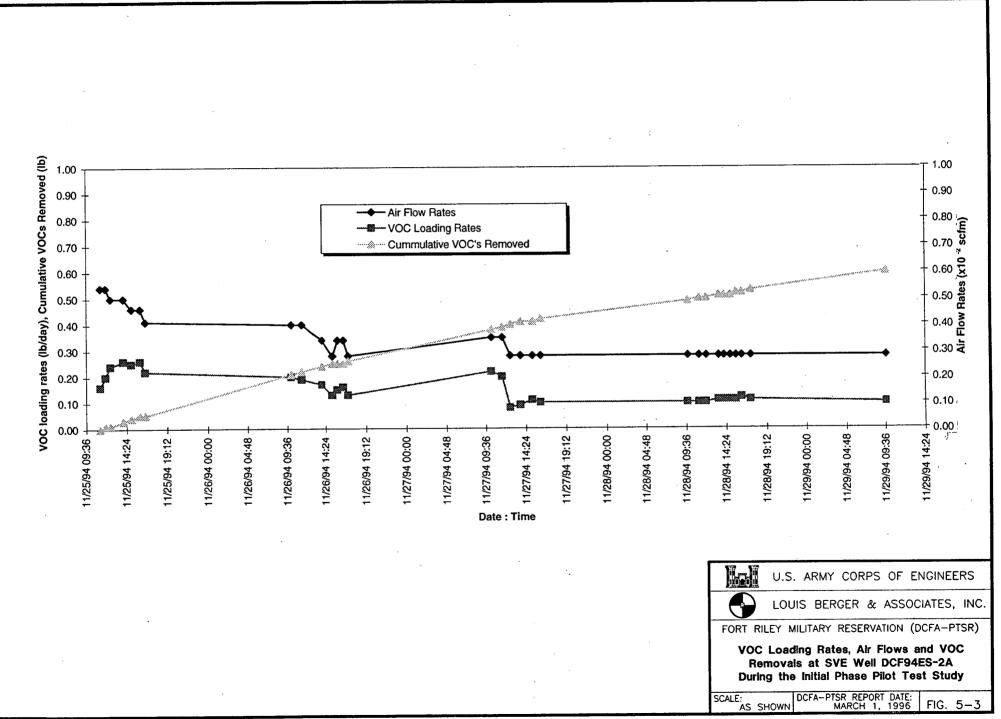
Analyte	DCF 93-12	DCF 93-14	DCF 93-18	DCF 92-04	DCF 92-07	DCF 93-15	DCF 93-19
TPH-GRO	NA	NA	NA	1300	<100	140	< 100
TPH-DRO	NA	NA	NA	4100	<400ª	430	<100
1,2-Dichloroethylene	< 0.5	< 0.5	< 0.5	1.9	< 0.5	7.4	5.3
Dichloromethane	< 0.9	< 0.9	< 0.9	< 0.9	< 0.9	< 0.9	< 0.9
Meta &/or Para-Xylene	< 0.6	< 0.6	< 0.6	8.0	< 0.6	< 0.6	< 0.6
Ortho-Xylene	< 0.6	< 0.6	< 0.6	5.4	< 0.6	< 0.6	< 0.6
Tetrachloroethylene	7.1	<1.1	<1.1	<1.1	1.7	150	<1.1
Trichloroethylene	< 0.6	< 0.6	< 0.6	< 0.6	< 0.6	12	1.0
Trichloromethane	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	2.9	< 0.5

SAMPLES COLLECTED 3 MAY 1995

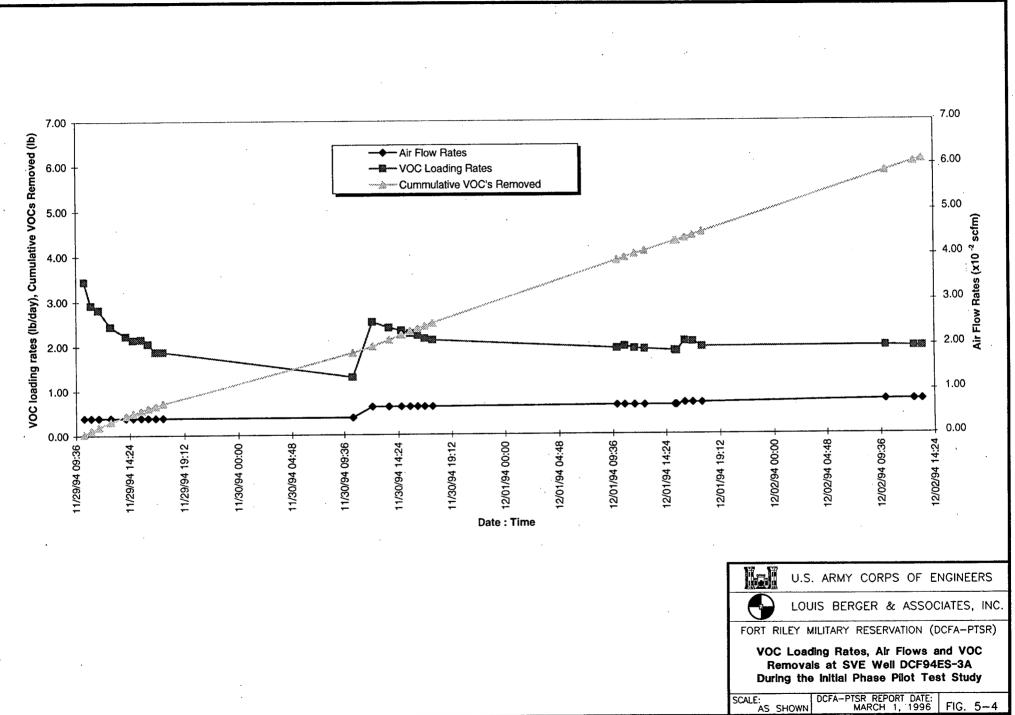

Notes:


< Not detected above the reporting limits.

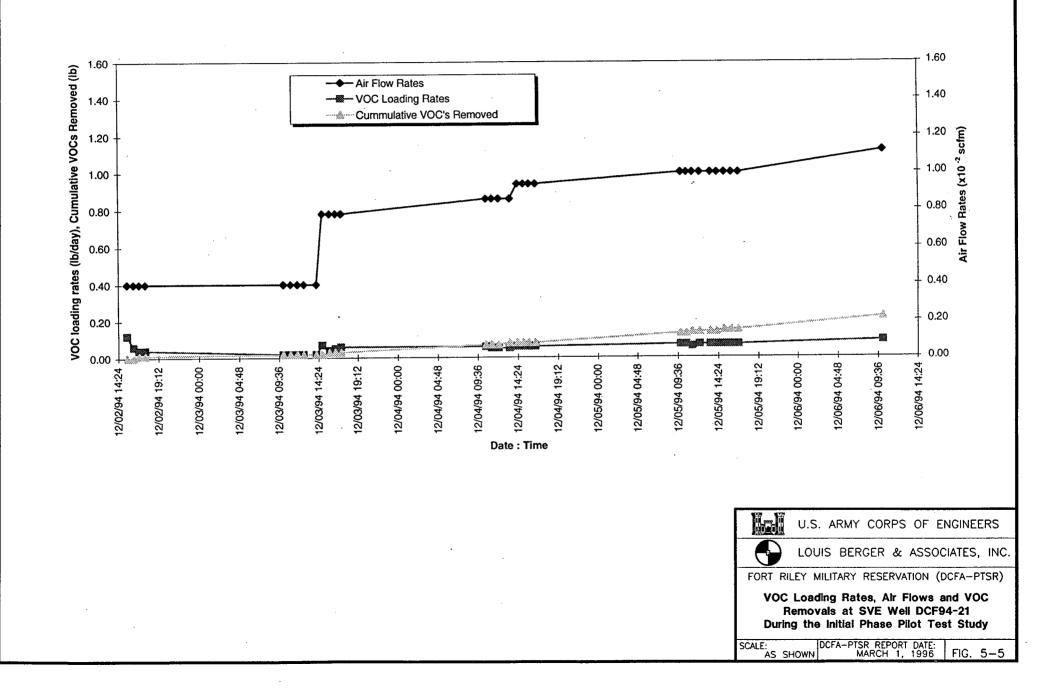
NA Not analyzed.


For complete list of analytes, see reference CEMRK 1995d.

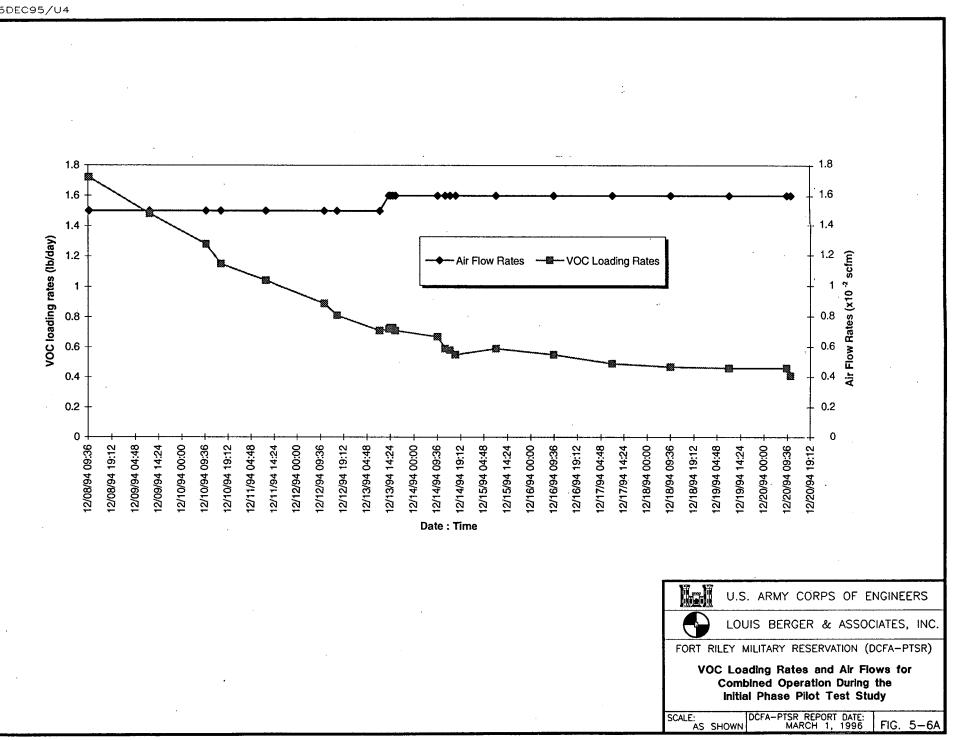
(a) Sample quantitation limit raised due to limited sample volume.

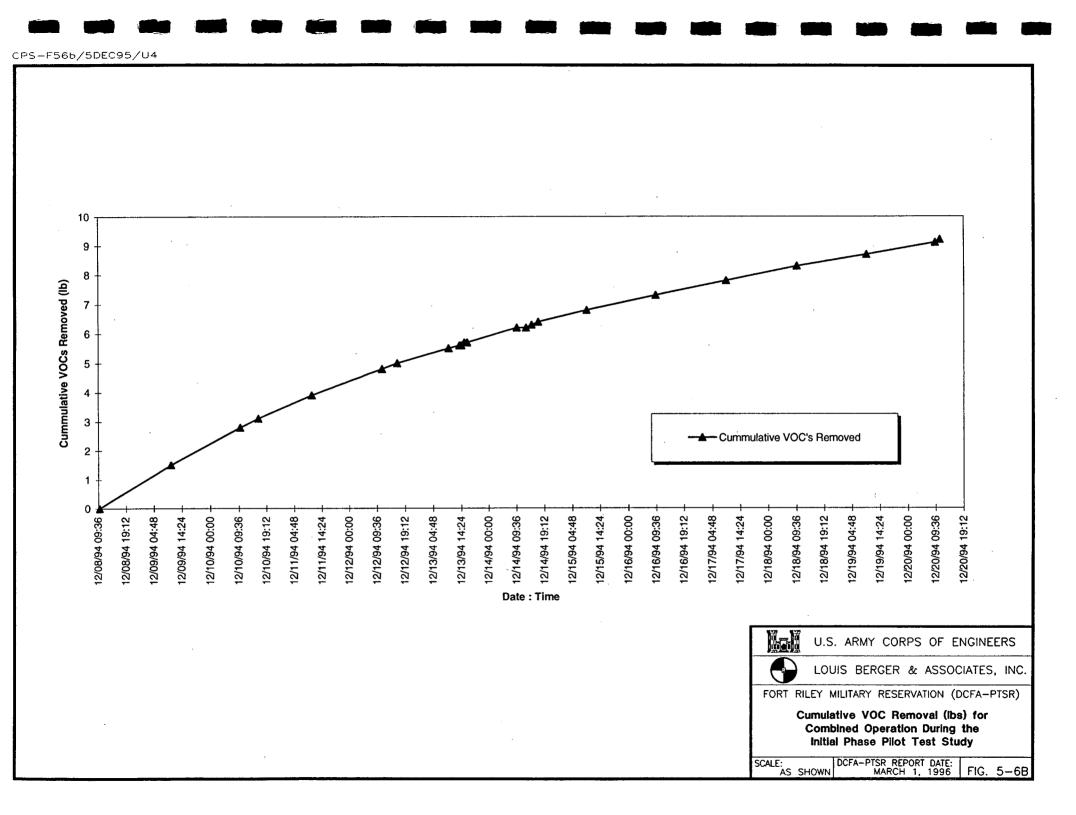


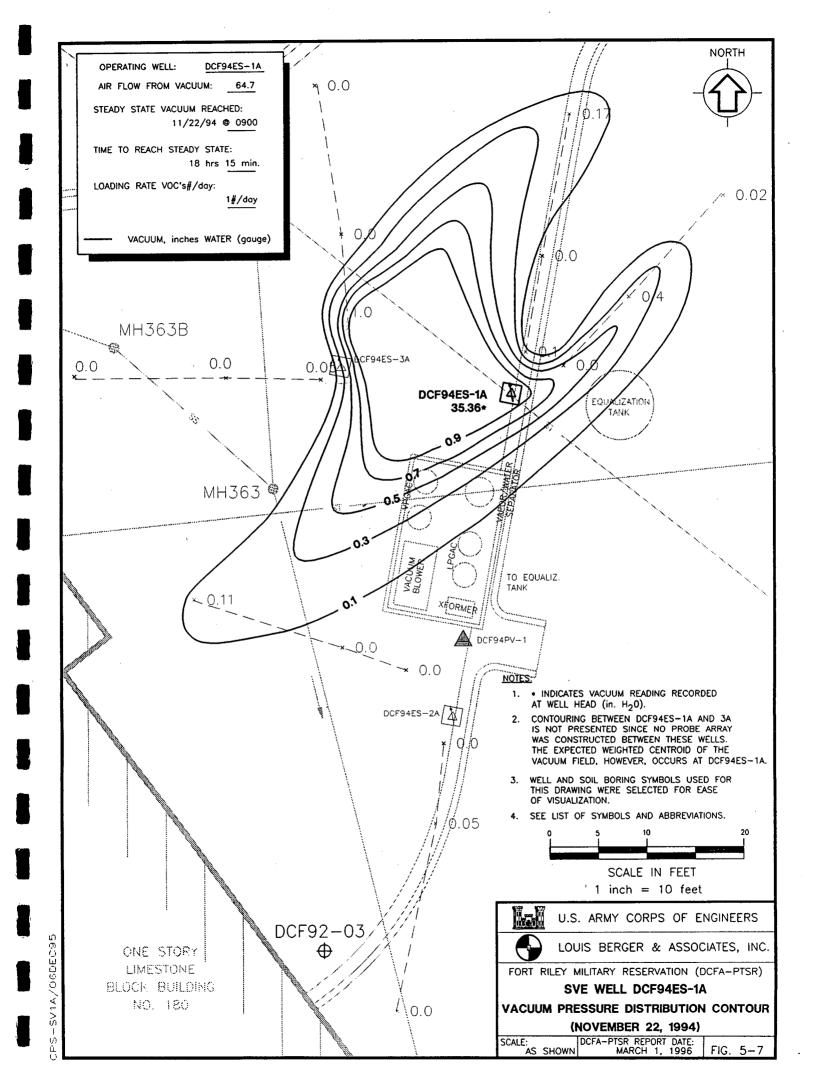
CPS-f5_3/5DEC95/U4

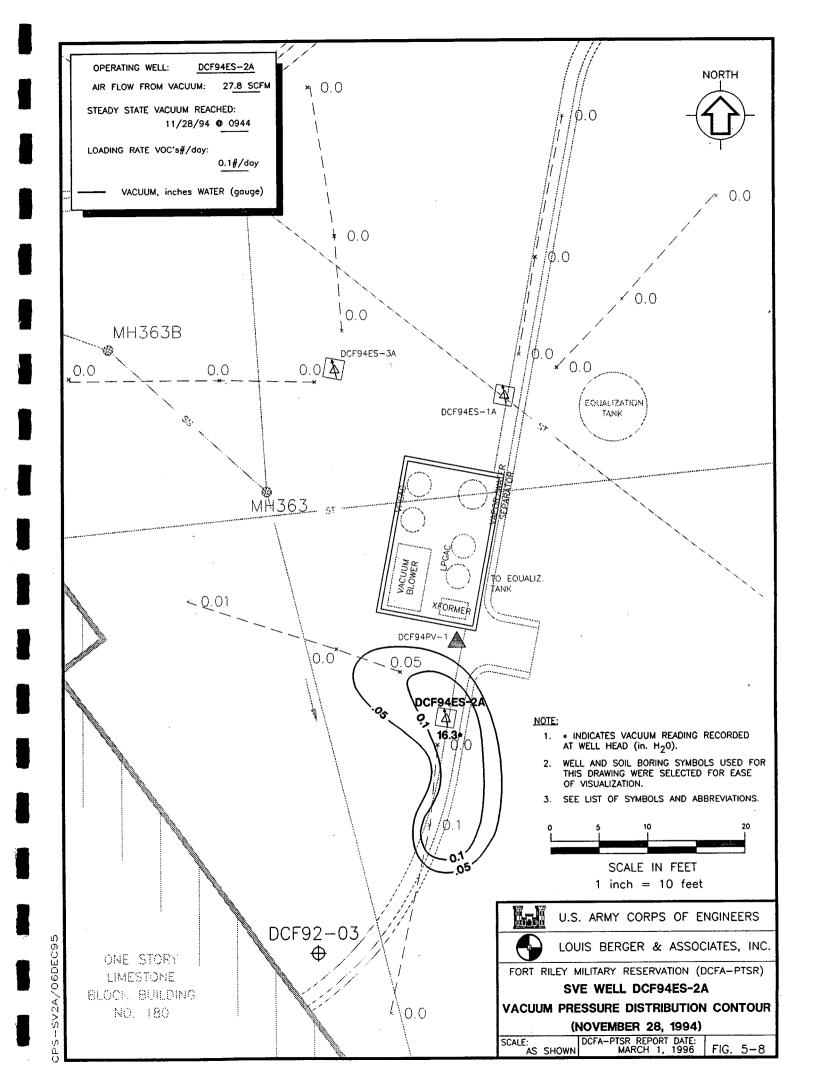


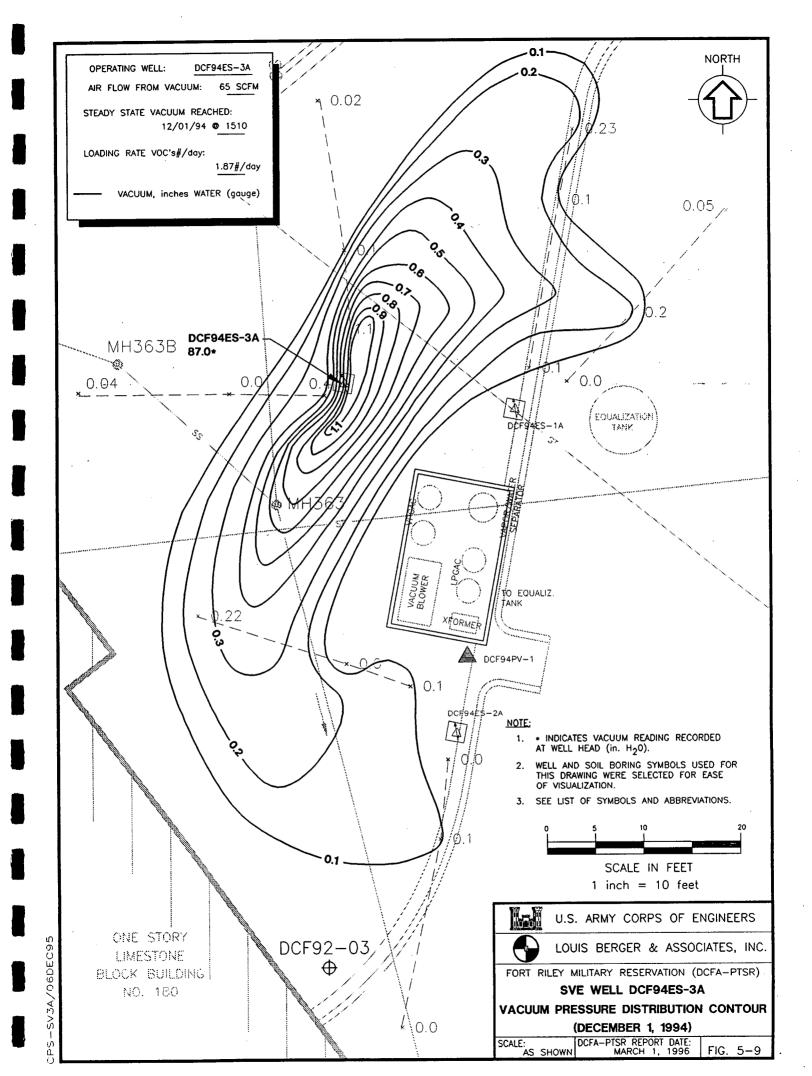
÷

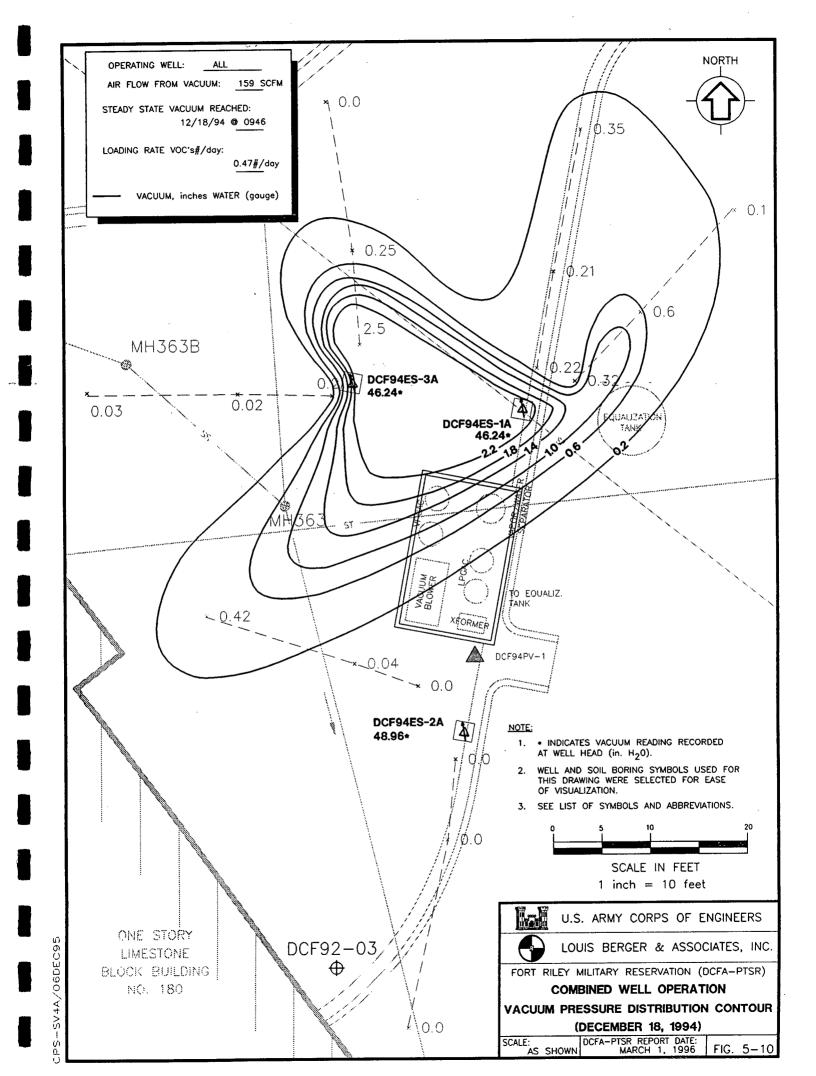


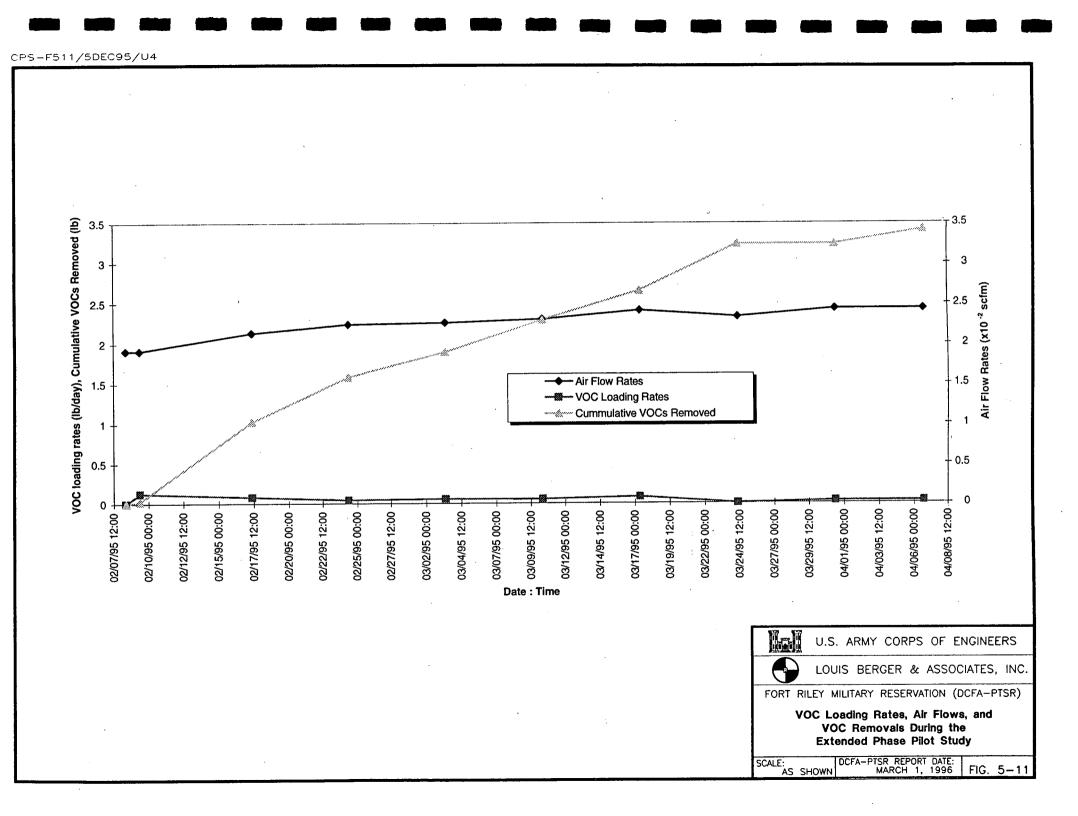


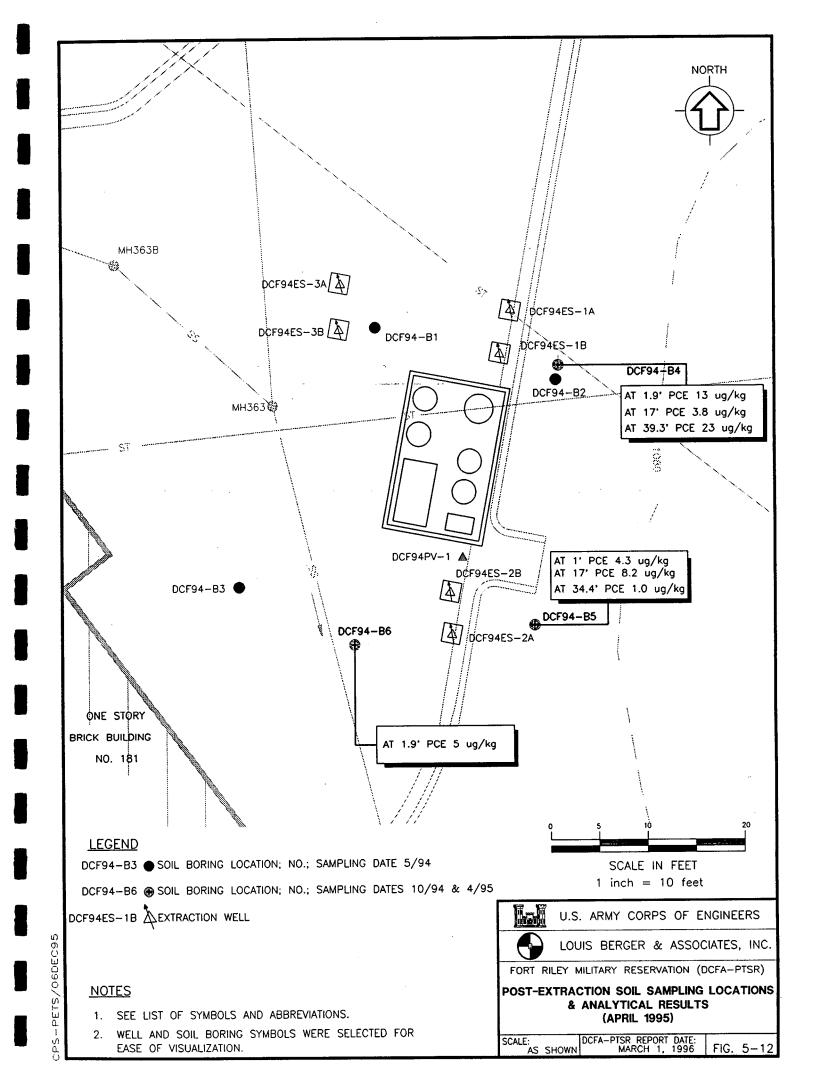

CPS-F5_5/5DEC95/U4

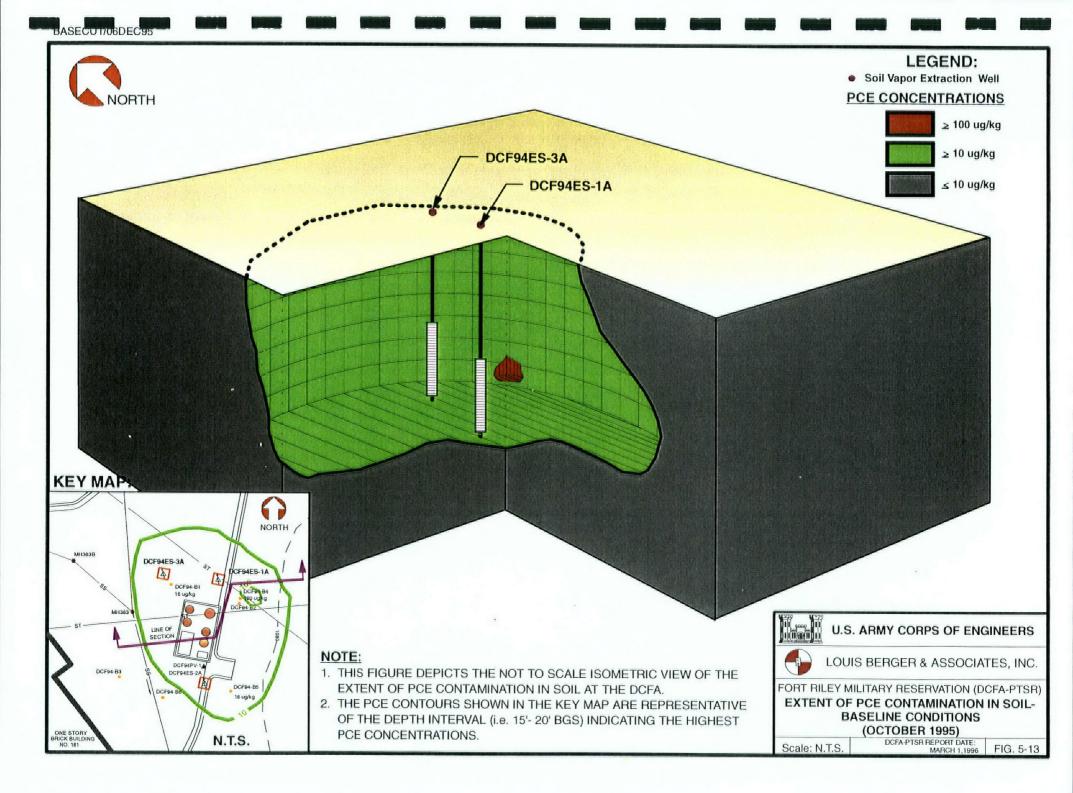


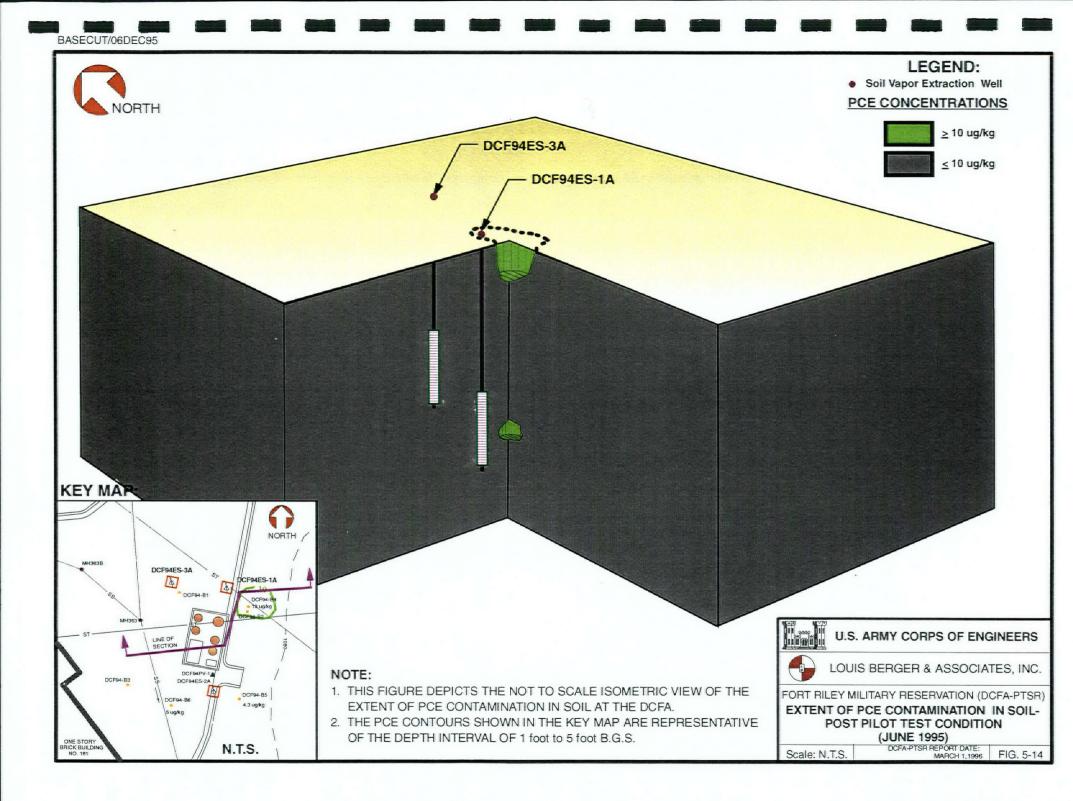

CPS-F56A/5DEC95/U4

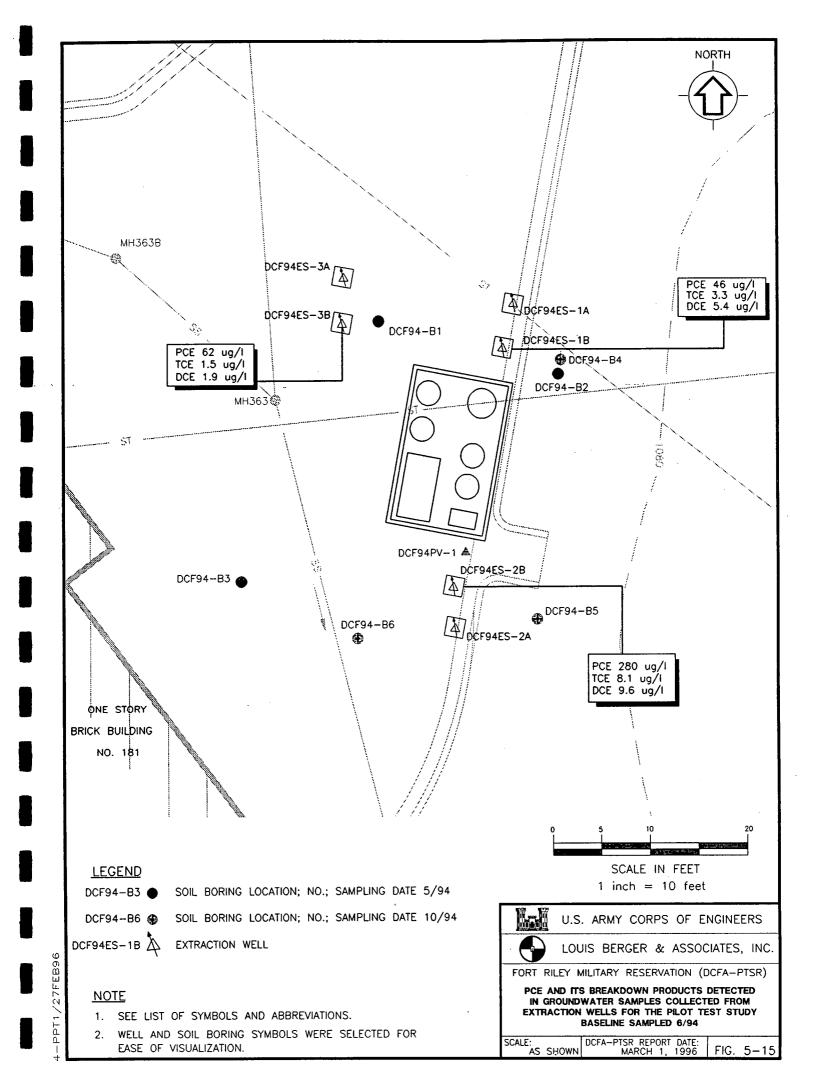


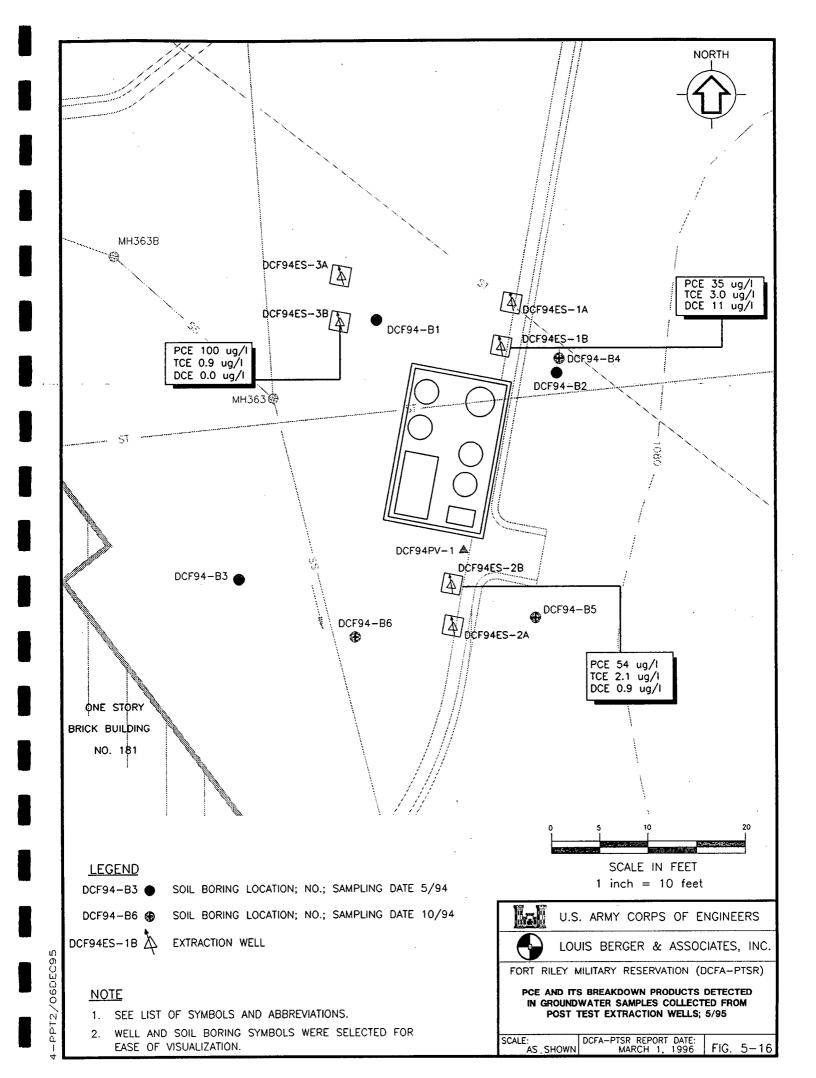


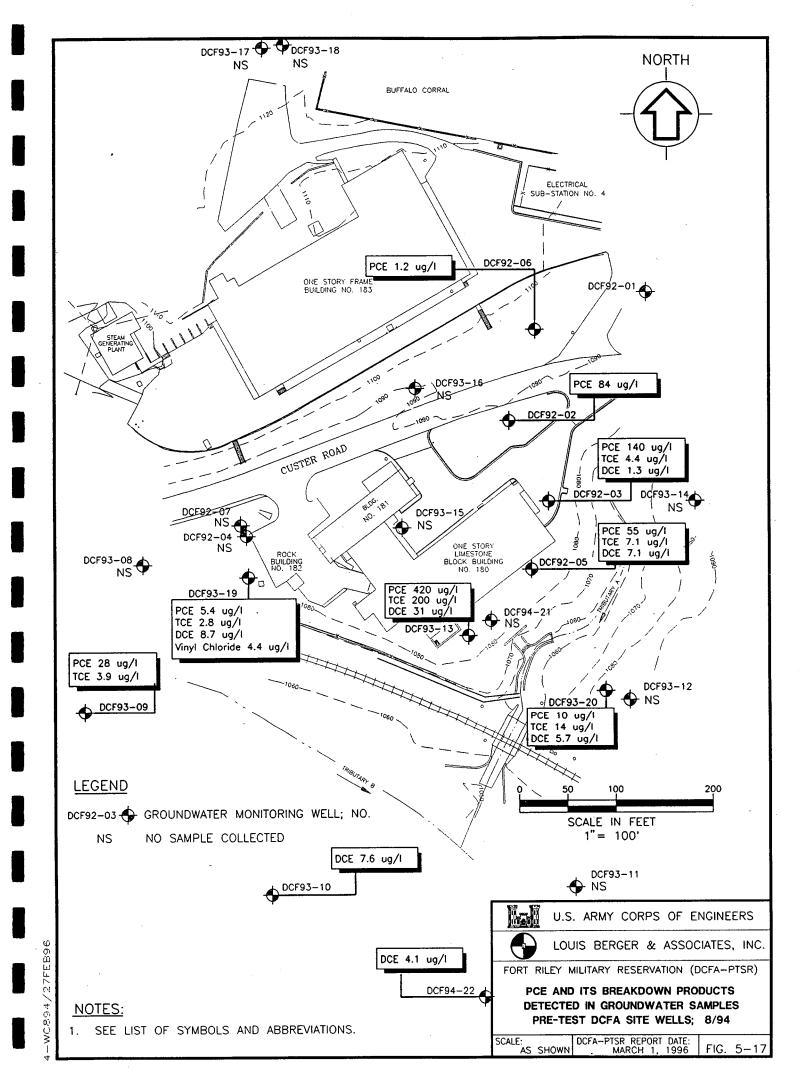


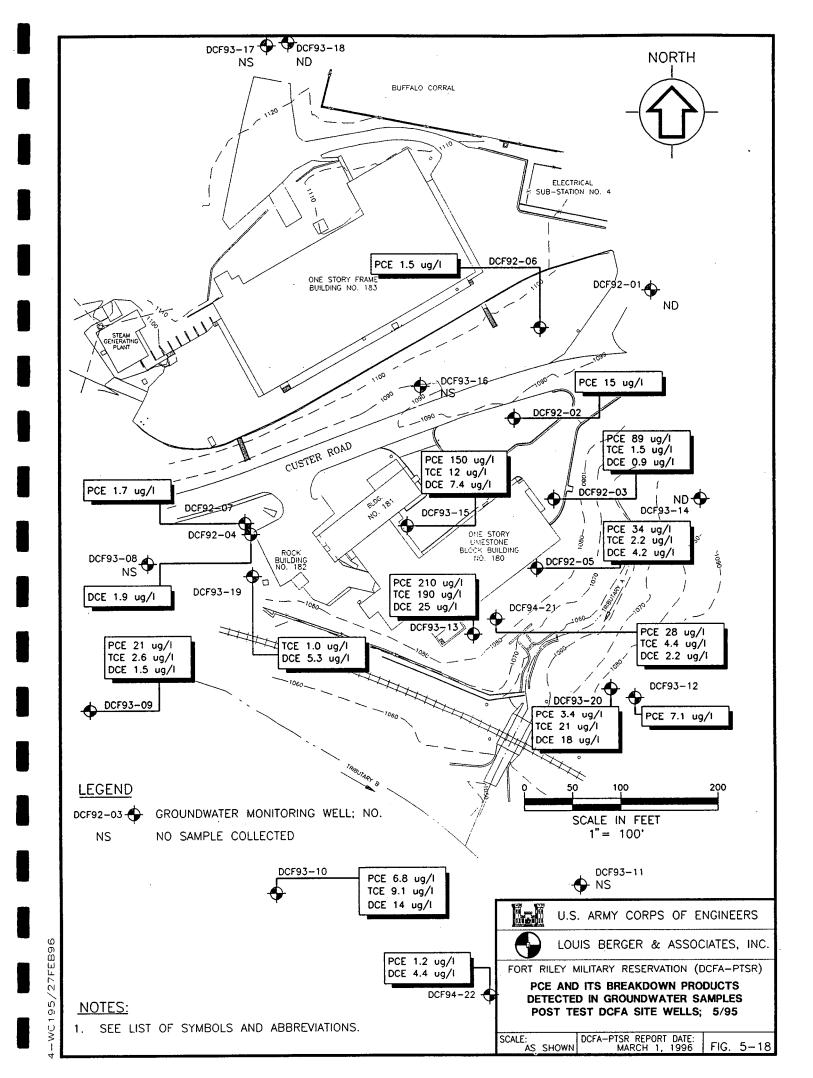












6.0 WASTE GENERATION AND MANAGEMENT

6.0 WASTE GENERATION AND MANAGEMENT

During the DCFA pilot test study program, several types of wastes were generated. The waste generated was a result of work associated with the installation of wells and the extraction of groundwater and soil vapor as part of the SVE operations. The waste generated was managed and discharged in accordance with the *Work Plan* and applicable U.S. EPA and KDHE regulations. Details on IDW management and ultimate disposal procedures are presented in sections 6.1 through 6.5.

6.1 SOIL

Soil waste was generated during pilot study trenching, well drilling and soil boring activities as excavated spoils and drill cuttings. During trenching activities, soil excavated from the trench was temporarily staged on polyethylene liners until header piping was constructed and electrical conduit and wires were placed in the trench. As part of the health and safety monitoring, field screening with a PID was conducted to assess ambient conditions and to evaluate the excavated soils.

Throughout drilling operations, soil cuttings were field-screened with a PID to assist in determining soil waste characteristics. In both well drilling and soil boring operations as well as trenching activities, the PID indicated no detectable readings above background. Therefore, the soil was used to backfill the soil boring holes and conduit trench.

6.2 EXTRACTED GROUNDWATER

Groundwater was generated during the pilot test study program as a result of slug tests, pump tests, temperature monitoring activities and system operation during or related to the DCFA pilot study program. Extracted groundwater was temporarily stored in U.S. Department of Transportation (U.S. DOT)-approved 55-gallon drums or pumped directly through the pilot test system for treatment. Treated water was stored in the 1,500-gallon equalization tank, and sampled and analyzed for VOCs prior to ultimate discharge to the Main Post Wastewater Treatment Plant. Wastewater contained in the equalization tank was sampled and analyzed by the on-site GC; however, additional samples were collected and submitted to CAS for confirmatory analysis. Analytical results are provided in Tables 6-1 and 6-2, together with discharge volumes.

In total, an estimated 2,460 gallons of extracted groundwater were generated and treated on site prior to discharge to the Main Post Wastewater Treatment Plant during the Pilot Test Study program operations. The breakdown of the groundwater generated is as follows:

- 150 gallons were generated during step and sustained yield aquifer tests on wells DCF92-05, DCF93-13 and DCF94-21, conducted in June 1994.
- Also in June 1994, water was manually collected from the groundwater wells which were included in the temperature and conductivity monitoring program. Over a period of approximately one week, an estimated 65 gallons of water were collected.
- Between August 14 and 16, 1994, the Pilot Test Study groundwater treatment system was turned on for three separate five-hour pump tests on wells DCF94ES-1B, 2B and 3B. Each test generated approximately 95 gallons of water, for a total three-day volume of 285 gallons.

A combined well pump test was performed between August 18 and 22, 1994, which generated a total of 1,915 gallons.

The total estimated 2,460 gallons of the extracted groundwater was treated prior to discharge, using the pilot test system's equalization tank for management and the LPGAC units for treatment. In some instances, the water was recirculated through the units until non-detectable VOC concentrations were obtained in the confirmatory samples.

6.3 EXTRACTED SOIL VAPOR

The soil vapor extracted during the SVE pilot study was drawn through VPGAC units for treatment prior to atmospheric discharge. Samples were collected prior to, in between and after GAC to evaluate the soil vapor quality and consumption rate of the GAC. The samples were analyzed by on-site GC to determine when the lead GAC (i.e., the first GAC in series) was no longer capable of treating the vapor stream for VOCs. As VOCs became evident in the "between" sample, the first GAC unit was removed, the second GAC unit was placed in the lead position, and a new GAC unit was connected to the end for secondary treatment. Post GAC analysis was performed to demonstrate that VOCs were not being discharged in excess of allowable air quality discharge criteria.

6.4 SPENT GRANULAR-ACTIVATED CARBON (GAC) UNITS

The LPGACs and VPGACs used in preparation for and in the course of the Pilot Test Study as previously indicated in sections 6.2 and 6.3 were staged in a designated area for characterization prior to off-site disposal. A total of three LPGACs and four VPGACs were sampled for waste characterization analysis and determined to be non-hazardous. During the pilot test demobilization, the GAC units were moved off site for staging prior to disposal.

For the LPGACs, the three units consisted of one primary GAC and one secondary GAC (185 pounds each) that were placed in line and used to treat VOC-impacted groundwater during the start of the pump test in August 1994 and a third LPGAC used to replace the primary GAC determined to be leaking later on that date. For the VPGACs, a total of four units (185 pounds each) were spent during the course of the Pilot Test Study program.

For both the LPGAC and VPGAC units, unless a unit was used and replaced due to failure (i.e., leaking canister), the GAC changeout procedure involved the replacement of the primary GAC upon establishment of breakthrough with the secondary carbon and the placement of a fresh GAC canister as the new secondary unit. Breakthrough was determined on the basis of VOC concentrations in midpoint samples approaching influent VOC levels. Leaking units were replaced with like units (i.e., primary for primary or secondary for secondary) and staged with spent carbon for characterization prior to off-site regeneration.

For all GAC units, the analytical results indicated the units to be non-hazardous. On November 2, 1995, all of the LPGAC and VPGAC units were transported off site for regeneration. The three overpack units were sent to Barneby & Sutcliffe and the remainder of the units were sent to Envirotrol, Inc. Each facility received the shipment by November 5, 1995.

6.5 CONSTRUCTION DEBRIS AND MISCELLANEOUS WASTE MATERIALS

During demobilization activities, before underground pipes were abandoned, each pipe was rinsed for the purpose of decontamination. A confirmation rinsate sample was collected to verify that the pipes were clean before backfilling. Rinsate from well DCF94-21 was transferred through the pilot system's LPGAC and stored in the equalization tank. All water which was not directly pumped through preconnected LPGAC was collected in the 1,000-gallon equalization tank. After all laboratory samples were collected, the Pilot Test Study equipment was reconfigured and the water in the tank, estimated at 600 gallons, was cycled through LPGAC overnight (roughly 15 hours). The cycle time was the equivalent of many complete volumes of the stored water. After the recycling period which was certain to reduce the VOC concentrations to non-detectable levels, the water was pumped through the pilot system discharge hose to MH 345 and ultimately to the Main Post Wastewater Treatment Plant.

In addition to the rinsate waste, the demolition of the pilot study shed and concrete containment pad generated a considerable amount of construction debris consisting of wood, concrete, pipes, steel plates, vaults and vault covers. Since all of this material was either cleaned or never in contact with contamination, it was either salvaged by contractors or discarded at the Post C/D Landfill.

6.6 DEMOBILIZATION AND SITE RESTORATION

Demobilization consisted of two phases: a partial demobilization at the end of the 30-day pilot test and a complete demobilization at the end of the extended pilot test operation.

In January 1995, the 30-day pilot test operation was completed according to the work plan schedule. SVE activities were continued, however, pending decisions on an extended operation schedule. As a result, a partial demobilization was implemented to remove those unnecessary equipment and constructions. The partial demobilization commenced on January 21, 1995. The activities included the removal of the GC van and its equipment, all vacuum/pressure probes and gauges, well pumps and connecting electrical wiring in groundwater extraction wells DCF94ES-1B, -2B, and -3B. In addition, all GAC canisters were removed from the site and staged with other GAC units at Marshall Army Airfield for future removal.

In April 1995, the extended operation was completed according to plan. A full decommissioning and removal of all pilot study equipment and restoration of the site commenced on April 26, 1995. The principal components of the demobilization consisted of the dismantling of the pilot study shed and removing of all SVE equipment. In dismantling the building, both the structure and its concrete containment pad were removed. The SVE equipment removed included the air/water separator, water transfer pump, equalization tank, and all associated above grade piping and hoses including roll pipe connected to MH 345. In addition, power was disconnected from the service pole in the rear of the property and the wires were cut several feet below the ground surface and abandoned in place. Because rainy weather prevented access to the rear of the property, the pole was left in place until a later date when vehicular access was possible. Removal of the utility pole was completed during the last week of July 1995.

Risers were attached to SVE wells DCF94ES-1A, -2A, -3A, and former groundwater extraction wells DCF94ES-1B, -2B, and -3B, to bring the top of casing up to near ground surface. The well vaults were filled with sand to secure the risers and the wells were finished with concrete and flush mounted covers consistent with other monitoring wells on-site. The groundwater extraction wells, i.e., DCF94ES-1B, -2B

and -3B and DCF94-21, were intended to be used as monitoring wells. In the case of well DCF94-21 which was located in a grassy area behind building 180, a minimal amount of concrete was used below surface so that the well could be restored with top soil and grass. Additional top soil and grass was applied to any other area behind building 180 that indicated evidence of wear.

Final restoration of the parking lot area in the former location of the shed included the removal of all protruding probes and other piping to a level that was slightly below grade. The metal covers were removed from the pipe trenches and the soil was compacted to a level that was approximately 8" below grade. After all probes and pipes were cut and the soil was compacted, the resulting depressions were filled with concrete to the previously existing grade level. Excess concrete was used to extend the parking area drainage spillway leading to the ravine on the eastern side of the site. The site was seeded and restored to pre-pilot test conditions. Excavated soil, which indicated no PID readings above background during previous screening, was taken to the Marshall Army Airfield and used to improve the condition of the gravel road by the site.

Louis Berger & Associates, Inc.

DCFA Draft Final Pilot Test Study Results Report

TABLE 6-1 EQUALIZATION TANK DATA (FIELD G.C.) AUGUST 1994 THROUGH DECEMBER 1994 DRY CLEANING FACILITIES AREA

Sample Date	8/16/94	8/18/94	8/19/94	8/19/94	8/20/94	8/21/94	8/22/94	11/23/94	12/21/94
	Eq. Tank		Eq. Tank						
Sample Description	Composite	Eq. Tank Composite	Composite						
Discharge Volume	95 gal.	450	119	0 gal.	275 gal.	100 gal.	200 gai.	100 gal.	50 gal.
Analyzed By:	Field GC	Field GC	Field GC	Field GC	Field GC	Field GC	Field GC	Field GC	Field GC
Units:	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)
Analyte:	· · · · · · · · · · · · · · · · · · ·							-	
Methylene Chloride	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL
t-1,2-Dichloroethylene	. N/A	·N/A	N/A	N/A	N/A	N/A	N/A	BDL	BDL
1,1-Dichloroethane	N/A	N/A	N/A	N/A	N/A	N/A	N/A	BDL	BDL
cis-1,2-Dichloroethylene	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL
Trichloromethane	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL
1,2-Dichloroethane	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL
1,1,1-Trichloroethane	N/A	N/A	N/A	N/A	N/A	· N/A	N/A	BDL	BDL
Benzene	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL
Trichloroethylene	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL
Toluene	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL
Tetrachioroethylene	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL
Chlorobenzene	N/A	N/A	N/A	N/A	N/A	N/A	N/A	BDL	BDL
Ethylbenzene	N/A	N/A	N/A	N/A	N/A	. N/A	N/A	BDL	BDL
Xylene	N/A	N/A	N/A	N/A	N/A ··	N/A	N/A	BDL	BDL
Other VOC	N/A	N/A	N/A	N/A	N/A	N/A	N/A	BDL	BDL
Total VOC	N/A	N/A	N/A	N/A	N/A	N/A	N/A	BDL	BDL

Notes:

BDL = Below Detection Limit

N/A = Not Analyzed

(1)

(2)

(3) ppb = Parts Per Billion

(4) GC = Gas Chromatograph

Louis Berger & Associates, Inc.

DCFA Draft Final Pilot Test Study Results Report

TABLE 6-2 EQUALIZATION TANK DATA (CONTINENTAL ANALYTICAL DATA) AUGUST 1994 THROUGH DECEMBER 1994 DRY CLEANING FACILITIES AREA

Sample Date	8/16/94	8/19/94	8/20/94	8/20/94	8/20/94
Sample Description	Eq. Tank Effluent	Effluent	Influent	Effluent	Effluent
Discharge Volume	95 gal.	1190 gal.		275 gal.	
Analyzed By:	CAS	CAS	CAS	CAS	CAS
Time:	1546	1645	1550	1555	1559
Units:	(ug/l)	(ug/l)	(ug/l)	(ug/l)	(ug/l)
Analyte:	·	· · · · · · · · · · · · · · · · · · ·			· · ·
Methylene Chloride	ND .	ND	ND	ND	ND
1,1,2-Dichloroethylene	ND	ND	ND	ND	ND
1,1-Dichloroethane	ND	ND	ND	ND	ND
cis-1,2-Dichloroethylene	ND	ND	3.6	ND	ND
1,2-Dichloroethane	ND	ND	ND	ND	ND
Chloroform	ND	ND	4.1	ND	ND
1,1,1-Trichloroethane	ND	ND	ND	ND	ND
Benzene	ND	ND	ND	ND	ND
Trichloroethylene	ND	ND	4	ND	ND
Toluene	ND	ND	ND	ND	ND
Fetrachloroethylene	ND	ND	99	ND	ND
Chlorobenzene	ND	ND ,	ND	ND	ND
Ethylbenzene	ND	ND	ND	ND	ND
Xylene	ND	ND	ND	ND	ND
Other VOC	ND .	ND	ND	ND	ND
Fotal VOC	ND	ND	ND	ND	ND

Notes:

(1)

ND = Not Detected

(2)

CAS = Continental Analytical Services

(3)

ug/l = Microgram Per Liter

7.0 CONCLUSIONS AND RECOMMENDATIONS

7.0 CONCLUSIONS AND RECOMMENDATIONS

7.1 SUMMARY OF PILOT TEST STUDY RESULTS

7.1.1 Overview

The results of the pilot test study, including total VOC mass removal, PCE mass removal and average VOC loading rates, are summarized in Table 7-1. Figures 7-1 and 7-2 present an overview of VOC loading rates, air flows and cumulative VOC mass removals for both the initial 30-day and the extended 60-day pilot study. As indicated in Table 7-1, VOC removal rates were found to differ from well to well. VOC loading rates from wells SVE-1A and 3A were observed to be much higher than SVE-2A and DCF94-21.

The DCFA SVE system was effective in reducing VOC levels in the vadose zone. Twenty-one pounds of VOCs were removed from the study area in the initial 30-day pilot study, whereas approximately three pounds of VOCs were removed during the extended 60-day SVE operation. Based on the baseline soil analytical results, it was estimated that a total of 45-55 pounds of contaminants were present in the DCFA pilot study area soil before the pilot study operation began. Thus, it is estimated that 50 percent of the contaminant mass has been removed from the site.

Analytical results for the extracted soil vapor samples collected from the extended pilot study indicate that - low concentrations to non-detectable levels of VOCs now remain as of April 1995.

7.1.2 Initial 30-Day Pilot Study Results

At SVE-1A, the average VOC loading rate observed was 1.24 lbs/day, with the maximum rate of 1.46 lbs/day. A total of 4.79 pounds of VOCs were recovered from SVE-1A at test completion. At SVE-2A, the average VOC loading was 0.15 lb/day, with the maximum of 0.26 lb/day. Total VOC mass removed was 0.60 pound.

The average VOC loading rate at SVE-3A was 1.96 lbs/day, with the maximum removal rate of 3.44 lbs/day. Both the average and the maximum VOC loading rates for SVE-3A were the highest among the four extraction wells. A total of 6.12 pounds of VOCs were removed from SVE-3A. At DCF94-21, 0.06 lb/day was the average VOC removal rate, with a maximum of 0.12 lb/day. A total of 0.23 pound of VOC mass was removed from DCF94-21. Considering the combined test, which contributed an additional 9.26 pounds of VOC removal, the estimated total VOC mass removed during the initial 30-day pilot study was 21 pounds. The maximum loading rate observed during the combined test was 1.72 lbs/day.

With regard to the vacuum influence observed during each individual well test and during the combined test, it is believed that significant subsurface heterogeneities result in preferred pathways during SVE. These conditions are believed attributable to disturbances from previous construction activities (i.e., sewer and utility installations), and, from potential subsurface scouring from leaking sewer lines, pathways along sewer line piping and probe placement. As indicated in Section 5.3, the probes were located prior to the test on the basis of predicted vacuum influences, which differed from those observed in the field. Based on a post-test review, a significant number of additional probes would have been required to cover the unexpected responses observed. It is noted, however, that due to the presence of sensitive below-grade utilities (e.g., the sewer piping, telephone lines and main fiber-optic cable), additional probe placement would still have been limited.

7.1.3 Extended Phase Pilot Study Results

The extended SVE pilot study engaged all four extraction wells at the same time using the "optimum" combined flow rate from the 30 day test, and was therefore essentially a continuation of the combined well test from the initial-phase pilot study. A total of 3.41 pounds of VOCs were removed from the extended pilot study. The extended pilot study resulted in non-detection of VOCs in the extracted soil vapor, which led to the eventual termination of the SVE operation at the DCFA and the performance of post extraction soil sampling. Analytical results from the post extraction soil samples indicated that the only contaminant still detected in the vadose zone was PCE. The highest concentration of PCE detected was only 23 μ g/kg, which is an order of magnitude below the most stringent published cleanup level from the U.S. EPA which is 300 μ g/kg.

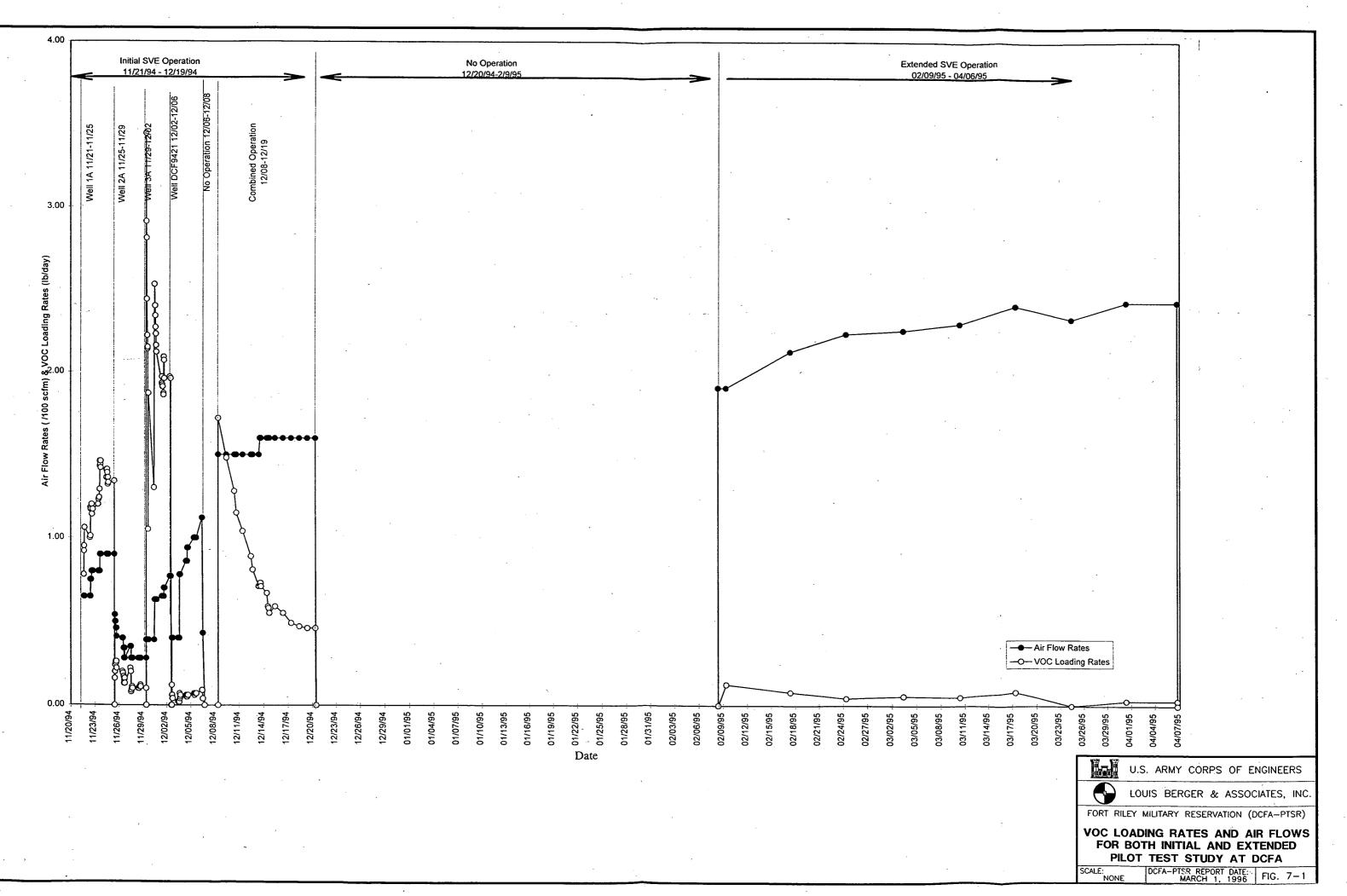
7.1.4 Conclusions

In comparing the baseline soil contaminant distribution with the post pilot study condition, the SVE pilot test system has significantly reduced the VOC contaminant mass in the DCF site soil. This is illustrated in Figures 5-13 and 5-14. The reduced horizontal and vertical extent of VOC impacted soil and the rate of recovery and influence, considering the noted subsurface interferences, demonstrate the effectiveness of SVE as a remediative technology for the DCFA. In fact, the highest total VOC concentration detected in the post test samples was 23 μ g/kg, which is an order of magnitude below the most stringent published cleanup level from the U.S. EPA which is 300 μ g/kg.

7.2 **RECOMMENDATIONS**

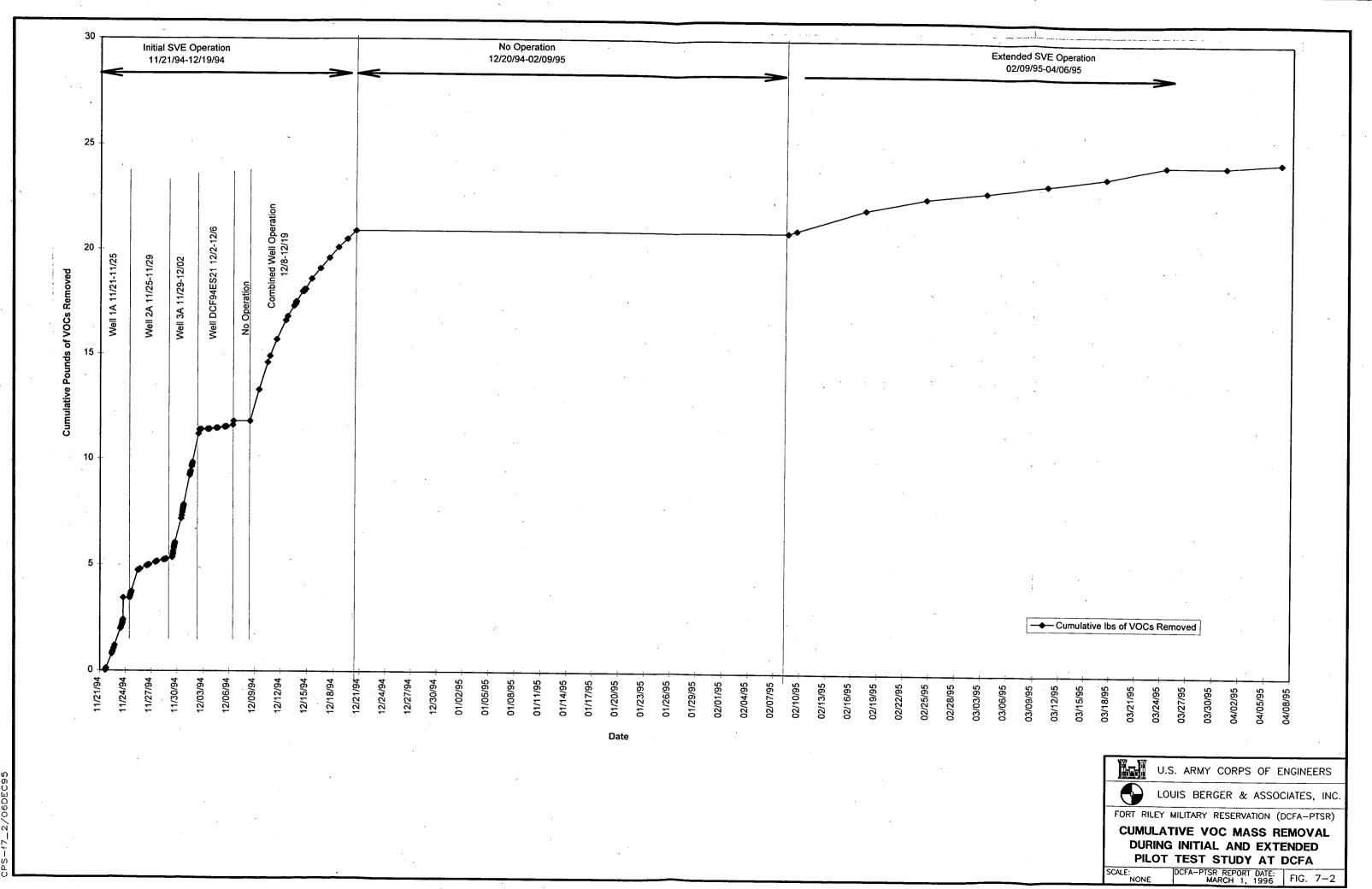
Although the pilot test study results demonstrate that SVE is an effective remedial technology for the DCFA, further SVE operations or long-term remediation activities do not appear to be warranted at this time based on the results of the baseline risk assessment and contaminant migration modeling performed as part of the *DCFA-RI*. If in the future, however, VOC levels in the vadose zone are indicated to be above some regulatory or risk-based action level, SVE technology can be effectively utilized to further reduce any elevated PCE levels.

Page 7-2


Louis Berger & Associates, Inc.

DCFA Pilot Test Study Results Report

TABLE 7-1


SUMMARY OF VOC LOADING RATES AND CUMULATIVE REMOVAL OF PCE AND TOTAL VOCs FOR INDIVIDUAL SVE OPERATIONS

SVE Operation	Operation Type	Begin	End	Time (days)	Total VOC Removed (lb)	Avg Loading Rate (lb/day)	Total PCE Removed	
							Mass (lbs)	% Over Total VOC's Removed
	Well 1A	11/21/94 14:30	11/25/94 11:07	3.86	4.79	1.24	4.46	93.11
	Well 2A	11/25/94 11:07	11/29/94 10:10	3.96	0.60	0.15	0.58	96.67
	Well 3A	11/29/94 10:10	12/02/94 13:15	3.13	6.12	1.96	5.68	92.81
	Well DCF-21	12/02/94 15:00	12/06/94 17:00	4.08	0.23	0.06	0.20	86.96
Initial	Combined Well	· · · · · · · · · · · · · · · · · · ·			<u> </u>			
	Well 1A	12/08/94 09:15	12/20/94 11:10	12.08	0.76	0.06	0.63	82.89
	Well 2A	12/08/94 09:15	12/20/94 11:10	12.08	0.25	0.02	0.20	83.33
· .	Well 3A	12/08/94 09:15	12/20/94 11:10	12.08	7.41	0.61	6.72	90.81
	Well DCF-21	12/08/94_09:15	12/20/94 11:10	12.08	0.68	0.06	0.59	88.06
Extended	Combined Well					· · ·		00.00
	All Wells	02/08/95 09:00	04/06/95 17:00	57.33	3.41	0.06	3.26	98.06

_1/06DEC9;

100

8.0 REFERENCES

8.0 REFERENCES

- CEMRK. 1992a. U.S. Army Corps of Engineers, Missouri River Division, Kansas City District. Preliminary Assessment/Site Investigation Report for Former Dry Cleaning Facility at Fort Riley, Kansas. Quality Control Summary Report. Prepared by Law Environmental, Inc., Kansas City, MO, for U.S. Army Corps of Engineers, Missouri River Division, Kansas City District. September.
- CEMRK. 1993a. U.S. Army Corps of Engineers, Missouri River Division, Kansas City District. Preliminary Assessment/Site Investigation, Dry Cleaning Facility, Fort Riley, Kansas. Quality Control Summary Report - First Quarter Ground-water Sampling Event. Prepared by Law Environmental, Inc., Kansas City, MO, for U.S. Army Corps of Engineers, Missouri River Division, Kansas City District. January.
- CEMRK. 1993b. U.S. Army Corps of Engineers, Missouri River Division, Kansas City District. Preliminary Assessment/Site Investigation for Dry Cleaning Facility, Fort Riley, Kansas. Quality Control Summary Report - Second Quarter Ground-water Sampling Event. Prepared by Law Environmental, Inc., Kansas City, MO, for U.S. Army Corps of Engineers, Missouri River Division, Kansas City District. April.
- CEMRK. 1993c. U.S. Army Corps of Engineers, Missouri River Division, Kansas City District. Remedial Investigation/Feasibility Study (RI/FS) Planning Documents Vol. I Work Plan, Vol. II Sampling & Analysis Plan (Fort Riley Military Installation) for Dry Cleaning Facility, Fort Riley, Kansas. Draft Final. Prepared by Law Environmental, Inc., Kansas City, MO, for U.S. Army Corps of Engineers, Missouri River Division, Kansas City District. July.
- CEMRK. 1993d. U.S. Army Corps of Engineers, Missouri River Division, Kansas City District. Preliminary Assessment/Site Investigation for Dry Cleaning Facility, Fort Riley, Kansas. Quality Control Summary Report - Third Quarter Ground-water Sampling Event. Prepared by Law Environmental, Inc., Kansas City, MO, for U.S. Army Corps of Engineers, Missouri River Division, Kansas City District. July.
- CEMRK. 1993e. U.S. Army Corps of Engineers, Missouri River Division, Kansas City District. "Comprehensive Basic Documents for Investigation at Fort Riley, Kansas." Prepared by Louis Berger & Associates, Inc., August.
- CEMRK. 1993f. U.S. Army Corps of Engineers, Missouri River Division, Kansas City District. *Quality* Assurance Project Plan (QAPP) for Site Investigations at Fort Riley. Prepared by Louis Berger & Associates, Inc., East Orange, NJ, for U.S. Army Corps of Engineers, Missouri River Division, Kansas City District. October.
- CEMRK. 1993g. U.S. Army Corps of Engineers, Missouri River Division, Kansas City District. Draft Final - Revised 12 October 1993 Remedial Investigation/Feasibility Study Planning Documents Sampling and Analysis Plan (SAP) Fort Riley Military Installation Fort Riley, Kansas. Prepared by Louis Berger & Associates, Inc., Gaithersburg, MD, for U.S. Army Corps of Engineers, Missouri River Division, Kansas City District. October 20.

- CEMRK. 1994a. U.S. Army Corps of Engineers, Missouri River Division, Kansas City District. Quality Control Summary Report, Site Investigation of the "Other Sites" at Fort Riley, Kansas, Vol. II. Prepared by Louis Berger & Associates, Inc., Gaithersburg, MD, for U.S. Army Corps of Engineers, Missouri River Division, Kansas City District. May 27.
- CEMRK. 1994b. U.S. Army Corps of Engineers, Missouri River Division, Kansas City District. Second Quarterly Quality Control Summary Report Remedial Investigation/Feasibility Study for Dry Cleaning Facility, at Fort Riley, Kansas. Prepared by Louis Berger & Associates, Inc., Gaithersburg, MD, for U.S. Army Corps of Engineers, Missouri River Division, Kansas City District. July 22.
- CEMRK. 1994c. U.S. Army Corps of Engineers, Missouri River Division, Kansas City District. Quality Control Summary Report, Analytical Data Reported for Baseline Soil Boring Samples & Soils from Underground Storage Tank Locations, Dry Cleaning Facility, at Fort Riley, Kansas. Prepared by Louis Berger & Associates, Inc., East Orange, NJ, for U.S. Army Corps of Engineers, Missouri River Division, Kansas City District. December 2, 1994.
- CEMRK. 1994d. U.S. Army Corps of Engineers, Missouri River Division, Kansas City District. Third Quarterly Quality Control Summary Report Remedial Investigation/Feasibility Study Dry Cleaning Facility at Fort Riley, Kansas. Analytical Data Reported for Groundwater from Monitoring Wells. Prepared by Louis Berger & Associates, Inc., East Orange, NJ, for U.S. Army Corps of Engineers, Missouri River Division, Kansas City District. October 20, 1994.
- CEMRK. 1995a. U.S. Army Corps of Engineers, Missouri River Division, Kansas City District. Draft Final Remedial Investigation Report, Dry Cleaning Facilities Area (DCFA-RI). Prepared by Louis Berger & Associates, Inc., East Orange, NJ, for Army Corps of Engineers, Missouri River Division, Kansas City District. March 1995.
- CEMRK. 1995b. U.S. Army Corps of Engineers, Missouri River Division, Kansas City District. Fourth Quarterly Quality Control Summary Report Remedial Investigation/Feasibility Study Dry Cleaning Facility at Fort Riley, Kansas. Analytical Data Reported for Groundwater from Monitoring Wells. Prepared by Louis Berger & Associates, Inc., East Orange, NJ, for Army Corps of Engineers, Missouri River Division, Kansas City District. February 21.
- CEMRK. 1995c. U.S. Army Corps of Engineers, Missouri River Division, Kansas City District. Quality Control Summary Report Remedial Investigation/Feasibility Study Dry Cleaning Facility at Fort Riley, Kansas. Analytical Data Reported for Surface Water and Sediment. Prepared by Louis Berger & Associates, Inc., East Orange, NJ, for Army Corps of Engineers, Missouri River Division, Kansas City District. February 23.
- CEMRK. 1995d. U.S. Army Corps of Engineers, Missouri River Division, Kansas City District. Quality Control Summary Report, Pilot Study Post-Extraction Soil and Groundwater Quarterly Monitoring, Dry Cleaning Facility, at Fort Riley, Kansas. Prepared by Louis Berger & Associates, Inc., East Orange, NJ, for U.S. Army Corps of Engineers, Missouri River Division, Kansas City District. June, 1995.
- U.S. EPA. 1991. U.S. Environmental Protection Agency Region VII. Federal Facilities Agreement. Docket Number VII-90-F-0015.

APPENDICES

APPENDIX A TECHNICAL MEMORANDUM FOR SUSTAINED YIELD TEST AND AQUIFER PUMP TEST

TECHNICAL MEMORANDUM FOR SUSTAINED YIELD TEST AND AQUIFER PUMP TEST

Commander, Engineer District Kansas City Attn: CEMRK -MD -H, Garth Anderson Kansas City, MO 64106

Date: August 23, 1994

Subject:

To:

Dry Cleaning Facilities, Fort Riley, Kansas Dual Phase Extraction Pilot Test Program Sustained Yield Test And Aquifer Pump Test

1 Introduction

This Technical Memorandum (TM) presents a detailed description of the sustained yield and pump test results, and the effect of the pump test on aquifer water levels. The entire test was conducted over the period of August 15, 1994 through August 22, 1994. The sustained yield test was proposed to measure the maximum continuous flow rate from the extraction well pumps. The pump test was proposed to evaluate the effects of aquifer water elevations while well pumps were operating at their sustained yield. Only three extraction wells were selected for the actual pump test. The wells consisted of DCF94ES-1B (1B), DCF94ES-2B (2B), and DCF94ES-3B (3B). The procedure for the sustained yield test consisted of operating one pump at a time for a period of six to eight hours in order to determine a maximum sustained pump flow rate. After the sustained yield was determined for each of the three well pumps, then the pump test would begin. All three pumps would operate continuously for 24 hours a day over a four day period at their sustained yield rate. During the course of each test, water level, temperature, and specific conductance were recorded in adjacent ground water monitoring wells. Water level measurements were recorded in extraction wells that were not operating during the sustained yield test. The ground water monitoring wells selected were DCF92-03, DCF92-05, DCF94-21 (only water levels), DCF93-13, and DCF92-06. Well DC F93-16 was determined to be dry. The entire pump test was conducted after the sewer diversion pump was disengaged allowing full flow to enter the sewer line from MH-363 to MH-345.

2 Sustained Yield Test

On Tuesday August 15, 1994 an 8-hour sustained yield test was conducted on extraction well 3B. No other well pumps were operating during this segment of the test. A

maximum well yield of 0.5 gallons per minute (GPM) was produced from the well which was unsustained. Therefore, the pump was throttled back to enable a sustained flow rate of 0.226 GPM.On Wednesday August 17, 1994, a 6-hour yield test was conducted on extraction well 2B. A maximum unsustained well yield of 0.5 GPM was produced. After throttling back on the pump a sustained yield of 0.158 GPM was observed. The pump in well 1B was also individually tested on Thursday August 18, 1994. The maximum yield pumped from the well was 0.75 GPM unsustained. The maximum sustained yield was 0.339 GPM after the pump was throttled back.

During the course of the sustained yield test there were no recorded changes in ground water elevations in the adjacent monitoring wells. There were also no deviations in temperature cycling during the sustained yield test. Results of the field data are presented in Attachment A.

3 Aquifer Pump Test

All three pumps were running continuously on Friday August 19 through Monday August 22, 1994. These pumps were operating at their combined sustained yields totaling 0.723 GPM. The pumps were operating in each well at the minimum water levels required to prevent tripping of the pump sensors. These sensors, when engaged, shut down pump power and initiate a timer for a fixed period of time until minimum water levels are regained. Each sensor is controlled by amperage as a function of increased resistance developed when the pumps operate under dry conditions. Throughout the pump test the pump sensors were not engaged allowing a continuous flow of ground water to occur without cycling. The recharge rate of the aquifer was slow, however all three pumps were able to operate continuously for the four day test.

The data collected from the adjacent monitoring wells is also presented in Attachment A. The results of the water level measurements indicated no drop in elevations in any of the adjacent wells around the DCF area. There were also no deviations in temperature cycling from the observed wells following termination of the sanitary sewer diversion.

4 Conclusion

The results of the pump test reveal a lower than expected combined well yield of 0.723 GPM. This is believed attributable to aquifer characteristics (i.e. surrounding formation) which produces low aquifer recharge. The aquifer is believed to be affected by the infiltration of leaking sewer water from the pipe line that connects from MH-363 to MH-345. The results from the Sewer Diversion Study revealed an average loss of approximately 5.5 GPM from the sewer line impacting the aquifer. At 160 GPM the loss was estimated at 13.7 GPM

As the pump operations did not influence groundwater levels, hydraulic characteristic could not be accurately determined.

Į

. .

ATTACHMENT A

		ł		· · · · · · · · · · · · · · · · · · ·
·				
	Date	Time	Well I.D.	Water Level
				•
				·····
· · · · ·	8/15/94	8:09	1B	35.22
		8:11	3B	35.4
		8:14	2B	35.4
		8:16	92-03	38.42
İ		8:22	92-05	34.84
		8:29	94-21	35.12
		8:32	93-13	35.92
		8:38	92.06	43.24
		8:43	93-16	44.18
				· · · ·
		10:02	1B	35.22
		10:04	3B	35.42
		10:06	2B	35.42
		10:08	92-03	38.42
		10:15	92-05	34.82
		10:19	94-21	35.12
		10:21	93-13	35.92
		10:27	92.06	43.24
		10:33	93-16	44.18
	-			· · ·
		11:34	1B	35.21
		11:36	3B	35.42
		11:37	2B	35.39
		11:39	92-03	38.4
· ·		11:42 ·	92-05	34.83
·	•	11:40	94-21	35.12
		11:46	93-13	35.91
		11:51	92.06	43.23
_		11:49	93-16	44.18
		13:47	1B	40.2
		13:35	3B	35.28
		13:45	2B	35.44
-	· .	13:39	92-03	38.4
		13:51	92-05	34.84
		13:56	94-21	35.14
		13:58	93-13	35.91
		14:05	92.06	43.22
	·	14:04	93-16	44.18
		16:19	1B	39.4
		15:36	3B	35.5
		15:39	2B	35.4

			•	
				-
	Date	Time	Well I.D.	Water Level
		15:41	92-03	38.42
	· .	15:46	92-05	34.84
	• •	15:51	94-21	35.12
	÷ .	15:53	93-13	35.92
		16:01	92.06	43.24
	•	16:08	93-16	44.18
8	/16/94	8:40	1B	35.22
		8:13	3B	35.44
		8:10	28	35.44
		8:19	92-03	38.42
	- '	8:27	92-05	34.86
	<u> </u>	8:30	94-21	35.14
	<u> </u>	8:34	93-13	35.94
		8:44	92.06	43.24
		8:49	93-16	44.18
		0.49	93-10	44.10
	· · · · ·	10.04	1B	36.38
		10:04 10:05	3B	36.36
		1	2B	35.44
		10:11	92-03	
		10:14	92-03	38.44
<u> </u>		10:18		<u> </u>
		10:22	94-21	35.16
· · ·	•	10:24	93-13	35.95
	<u> </u>	10:30	92.06	43.24
		10:36	93-16	44.18
				05.07
		11:34	1B	35.37
	·	11:29	3B	
		11:35	2B	35.44
		11:37	92-03	38.44
···		11:42	92-05	34.86
		11:45	94-21	35.15
		11:47	93-13	34.94
		11:53	92.06	43.22
		11:58	93-16	44.18
	· · · · · · · -			
· · · · · · · · · · · · · · · · · · ·	·	13:55	1B	35.27
		NG	3B	NG
		14:15	2B	35.42
		14:22	92-03	38.44
· .		14:31	92-05	34.86
	 	14:40	94-21	35.16
		14:43	93-13	35.94

PUMP 3B ON

	· · · ·			
				•
-				
	Date	Time	Well I.D.	Water Leve
				· · · · ·
		15:03	92.06	43.24
		15:08	93-16	44.18
		NG	1B	NG
		NG	3B	NG
		NG	2B	NG
		16:00	92-03	38.44
	•	16:05	92-05	34.84
	· · · ·	16:08	94-21	35.16
	· · ·	16:10	93-13	35.96
		16:16	92.06	43.24
		16:20	93-16	44.18
				····
	8/17/94	8:23	1B	35.26
		8:41	3B	35.47
	-	8:46	2B	35.48
		8:48	92-03	38.46
		8:57	92-05	34.9
		9:01	94-21	35.18
	·	9:02	93-13	36.9
		9:09	92.06	43.25
		9:13	93-16	44.18
· · · · · · · · · · · · · · · · · · ·		0.10		,
		10:04	1B	35.26
		10:09	3B	35.47
		10:13	2B	35.48
· · · ·		10:17	92-03	38.46
<u></u>		10:22	92-05	34.9
		10:22	94-21	35.19
		10:27	93-13	
		10:27	92-06	43.26
i		10:37	93-16	44.18
		10.07		
	<u> </u>	11:44	1B	35.28
		11:47	3B	35.47
		11:50	2B	35.47
· · · · ·		11:53	92-03	38.47
	1	11:59	92-05	34.9
		12:00	92-03	35.18
		12:00	93-13	36
	<u> </u>	12:03	92-06	43.26
	+	12:09	92-06	43.20
		12.13	33-10	
		13:50	1B	35.28
	1	13:50	1 10	35.20

	1	· .		<u> </u>
·				
	Date	Time	Well I.D.	Water Level
		13:52	3B	35.45
		13:55	28	35.46
	·	14:07	92-03	38.46
	· · · · · · · · · · · · · · · · · · ·	14:10	92-05	34.89
		14:12	94-21	35.19
		14:13	93-13	35.17
		14:20	92-06	43.25
		14:25	93-16	44.18
	-			······································
		16:15	1B	35.28
· ·	· .	16:18	3B	35.45
		16:21	2B	35.48
		16:25	92-03	38.46
		16:20	92-05	34.9
		16:32	94-21	35.2
		16:35	93-13	35.98
		16:41	92-06	43.24
			93-16	
		· .		· · · · · · · · · · · · · · · · · · ·
<u> </u>	8/18/94	11:32	1B	
		11:35	3b	35.95
		11:38	2b	<u></u>
	·	11:44	92-03	38.51
		11:49	92-05	34.92
		11:49	94-21	35.21
		11:50	93-13	36.01
		11:53	93-06	43.25
		11:55	93-16	44.18
		12:00	92-03	38.52
		12:02	92-05	34.94
	· ·	12:03	94-21	35.22
		12:05	93-13	36
		12:08	92-06	-43.25
		12:10	93-16	44.18
<u> </u>				
		12:27	92-03	38.54
		12:29	92-05	34.93
		12:31	94-21	35.22
		12:32	93-13	36
		12:36	92-06	43.25
· ·		12:38	93-16	44.18
		ļ		
		14:09	92-03	38.54

·				· · ·
	Date	Time	Well I.D.	Water Level
	Dale		vven I.D.	vvalet Level
	· ·	14:15	92-05	34.46
		14:18	94-21	35.24
		14:22	93-13	36
		14:29	92-06	43.25
		14:32	93-16	44.18
		13:00	92-03	38.56
	· · · · ·	13:02	92-05	34.98
		13:03	94-21	35.25
		13:05	93-13	36
		13:10	92-06	43.23
<u> </u>		13:12	93-16	44.18
		16:17	92-03	38.56
		16.23	92-05	34.98
		16:24	94-21	35.25
		16:28	93-13	36
		16:35	92-06	43.23
		16:37	93-16	44.18
	8/19/94	8:22	1B	40.1
		8:25	3B	.36.89
		8:27	2B	PUMP ON
		8:31	92-03	38.65
		8:35	92-05	35.05
		8:37	94-21	35.3
		8:40	93-13	36.05
		8:45	92-06	43.27
		8:58	93-16	44.17
			•	
				PUMP ON
· .		10:07	1B	1
· .	· · · · · · · · · · · · · · · · · · ·	10:09	3B	PUMP ON
·		10:09 10:11	3B 2B	PUMP ON PUMP ON
		10:09 10:11 10:13	3B 2B 92-03	PUMP ON PUMP ON 38.65
		10:09 10:11 10:13 10:16	3B 2B 92-03 92-05	PUMP ON PUMP ON 38.65 35.05
	······································	10:09 10:11 10:13 10:16 10:18	3B 2B 92-03 92-05 94-21	PUMP ON PUMP ON 38.65 35.05 35.31
		10:09 10:11 10:13 10:16 10:18 10:20	3B 2B 92-03 92-05 94-21 93-13	PUMP ON PUMP ON 38.65 35.05 35.31 36.06
		10:09 10:11 10:13 10:16 10:18 10:20 10:25	3B 2B 92-03 92-05 94-21 93-13 92-06	PUMP ON PUMP ON 38.65 35.05 35.31 36.06 43.28
		10:09 10:11 10:13 10:16 10:18 10:20	3B 2B 92-03 92-05 94-21 93-13	PUMP ON PUMP ON 38.65 35.05 35.31 36.06
		10:09 10:11 10:13 10:16 10:18 10:20 10:25 10:27	3B 2B 92-03 92-05 94-21 93-13 92-06 93-16	PUMP ON PUMP ON 38.65 35.05 35.31 36.06 43.28 44.17
		10:09 10:11 10:13 10:16 10:18 10:20 10:25 10:27 12:15	3B 2B 92-03 92-05 94-21 93-13 92-06 93-16 1B	PUMP ON PUMP ON 38.65 35.05 35.31 36.06 43.28 44.17 PUMP ON
		10:09 10:11 10:13 10:16 10:18 10:20 10:25 10:27 12:15 12:16	3B 2B 92-03 92-05 94-21 93-13 92-06 93-16 1B 3B	PUMP ON PUMP ON 38.65 35.05 35.31 36.06 43.28 44.17 PUMP ON PUMP ON
		10:09 10:11 10:13 10:16 10:18 10:20 10:25 10:27 12:15	3B 2B 92-03 92-05 94-21 93-13 92-06 93-16 1B	PUMP ON PUMP ON 38.65 35.05 35.31 36.06 43.28 44.17 PUMP ON

DCF WELL DATA

	·	~		
· ·				
				· · · · · · · · · · · · · · · · · · ·
	Date	Time	Well I.D.	Water Level
			00.05	
		12:23	92-05	35.66
· · · · · ·		12:27	94-21	35.32
	- · · .	12:29	93-13	36.06
	· · , ·	12:33	92-06	43.28
	· · · · ·	12:36	93-16	44.18
		44.04		
		14:21	1B	PUMP ON
·····	-	14:23	3B	PUMP ON
		14:25	2B	PUMP ON
		14:29	92-03	38.67
		14:32	92-05	35.07
	· · ·	14:35	94-21	35.32
		14:37	93-13	36.08
		14:41	92-06	43.27
		14:45	93-16	44.18
	<u>.</u>	10.07	40	
		16:05	1B	PUMP ON
		16:07	3B	PUMP ON
		16:09	2B	PUMP ON
· ·		16:13	92-03	38.68
		16:20	92-05	35.08
		16:25	94-21	35.35
		16:26	93-13	36.09
	· · ·	16:32	92-06	43.28
		16:34	93-16	44.18
	8/20/94	8:24	1B	PUMP ON
·		8:28	3B	PUMP ON
		8:30	2B	PUMP ON
l_	· .	8:37	92-03	38.72
	· .	8:41	92-05	35.12
		8:43	94-21	35.37
ļ		8:47	93-13	36.11
 		8:54	92-06	43.29
	· · · ·	8:58	93-16	44.17
				
		10:02	1B	PUMP ON
		10:05	3B	PUMP ON
ļ		10:08	2B	PUMP ON
		10:13	92-03	38.72
ļ	•	10:22	92-05	35.11
	-	10:27	94-21	35.38
		10:28	93-13	36.11
		10:36	92-06	43.3

	├───-┣			
	Date	Time	Well I.D.	Water Level
		10:43	93-16	44.17
		12:02	1B	PUMP ON
•		12:08	3B	PUMP ON
		12:05	2B	PUMP ON
		12:13	92-05	38.71
		12:18	92-05	35.11
		12:19	94-21	35.38
	·	12:24	93-13	36.11
		12:32	92-06	43.28
<u> </u>		12:34	93-16	44.17
		14:08	1B	PUMP ON
, .		14:10	3B	PUMP ON
	11	14:12	2B	PUMP ON
		14:18	92-03	38.73
	<u> </u>	14:21	92-05	35.12
<u> </u>		14:15	94-21	35.39
		14:26	93-13	36.11
	· ·	14:32	92-06	43.28
		14:39	93-16	44.17
	•	14. 1		
		16:10	1B	PUMP ON
,		16:12	3B	PUMP ON
		16:14	2B	PUMP ON
		16:18	92-03	38.73
÷		16:21	92-05	35.13
		16:26	93-13	36.12
		16:32	92-06	43.29
		16:36	93-16	44.17
	8/21/94	8:34	1B	PUMP ON
		8:37	2B	PUMP ON
		8:39	3B	PUMP ON
		8:43	92-03	38.79
		8:50	92-05	35.2
	-	8:52	94-21	35.43
· · ·		8:53	93-13	36.17
		8:59	92-06	43.2
	<u> </u>	9:05	93-16	44.17
				· ·
	·	10:07	1B	PUMP ON
		10:10	2B	PUMP ON
	1	10:12	3B	PUMP ON

·				
	Date	Time	Well I.D.	Water Level
· · · · ·				0.0 70
		10:16	92-03	38.79
		10:20	92-05	35.2
· ·		10:24	94-21	35.44
		10:26	93-13	36.19
		10:32	92-06	43.3
<u>.</u>	-	10:39	93-16	44.17
		40.00		<u></u>
		12:03	1B	PUMP ON
		12:05	2B	PUMP ON
	· · · ·	12:08	<u>3B</u>	PUMP ON
	↓ ↓	12:10	92-03	38.79
	ļļ	12:15	92-05	_ 35.2
		12:19	94-21	35.44
		12:20	93-13	36.17
		12:28	92-06	43.29
		12:34	93-16	44.17
				0.000 0.00
		14:01	1B	PUMP ON
		14:02	2B	PUMP ON
		14:05	3B	PUMP ON
		14:08	92-03	38.29
		14:14	92-05	35.2
	ļļ	14:18	94-21	35.45
	ļ	14:19	93-13	36.18
		14:26	92-06	43.29
	<u> </u>	14:32	93-16	44.17
<u> </u>	<u> </u>	46:04	1B	PUMP ON
	<u> </u>	16:04	2B	
		16:06		PUMP ON
		16:07 16:10	3B 92-03	PUMP ON 38.79
• • • • • • • • • • • • • • • • • • •		16:10	92-03	35.2
	<u> </u>	16:14	92-05	35.45
		16:17	94-21	36.2
	<u> </u>	16:19	93-13	43.28
		16:25	92-00	43.28
		10.01		TT. [/
	8/22/94	8:22	1B	PUMP ON
		8:24	2B	PUMP ON
. <u></u> .		8:26	3B	PUMP ON
		8:28	92-03	38.83
		8:33	92-05	35.24
	+	8:37	94-21	35.48
	1	0.37		

			· · · · ·	
	Date	Time	Well I.D.	Water Level
		8:44	92-06	43.28
		8:49	93-16	44.17
			•.	•
		10:03	1B	PUMP ON
		10:05	2B	PUMP ON
		10:06	3B	PUMP ON
		10:09	92-03	38.83
	·	10:14	92-05	35.22
	,	10:17	94-21	35.48
	•	10:18	93-13	36.2
		10:26	92-06	43.28
		10:31	93-16	44.17
		•	4	
		12:00	1B	PUMP OFF
		12:00	2B	PUMP OFF
		12:00	3B	PUMP OFF
		12:34	92-03	38.81
		12:41	92-05	35.25
		12:45	94-21	35.48
·-		12:48	93-13	36.2
		12:53	92-06	43.27
		12:57	93-16	44.17
			·	
			·	· .
			· ·	
			· · · · · · · · · · · · · · · · · · ·	
<u> </u>	[]	· · · ·		· · · · · · · · · · · · · · · · · · ·
		<u></u>		· · ·
			· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·
	<u> </u>			
			· · · · ·	l .
	· · · · ·			
	<u> </u>	······································		
	· ·			
	+	<u> </u>	1	1

Sustained Yield and Pump Test Temperature Data Dry Cleaning Facility, Fort Riley Kansas

	Well 1B		Well 2B	·	Well 3B	
Date	Time	Temp (F)	Time	Temp (F)	Time	Temp (F)
	·					
8/14/94	8:08	75.1	8:17	79.2	8:13	75.4
	10:00	71.8	10:04	80.4	10:02	80,3
	11:32	73.1	11:36	82.4	11:34	81.9
	13:48	76.5	13:59	81.8	13:50	82.9
	15:57	80.2	NG	NG	15:59	87.9
8/15/94	8:09	69.7	8:14	77.3	8:11	80.4
	10:02	72.0	10:06	81.1	10:04	81.7
	11:34	76.8	11:37	83.3	11:36	82.0
	13:47	83.2	13:45	86.0	13:35	86.1
	16:19	81.0	15:39	88.8	15:36	90.5
8/16/94	8:10	80.3	8:10	80.0	8:13	85.1
	10:00	83.4	10:11	84.2	10:05	82.7
	11:34	83.1	11:35	83.6	11:29	85.2
· ·	13:55	81.7	14:15	89.0	NG	NG
8/17/94	8:23	80.0	8:46	89.9	8:41	83.2
	10:04	81.8	10:13	83.7	10:09	86.1
	11:44	86.0	11:50	84.4	11:47	85.7
	13:50	87.5	13:55	87.4	13:52	89.5
	16:15	87.8	16:21	87.8	16:18	89.4
8/18/94	8:22	81.8	8:27	84.9	8:25	83.9
	10:00	83.7	10:10	82.7	10:06	87.9
	11:50	83.7	11:56	82.7	11:53	87.9
	14:00	85.8	14:08	86.2	14:04	90.1
	16:09	93.4	16:12	86.9	16:06	89.2
8/19/94	8:22	83.4	8:27	83.1	8:25	89.1
Ģ. 10/04	10:07	83.8	10:11	83.6	10:09	90.3
	12:15	85.7	12:17	85.5	12:16	90.9
	14:21	87.1	14:25	86.6	14:23	92.3
	16:05	87.5	16:09	87.2	16:07	92.6
8/20/94	8:24	81.5	8:30	84.4	8:28	85.6
0120134	10:02	81.6	10:08	84.6	10:05	86.5
	12:02	82.9	12:05	83.4	12:08	86.3
	14:08	84.8	14:10	89.9	14:12	89.9
	16:10	85.9	16:12	85.6	16:14	88.8
8/21/94	8:34	72.0	8:37	82.0	8:39	86.3
0/21/34	10:07	83.2	10:10	84.2	10:12	88.0
	12:03	84.5	12:05	85.5	12:08	87.6
. 1	14:01	87.2	14:02	87.8	14:05	91.4
	16:04	89.0	16:06	88.8	16:07	91.2
8/22/94	8:22	82.7	8:24	83.0	8:26	87.4
0/22/34	10:03	83.2	10:05	83.6	10:06	87.8
1.	10.05	00.2	1 . 10.03		1	

Manual readings recorded with a Hydac Temperature/pH/Conductivity meter NG = Not Gauged

APPENDIX B TECHNICAL MEMORANDUM FOR SAMPLING ACTIVITIES AND GC METHODOLOGY

TECHNICAL MEMORANDUM FOR SAMPLING ACTIVITIES AND GC METHODOLOGY

TO: Commander, Engineer District Kansas City Attn: CEMRK -MD - H, Garth Anderson Kansas City, MO 64106

Date: August 23, 1994

Subject: Dual Phase Extraction Pilot Test Program Discharge of Effluent Water from Post GAC System Sampling and Analysis Activities GC Methodology of On-site Sample Analysis

1 Introduction

This Technical Memorandum (TM) presents a detailed description of sampling and analysis activities conducted for the seven day post sewer diversion pump test and proposed for pilot test study. The sampling and analysis activities are proposed to evaluate the pilot test system effluent (treated groundwater) which is intended for discharge to the Main Post Wastewater Treatment Plant via manhole (MH) 345. Performance of these activities is intended to safeguard against the potential discharge of system effluent with volatile organic compounds (VOCs) concentrations in exceedance of EPA's MCL's for potable water. A list of EPA's MCL for selected target compounds on DCF site is enclosed (Attachment A).

In addition, included with this TM is a discussion on the use of a Static Headspace Method (SHM) with a portable GC to monitor the quality of effluent water from pilot test system. A detailed methodology of portable GC analysis headspace analysis, GC quantification limit and justification for using SHM with a portable GC is presented.

2 Background

On August 14, a sustained yield and pump test was initiated at the DCF site. This yield and pump test continued for seven (7) days. During the course of this yield and pump test, an estimated 4,500 gallons of water was pumped out of the aquifer through extraction wells. Due to the presence of VOC contaminants, the pumped water was treated by the on-site pilot test system prior to ultimate discharge to the Main Post Wastewater Treatment Plant. The on-site system uses two liquid phase GAC canisters in series to treat the pumped water. To safeguard the environment and human health and to closely monitor the change of groundwater quality, groundwater was sampled and analyzed for VOCs at influent, effluent, and midpoint location between the two GAC canisters, at approximately 50 to 100 gallons, to ensure that the water quality has met EPA's potable drinking water standards. These standards were selected in the

absence of NPDES discharge limits for the site, as they represent the most stringent criteria for water protection. A portable field GC was used for the on-site sample analysis. The effluent water from the pilot test system was temporarily stored in the pilot test system's 1,500 gallon equalization tank. A sample was taken from the tank and sent to a certified laboratory to further confirm that the groundwater quality met EPA's potable water drinking standard, before it was discharged to the Main Post Wastewater Treatment Plant, via MH 345. Based on a comparison of the GC results to those obtained from a certified laboratory, the GC unit appears to be reliable. For example, PCE concentrations detected by on site GC unit are in the range of 7.97 to 87.6 ppb, which is comparable to laboratory result of 99 ppb. Given the nature of dynamic change of contaminant concentration along with flow fluctuation, and trace level of contaminant concentrations are below method detection limits. A presentation of all results is provided in Attachment B.

The portable GC is proposed to be used during the scheduled Pilot Test Study period. In terms of methodology of on-site GC analysis, it appears that SHM is more sensitive, more accurate and reliable for the DCF site in comparing SHM method with direct injection. The low concentration of contaminants in the groundwater at DCF site seems to warrant the use SHM rather than direct injection, because direct injection is suitable only for concentration of VOCs higher than 1 ppm. A detailed analysis of each method is presented in the following sections.

3 Proposed Methodology of Portable GC Monitoring

3.1 Instrument and Associated Equipment

The instrument used for the pump test and proposed for the pilot test is a Shimadzu GC-9A, currently in place at the DCF site. The associated equipment is listed in Attachment B. A list of the target VOCs selected for analysis by the unit and their QC Quantification Limits are provided in Attachment D.

3.2 Justification of Using Portable GC

Portable GC analysis belongs to intermediate level (Level II) of sample analysis. Intermediate level analysis was introduced by the EPA in order to reduce the time required for sample turnaround and the high costs associated with laboratory analysis. It has been widely used in site investigation and remediation process. Portable GCs have been used for characterization of volatile organic compounds, semivolatile organics, pesticides, and even PCBs.

A portable GC is chosen for the DCF site, because of the requirement for frequent sampling and the demand of timely turnarounds of analysis results. This is especially true for Pilot Test Study in the next step.

3.3 GC Methodology Proposed

It is proposed that a Static Headspace Method (SHM) will be used for all on-site sample analysis. The detailed methodology and its merit are presented in Attachment E. A detailed procedures for on-site SHM analysis is provided in Attachment F. As a brief introduction, this method utilizes the volatility of VOCs or thermodynamic partitioning of VOCs between water and air. A water sample (less than 40 ml) is placed into a 40 ml VOA vial, and allowed a certain volume of headspace in the vial for water sample to equilibrate with the air in the headspace. Differing from direct injection of the water sample to a GC unit, the vapor headspace of the sample is injected into the GC unit. Utilizing vapor injection facilitates the placement of a much larger volume of vapor sample, hence, more mass of VOCs into GC than a direct injection method. Thus SHM can increase the sensibility of GC. In direct injection, the volume of water sample that can be injected into the GC column (a wide-bore capillary column) is very limited (<2 microliters). The same column can accept 1000 microliters of vapor sample. Calculation result indicates that for a compound with partitioning coefficient less than 500 the resulting mass injected through a 1000 microliter vapor sample is greater than direct injection of 2 microliters of water sample. Since most chlorinated hydrocarbons and aromatic hydrocarbons encountered on the site have partitioning coefficients significantly lower than 500. Therefore, SHM should be chosen for DCF site.

SHM has been used and accepted on superfund sites. In addition to its high sensitivity, SHM provides more reliable and accurate data. This is because samples are analyzed sooner than purge and trap methods, and therefore, less loss of VOCs will occur. This method also provides faster turnaround of the results because of less sample preparation. Less sample preparation not only reduces time and cost but also prevents cross contamination and loss of contaminants. Quick turnaround is necessary for Pilot Test Studies, which require frequent sampling and fast turnaround of sample results, in order to timely monitor the removal efficiency and to evaluate process kinetics.

3.3 QA/QC Procedures

To ensure the accuracy and precision of on site SHM analysis, the following QA/QC procedures were performed during the pump test and are proposed for the pilot study.

A standard field blank is analyzed daily to verify syringe and container cleanness and to demonstrate that the analytical system is free of interferences. Duplicate samples are then collected at a minimum of once per day to establish the precision of the analytical methodology. Due to limitations of field analytical conditions, minimum quantification limits are established in lieu of Method Detection Limits. Minimum Quantification Limits are established based on each compound's detector response and a minimum peak area which is well above background noise levels.

To safeguard the discharge of effluent water from post GAC treatment system, and to ensure that above proposed SHM on site analysis results are reliable, split effluent water samples tested by the GC unit are collected and sent to a certified laboratory to check the accuracy of the on-site analysis. For the pump test, 10% of the total samples tested by the GC unit were sent to a certified laboratory for analysis by EPA method 8010. The selection of the method was based on the intent to focus on the target contaminants detected in the groundwater; namely halogenated VOCs. For the pilot test study, it is proposed to collect split effluent samples at a frequency of one (1) sample for every 1,500 gallons (i.e., one volume of equalization tank) of treated water. These split samples will also be analyzed using EPA Method 8010. Results of these split samples would be representative of the VOC concentrations of treated water in the equalization tank before discharging to the Main Post Treatment Plant, and will serve to further validate the GC unit operation.

4 Conclusion

Based on the results of the certified laboratory analysis, it is believed that SHM is an accurate and reliable method for field analysis. In addition, it provides a faster turnaround of results, which is critical to both pump test and pilot test study on DCF site. On this basis it is proposed to continue the use of the GC unit with Static Headspace Method. It is also proposed to continue backup sampling of split water samples for direct laboratory analysis to further validate the GC unit operation and to prevent potential discharging of VOC contaminants to the DCF sanitary sewer system.

Attachment A A List OF EPA's MCL For Selected Target VOCs on DCF Site

Contaminants	Drinking Water Health Effects	EPA Final MCLG	Standard Final MCL	s (mg/l)' Current MCL	Analytic Sources BAT
Volatlle Organics	ана стана br>Стана стана стан Стана стана стан		•		
o-Dichlorobenzene	nervous system,lung, liver, kloney	0.6	0.6	•	industrial solvent; chemical All VOCS: All VOCS: manufacturing 502.1 GAC/PTA
cis-1,2 dichloroethylene	nervous system, liver, circulatory	0.07	0.07	•	industrial extraction solvent 502.2 503.1 524.1
Irans-1,2 dichloroethylene	nervous system, liver, circulatory	0.1	0.1	•	524.2 Industrial extraction solvent
1,2 Dichloropropane	probable cancer, liver, lungs, kidney	0	0.005	• ·	soll fumigant; industrial solvent
Elhylbenzene	kidney, liver, nervous system	0.7	0.7	•	present in gasoline & insecticides; chemical manufacturing
Monochlorobenzene	kidney, liver, nervous system	0.1	0.1	• •	pesticide manufacturing; metal cleaner; industrial solvent
Slyrene	liver, nervous system	0.1	0.1	•	plastic manufacturing; resins used in water treatment equipment
Tetrachloroethylene	probable cancer	0	0.005	•	dry cleaning/industrial solvent
loluene	kidney, nervous system, lung	1	1	•	chemical manufacturing; gasoline additive; indust. solvent
(ylenes	liver, kidney, nervous system	10	10	•	paint/ink solvent; gasoline refining by-product; component of detergents

Final MCLGs and MCLs become effective July 1992. At that time, the current MCLs cease to be effective.

Attachment B Analytical Results of Groundwater Samples For Selected Target VOCs on DCF Site

Continental Analytical SERVICES, INC.

Page:

Client: Louis Berger and Associates, Inc. Attn: Susan Knauf 100 Halsted Street East Orange, NJ 07019	Date Sample Rptd: 08/20/94 Date Sample Recd: 08/19/94 CAS File No: 94-6151 CAS Order No: 24390 Client P.O.: JH1021 Q-DCF
---	--

Lab Number: 94081641 Sample Description: DCFETANK-819

Date Sampled: 08/19/94 Time Sampled: 1645

Analysis				Date	
mulysis	Concentration	Units		Analyzed	Book/Page
EPA Method 8010	· · · ·			<u></u>	DOOK/ Fage
				08/20/94	,
1,1,1,2-Tetrachloroethar	ne ND(0.2)	µg/L		00/20/34	1766/22
1,1,1-Trichloroethane	ND(0.2)	µg/L			1766/21
1,1,2,2-Tetrachloroethar	ne ND(0.2)	µg/L			1766/21
1,1,2-Trichloroethane	ND(0.2)	μg/L			1766/21
1,1-Dichloroethane	ND(0.2)	μg/L			1766/21
1,1-Dichloroethene	ND (0.2)	μg/L			1766/21
1,2,3-Trichloropropane	ND(0.2)	µg/L			1766/21
1,2-Dichlorobenzene	ND(0.2)	µg/L			1766/21
1,2-Dichloroethane	ND(0.2)	µg/L µg/L			1766/21
1,2-Dichloropropane	ND(0.2)				1766/21
1,3-Dichlorobenzene	ND(0.2)	µg/L			1766/21
1,4-Dichlorobenzene	ND(0.2)	µg/L			1766/21
2-Chloroethylvinyl Ether	ND(0.2)	µg/L			1766/21
Benzyl Chloride	ND(0.2)	µg/L			1766/21
Bromobenzene		µg/L	• • •		1766/21
Bromodichloromethane	ND(0.2)	µg/L			1766/21
Bromoform	ND (0.2)	µg/L			1766/21
Bromomethane	ND (0.2)	µg/L			1766/21
Carbon Tetrachloride	ND (0.2)	µg/L			1766/21
Chlorobenzene	ND (0.2)	µg/L		·	1766/21
Chloroethane	ND(0.2)	µg/L			1766/21
Chloroform	ND (0.2)	µg/L			1766/21
Chloromethane	ND(0.2)	µg/L		·	1766/21
cis-1,2-Dichloroethene	ND(0.2)	µg/L			1766/21
Cig-1 2-Dichloroethene	ND(0.2)	µg/L	-		1766/21
cis-1,3-Dichloropropene	ND(0.2)	µg/L			1766/21
Dibromochloromethane	ND(0.2)	µg/L			1766/21
Dibromomethane	ND(0.2)	µg/L			1766/21
Dichlorodifluoromethane	ND(0.2)	µg/L	·		
Methylene Chloride	ND(0.2)	µg/L			1766/21
Tetrachloroethene	ND(0.2)	μg/L			1766/21
trans-1,2-Dichloroethene		µg/L			1766/21
trans-1,3-Dichloropropene	ND(0.2)	μg/L		• .	1766/21
Trichloroethene	ND (0.2)	μg/L μg/L			1766/21
Trichlorofluoromethane	ND(0.2)	µg/L			1766/21
Vinyl Chloride	ND(0.2)	µg/L			1766/21
	()	Hall			1766/21

Analysis

EPA Method 8010

Date Prepared QC Batch Analyst Analytical Method NA 1GC3231 DKT 8010

Laboratory analyses were performed on samples utilizing procedures published in Title 40 of the Code of Federal Regulations, Parts 136 or 141, or in EPA Publication, SW-846, 3rd edition, September, 1986. ND(), where noted, indicates none detected with the detection limit in parentheses. Samples will be retained for thirty days unless otherwise notified.

CONTINENTAL ANALYTICAL SERVICES, INC.

Ale

Clifford J. Baker 64 Glendale Road • Salina, Kansas 67401-6675

913-827-1273 • 800-535-3076 • FAX 913-823-7830

Client: Louis Berger and Associates, Inc. Attn: Susan Knauf 100 Halsted Street East Orange, NJ 07019

Date Sample Rptd: 08/20/94 Date Sample Recd: 08/19/94 CAS File No: 94-6151 CAS Order No: 24390 Client P.O.: JH1021 Q-DCF

Page:

2

Lab Number: 94081642 Sample Description: Trip Blank #D123

Date Sampled: 08/19/94 Time Sampled: 1645

Analysis	Concentration		Date	•
	Concentration	Units	Analyzed	Book/Page
EPA Method 8010				
1,1,1,2-Tetrachloroethane	ND(0.2)	· /-	08/20/94	· · · /
1,1,1-Trichloroethane	ND (0.2)	µg/L	· · ·	1766/21
1,1,2,2-Tetrachloroethane	ND(0.2)	µg/L	•	1765/21
1,1,2-Trichloroethane		µg/L		1766/21
1,1-Dichloroethane	ND(0.2)	µg/L	•	1766/21
1,1-Dichloroethene	ND (0.2)	µg/L ′		1766/21
1,2,3-Trichloropropane	ND(0.2)	µg/L		1766/21
1,2-Dichlorobenzene	ND(0.2)	µg/L		1766/21
1,2-Dichloroethane	ND(0.2)	µg/L		1766/21
1,2-Dichloropropane	ND(0.2)	µg/L		1766/21
1,3-Dichlorobenzene	ND(0.2)	µg/L		1766/21
1,4-Dichlorobenzene	ND(0.2)	µg/L		1766/21
2-Chloroothuluinul Rul	ND(0.2)	µg/L		1766/21
2-Chloroethylvinyl Ether Benzyl Chloride	ND(0.2)	µg/L		1766/21
Bromobenzene	ND(0.2)	µg/L	· ·	1766/21
	ND(0.2)	µg/L		1766/21
Bromodichloromethane Bromoform	ND(0.2)	µg/L		1766/21
	ND(0.2)	µg/L	•	1766/21
Bromomethane	ND(0.2)	µg/L		1766/21
Carbon Tetrachloride	ND(0.2)	µg/L		1766/21
Chlorobenzene	ND(0.2)	µg/L		1766/21
Chloroethane	ND(0.2)	µg/L		1766/21
Chloroform	ND(0.2)	µg/L	•	1766/21
Chloromethane	ND(0.2)	µg/L	·	1766/21
cis-1,2-Dichloroethene	ND(0.2)	µg/L		1766/21
cis-1,3-Dichloropropene	ND(0.2)	μg/L	-	1766/21
Dibromochloromethane	ND(0.2)	μg/L		1766/21
Dibromomethane	ND(0.2)	μg/L μg/L		1766/21
Dichlorodifluoromethane	ND(0.2)	μg/Ц μg/Ц		1766/21
Methylene Chloride	ND(0.2)	μg/L μg/L		1766/21
Tetrachloroethene	ND(0.2)		•	1766/21
trans-1,2-Dichloroethene	ND(0.2)	µg/L		1766/21
trans-1,3-Dichloropropene	ND(0.2)	µg/L		1766/21
Trichloroethene	ND(0.2)	µg/L		1765/21
Trichlorofluoromethane	ND(0.2)	µg/L		1766/21
Vinyl Chloride	ND(0.2)	µg/L		1766/21
		µg/L		1766/21
Applerain	Date		•	

Analysis	· · ·	Prepared	<u>QC Batch</u>	Analyst	Analytical Method
EPA Method 8010		NA	1GC3231	DKT	8010

Laboratory analyses were performed on samples utilizing procedures published in Title 40 of the Code of Federal Regulations, Parts 136 or 141, or in EPA Publication, SW-846, 3rd edition, September, 1986. ND(), where noted, indicates none detected with the detection limit in parentheses. Samples will be retained for thirty days unless otherwise notified.

CONTINENTAL ANALYTICAL SERVICES, INC.

Clifford J. Baker 4 Glendale Road • Salina, Kansas 67401-6675

913-827-1273 • 800-535-3076 • FAX 913-823-7830

5

Client: Louis Berger and Associates, Inc. Date Sa Attn: Susan Knauf Date Sa 100 Halsted Street CAS Fil East Orange, NJ 07019

Lab Number: 94081189 Sample Description: DCFWWTANK-1 Date Sample Rptd: 08/18/94 Date Sample Recd: 08/16/94 CAS File No: 94-6151 CAS Order No: 24302 Client P.O.: JH1073 -DCF

Page:

Date Sampled: 08/16/94 Time Sampled: 1546

Analysis	Concentration	Units	· ·	Date <u>Analyzed</u>	Book/Daga
TCL Volatiles				111111111111	Book/Page
1,1,1-Trichloroethane				08/17/94	,
1,1,2,2-Tetrachloroethane	ND (0.7)	µg/L			2009/74
1,1,2-Trichloroethane	ND(0.6)	µg/L		·	2009/74
1,1-Dichloroethane	ND(0.6)	µg/L			2009/74
1,1-Dichloroethylene	ND(0.5)	µg/Ľ			2009/74
1,2-Dichloroethane	ND(0.6)	µ́g/L	,		2009/74
	ND(0.6)	µg/L			2009/74
1,2-Dichloroethylene (Total) 1,2-Dichloropropane	(• • =)	µg/L			2009/74
1,4-Dichlorobenzene	ND(0.4)	µg/L			2009/74
2-Butanone	ND(1.0) -	µg/L	· · ·		2009/74
2-Chloroothel Wie 1 -	ND (100)	µg/L			2009/74
2-Chloroethyl Vinyl Ether 2-Hexanone	ND(5.0)	µg/L			2009/74
4-Methyl-2-Pentanone	ND(50)	µg/L			2009/74
Acetone	ND (50)	μg/L			2009/74
Benzene	ND (100)	μg/L			2009/74
Decemental at a	ND(0.4)	μg/L			2009/74
Bromodichloromethane (THM)	ND(0.5)	µg/L	·		2009/74
Bromoform (THM)	ND(1.5)	μg/L			2009/74
Bromomethane	ND (1.2)	µg/L		1.1 · ·	2009/74
Carbon Disulfide	ND (5.0)	μg/L μg/L			2009/74
Chlorobenzene	ND(0.4)				2009/74
Chloroethane	ND (3.7)	µg/L			2009/74
Chloromethane	ND (5.0)	µg/L		·	2009/74 '
Cis-1,3-Dichloropropene	ND(0.9)	µg/L			2009/74
Dibromochloromethane (THM)	ND (0.7)	µg/L			2009/74
Dichloromethane	ND (0.9)	µg/L			2009/74
Ethylbenzene	ND (0.7)	µg/L			2009/74
Meta &/or Para-Xylene	ND(0.6)	µg/L			2009/74
Ortho-Xylene	ND (0.6)	µg/L			2009/74
Styrene	ND (5.0)	µg/L			2009/74
Tetrachloroethylene		µg/L			2009/74
Tetrachloromethane	ND (1.1)	µg/L			2009/74
Toluene	ND (0.7)	µg/L			2009/74
Trans-1,3-Dichloropropene	ND (0.4)	µg/L			2009/74
rrichloroethvlene	ND (0.8)	µg/L			2009/74
Trichloromethane (THM)	ND (0.6)	µg/L	· · ·		2009/74
Vinyl Acetate	ND (0.5)	µg/L			2009/74
Vinyl Chloride	ND (50)	µg/L			2009/74
	ND(0.8)	µg/L			2009/74
	. .			4	
Analysis	Date				-

Analysis Date Prepared QC Batch Analyst Analytical Method TCL Volatiles NA 1MS3229 CLS 624/8240 -Continued

1804 Glendale Road • Salina, Kansas 67401-6675 913-827-1273 • 800-535-3076 • FAX 913-823-7830

.4

Page:

Ż

5

CAS

LABORATORY REPORT

Client:	Louis	Berger	and	Associates,	_
Lab Numbe	er: 94	4081189	anu	Associates,	Inc.

Laboratory analyses were performed on samples utilizing procedures published in Title 40 of the Code of Federal Regulations, Parts 136 or 141, or in EPA Publication, SW-846, 3rd edition, September, 1986. ND(), where noted, indicates none detected with the detection limit in parentheses. Samples will be retained for thirty days unless otherwise notified.

CONTINENTAL ANALYTICAL SERVICES, INC.

. Saler

Clifford J. Baker

atory Director

Labor

Continental Analytical SERVICES, INC

Client: Louis Berger and Associates,		rade: 3
Attn: Susan Knauf 100 Halsted Street East Orange, NJ 07019	Inc.	Date Sample Rptd: 08/18/94 Date Sample Recd: 08/16/94 CAS File No: 94-6151 CAS Order No: 24302
Lab Number Official		Client P.O.: JH1073 -DCF

Lab Number: 94081190 Sample Description: Trip Blank

Date Sampled: 08/16/94 Time Sampled:

Da

· · ·				L	
Analysis	Concentration	TT		Date	• •
		Units		Analyzed	Book/Page
TCL Volatiles	•		· • ··	· -	
1,1,1-Trichloroethane	ND(0.7)	· · · · ·		08/17/94	1
1,1,2,2-Tetrachloroethane	ND(0.6)	µg/L		•	2009/73
1,1,2-Trichloroethane	ND(0.6)	µg/L			2009/73
1,1-Dichloroethane		µg/L			2009/73
1,1-Dichloroethvlene	ND(0.5)	µg/L			2009/73
1,2-Dichloroethane	ND(0.6)	µg/L .			2009/73
1,2-Dichloroethylene (Total)	ND(0.6)	µg/L			
1,2-Dichloropropane		μg/L		·	2009/73
1,4-Dichlorobenzene	ND(0.4)	µg/L			2009/73
2-Butanone	ND(1.0)	µg/L			2009/73
2-Chloroethyl Vinyl Ether	ND (100)	µg/L			2009/73
2-Hexanone	ND(5.0)	µg/L	•		2009/73
4-Methyl-2-Pentanone	ND (50)	µg/L		•	2009/73
Acetone	ND (50)	µg/L			2009/73
Benzene	ND(100)	µg/L	•		2009/73
	ND(0.4)	μg/L			2009/73
Bromodichloromethane (THM)	ND(0.5)	µg/L			2009/73
Bromoform (THM) Bromomethane	ND(1.5)	μg/L			2009/73
	ND(1.2)	µg/L	• .		2009/73
Carbon Disulfide	ND (5.0)	μg/L μg/L		· .	2009/73
Chlorobenzene	ND(0.4)	µg/L µg/L			2009/73
Chloroethane	ND (3.7)	µg/L µg/L			2009/73
Chloromethane	ND (5.0)	µg/L µg/L			2009/73
Cis-1, 3-Dichloropropene	ND(0.9)	-			2009/73
Dibromochloromethane (THM)	ND(0.7)	μg/L μg/L			2009/73
Dichloromethane	ND(0.9)	μg/L μg/L			2009/73
Ethylbenzene	ND(0.7)	μg/L μg/L			2009/73
Meta &/or Para-Xylene	ND(0.6)				2009/73
Ortho-Xylene	ND(0.6)	µg/L		- '	2009/73
Styrene	ND (5.0)	µg/L			2009/73
Tetrachloroethylene	ND(1.1)	µg/L			2009/73
Tetrachloromethane	ND (0.7)	µg/L			2009/73
Toluene	ND(0.4)	µg/L			2009/73
Trans-1,3-Dichloropropene	ND(0.8)	µg/L			2009/73
<u>iricnioroethvlene</u>	ND(0.6)	µg/L			2009/73
Trichloromethane (THM)	ND(0.5)	µg/L			2009/73
vinyi Acetate	ND (50)	µg/L			2009/73
Vinyl Chloride	ND(0.8)	μg/L			2009/73
		µg/L			2009/73
				. •	

Analysis

TCL Volatiles

Date Prepared QC Batch Analyst Analytical Method NA 1MS3229

624/8240 CLS

-Continued-

1804 Glendale Road • Salina, Kansas 67401-6675 913-827-1273 • 800-535-3076 • FAX 913-823-7830

6

LABORATORY REPORT

Client: Louis Berger and Associates, Inc. Lab Number: 94081190

Laboratory analyses were performed on samples utilizing procedures published in Title 40 of the Code of Federal Regulations, Parts 136 or 141, or in EPA Publication, SW-846, 3rd edition, September, 1986. ND(), where noted, indicates none detected with the detection limit in parentheses. Samples will be retained for thirty days unless otherwise notified.

CONTINENTAL ANALYTICAL SERVICES, INC. YOW of Baker Clifford J. Baker Laboratory Director

CAS 7

Page:

4

Client: Louis Berger and Associates, Inc. Attn: Susan Knauf 100 Halsted Street East Orange, NJ 07019

Date Sample Rptd: 08/22/94 Date Sample Recd: 08/20/94 CAS File No: 94-6151 CAS Order No: 24399 Client P.O.: Proj:JG1073

Page:

1

Lab Number: 94081714 Sample Description: DCF Inflow

Date Sampled: 08/20/94 Time Sampled: 1550

Analysis	Concentration	Units		Date	
EPA Method 8010		<u></u>		Analyzed	Book/Page
		· · ·		08/22/94	
1,1,1,2-Tetrachloroethane	ND(1.0)	µg/L		00/22/94	/
1,1,1-Trichloroethane	ND(1.0)	μg/L			1766/24
1,1,2,2-Tetrachloroethane	ND(1.0)	µg/L		•	1766/24
1,1,2-Trichloroethane	ND(1.0)	µg/L			1766/24
1,1-Dichloroethane	ND(1.0)			•	1766/2 <u>4</u>
1,1-Dichloroethene	ND(1.0)	µg/L			1766/24
1,2,3-Trichloropropane	ND(1.0)	µg/L			1766/24
1,2-Dichlorobenzene	ND(1.0)	µg/L			1766/24
1,2-Dichloroethane	ND(1.0)	µg/L			1766/24
1,2-Dichloropropane		µg/L			1766/24
1,3-Dichlorobenzene	ND(1.0)	·µg/L			1766/24
1,4-Dichlorobenzene	ND(1.0)	µg/L			1766/24
2-Chloroethylvinyl Ether	ND(1.0)	µg/L		1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 -	1766/24
Benzyl Chloride	ND(1.0)	µg/L			1766/24
Bromobenzene	ND(1.0)	µg/L			1765/24
Bromodichloromethane	ND(1.0)	µg/L			1766/24
Bromoform	ND(1.0)	µg/L			1766/24
Bromomethane	ND(1.0)	µg/L			1766/24
Carbon Tetrachloride	ND(1.0)	µg/L			1766/24
Chlorobenzene	ND(1.0)	µg/L			1766/24
Chloroethane	ND(1.0)	µg/L			1766/24
Chloroform	ND(1.0)	μg/L	•		1766/24
Chlororom	4.1	μg/L	•		1766/24
Chloromethane	ND(1.0)	µg/L			1766/24
cis-1,2-Dichloroethene	3.6				1766/24
cis-1,3-Dichloropropene	ND(1.0)	µg/L	· . ·		1766/24
Dibromochloromethane	ND(1.0)	µg/L			1766/24
Dibromomethane	ND(1.0)	µg/L			1766/24
Dichlorodifluoromethane	ND (1.0)	µg/L			1766/24
Methylene Chloride	ND(1.0)	µg/L			1766/24
Tetrachloroethene	99.	µg/L			1766/24
trans-1,2-Dichloroethene		µg/L			L766/24
trans-1,3-Dichloropropene	ND(1.0)	μg/L			1766/24
Trichloroethene	ND(1.0)	µg/L		1	1766/24
Trichlorofluoromethane	· 4.0	µg/L		. 1	766/24
Vinyl Chloride	ND(1.0)	µg/L		1	766/24
7	ND(1.0)	µg/L			.766/24

Analysis	Prepared	QC Batch	Analyst	Analytical Method
EPA Method 8010	NA	1GC3232		8010

Laboratory analyses were performed on samples utilizing procedures published in Title 40 of the Code of Federal Regulations, Parts 136 or 141, or in EPA Publication, SW-846, 3rd edition, September, 1986. ND(), where noted, indicates none detected with the detection limit in parentheses. Samples will be retained for thirty days unless otherwise notified.

CONTINENTAL ANALYTICAL SERVICES, INC. . Dake Clifford J. Baker 304 Glendale Road • Salina, Kansas 67401-6675 Jirector 913-827-1273 • 800-535-3076 • FAX 913-823-7830

Client: Louis Berger and Associates, Inc. Attn: Susan Knauf 100 Halsted Street East Orange, NJ 07019

Date Sample Rptd: 08/22/94 Date Sample Recd: 08/20/94 CAS File No: 94-6151 CAS Order No: 24399 Client P.O.: Proj:JG1073

Page:

Lab Number: 94081715 Sample Description: DCF Trip Blank 1

Date Sampled: 08/20/94 Time Sampled: 1550

Analysis	Concentration	Units	Date <u>Analy</u> zed	
EPA Method 8010			<u></u>	Book/Pag
1,1,1,2-Tetrachloroethane	ND(0.2)		08/21/94	1
1,1,1-Trichloroethane		µg/L	• -	1766/23
1,1,2,2-Tetrachloroethane	ND (0.2)	µg/L		1766/23
1,1,2-Trichloroethane	ND(0.2)	µg/L		1766/23
1,1-Dichloroethane	ND(0.2)	µg/L		1766/23
1,1-Dichloroethene	ND(0.2)	µg/L		
1,2,3-Trichloropropane	ND(0.2)	μg/L		1766/23
1,2-Dichlorobenzene	ND(0.2)	µg/L		1766/23
1,2-Dichloroethane	ND(0.2)	µg/L		1766/23
1 2-Dichlement	ND(0.2)	µg/L		1766/23
1,2-Dichloropropane	ND(0.2)	µg/L		1766/23
1,3-Dichlorobenzene	ND(0.2)	µg/L		1766/23
1,4-Dichlorobenzene	ND(0.2)	μg/L		1766/23
2-Chloroethylvinyl Ether	ND(0.2)	μg/L μg/L	· · · · ·	1766/23
Benzyl Chloride	ND(0.2)			1766/23
Bromobenzene	ND(0.2)	µg/L		1766/23
Bromodichloromethane	ND (0.2)	µg/L		1766/23
Bromoform	ND (0.2)	µg/L		1766/23
Bromomethane	ND (0.2)	µg/L		1766/23
Carbon Tetrachloride	ND(0.2)	µg/L		1766/23
Chlorobenzene		µg/L		1766/23
Chloroethane	ND(0.2)	μg/L		1766/23
Chloroform	ND (0.2)	µg/L	•	1766/23
Chloromethane	ND(0.2)	µg/L		1766/23
cis-1,2-Dichloroethene	ND(0.2)	µg/L		1766/23
cis-1,3-Dichloropropene	ND(0.2)	μg/L		1766/23
Dibromochloromethane	ND(0.2)	µg/L		1766/23
Dibromomethane	ND(0.2)	µg/L		1766/23
Dichlorodifluoromethane	ND(0.2)	µg/L		1766/23
Methylene Chloride	ND(0.2)	μg/L		1766/23
Tetrachleman)	ND(0.2)	µg/L		1766/23
Tetrachloroethene	ND(0.2)	µg/L	· · ·]	L766/23
trans-1,2-Dichloroethene	ND (0.2)	μg/L		1766/23
trans-1,3-Dichloropropene	ND (0.2)	μg/L ·		766/23
Trichloroethene	ND (0.2)	µg/L µg/L		.766/23
Trichlorofluoromethane	ND(0.2)			766/23
Vinyl Chloride	ND(0.2)	µg/L	1	.766/23
	(*••*)	µg/L	1	766/23
alysis	Date Prepared (x

	Prepared	<u>QC Batch</u>	Analyst	Analytical Method
EPA Method 8010	NA	1GC3232		8010
				9010

Laboratory analyses were performed on samples utilizing procedures published in Title 40 of the Code of Federal Regulations, Parts 136 or 141, or in EPA Publication, SW-846, 3rd edition, September, 1986. ND(), where noted, indicates none detected with the detection limit in parentheses. Samples will be retained for thirty days unless otherwise notified.

CONTINENTAL ANALYTICAL SERVICES, INC.

Clifford J. Baker 04 Glendale Road • Salina, Kansas 67401-6675 Laboratory Director 913-827-1273 • 800-535-3076 • FAX 913-823-7830

5

Client: Louis Berger and Associates, Inc. Attn: Susan Knauf 100 Halsted Street East Orange, NJ 07019

Lab Number: 94081716 Sample Description: DCF Intermed Date Sample Rptd: 08/22/94 Date Sample Recd: 08/20/94 CAS File No: 94-6151 CAS Order No: 24399 Client P.O.: Proj:JG1073

> Date Sampled: 08/20/94 Time Sampled: 1552

Analysis	Concentration	Units	Date <u>Analy</u> zed	Pools (Dame
EPA Method 8010	·			Book/Page
1,1,1,2-Tetrachloroethane	ND (0. 0)		08/21/94	, .
1,1,1-Trichloroethane	ND(0.2)	µg/L	// 5-	1765 (24
1,1,2,2-Tetrachloroethane	ND(0.2)	µg/L		1766/24
1,1,2-Trichloroethane	ND(0.2)	µg/L		1766/24
1,1-Dichloroethane	ND(0.2)	μg/L		1766/24
1,1-Dichloroethene	ND(0.2)	µg/L		1766/24
1,2,3-Trichloropropane	ND(0.2)	µg/L	•	1766/24
1,2-Dichlorobenzene	ND(0.2)	µg/L		1766/24
1,2-Dichloroethane	ND(0.2)	µg/L		1766/24
1,2-Dichloropropane	ND(0.2)	µg/L		1766/24
1 3-Dichlorobane	ND(0.2)	μg/L		1766/24
1,3-Dichlorobenzene	ND(0.2)	µg/L		1766/24
1,4-Dichlorobenzene	ND(0.2)	µg/L		1766/24
2-Chloroethylvinyl Ether	ND(0.2)	μg/L		1766/24
Benzyl Chloride	ND(0.2)	µg/L		1766/24
Bromobenzene	ND (0.2)	µg/L		1766/24
Bromodichloromethane	ND(0.2)	µg/L		1766/24
Bromoform	ND (0.2)	µg/L		1766/24
Bromomethane	ND (0.2)	µg/L		1766/24
Carbon Tetrachloride	ND(0.2)			1766/24
Chlorobenzene	ND(0.2)	µg/L		1766/24
Chloroethane	ND(0.2)	µg/L	(1766/24
Chloroform	ND(0.2)	µg/L		1766/24
Chloromethane	ND(0.2)	µg/L		1766/24
cis-1,2-Dichloroethene	ND(0.2)	µg/L		1766/24
Cls-1,3-Dichloropropene	ND(0.2)	µg/L		1766/24
Dibromochloromethane	ND(0.2)	µg/L		1766/24
Dibromomethane	ND(0.2)	µg/L	-	1766/24
Dichlorodifluoromethane	ND (0.2)	µg/L		1766/24
Methylene Chloride	ND(0.2)	µg/L		1766/24
Tetrachloroethene	ND(0.2)	µg/L		1766/24
trans-1,2-Dichloroethene	ND(0.2)	µg/L		L766/24
trans-1,3-Dichloropronene	ND(0.2)	µg/L		766/24
Trichloroethene	ND (0.2)	µg/L	1	766/24
Trichlorofluoromethane	ND(0.2)	µg/L	- 1	.766/24
Vinyl Chloride	ND(0.2)	µg/L	1	.766/24
	ND(0.2)	µg/L	1	.766/24
•	•		+	

Analysis

EDB Mohle 1 Acces	Prepared	<u>QC Batch</u>	Analyst	Analytical Method
EPA Method 8010	NA	1GC3232		8010

Date

Laboratory analyses were performed on samples utilizing procedures published in Title 40 of the Code of Federal Regulations, Parts 136 or 141, or in EPA Publication, SW-846, 3rd edition, September, 1986. ND(), where noted, indicates none detected with the detection limit in parentheses. Samples will be retained for thirty days unless otherwise notified.

ENTAL ANALYTICAL SERVICES, INC. . Bare Clifford J. Baker 04 Glendale Road • Salina, Kansas 67401-6675 Labgratory pirector 913-827-1273 • 800-535-3076 • FAX 913-823-7830

Page: 3

(

Continental Analytical SERVICES, INC

Client: Louis Berger and Associates, Inc. Date Sample Rptd: Attn: Susan Knauf 08/22/94 Date Sample Recd: 100 Halsted Street 08/20/94 CAS File No: 94-6151 East Orange, NJ 07019 CAS Order No: 24399 Client P.O.: Proj: JG1073

Lab Number: 94081717 Sample Description: DCF Outflow

Date Sampled: 08/20/94 Time Sampled: 1555

N				Dat i	
Analysis	Concentration	Units	·	Date	
		011103		Analyzed	Book/Page
EPA Method 8010	· ·				
1,1,1,2-Tetrachloroethane	ND(0.2)			08/21/94	1
1,1,1-Trichloroethane	ND(0.2)	µg/L			1765/23
1,1,2,2-Tetrachloroethane	ND (0.2)	µg/L			1766/23
1,1,2-Trichloroethane	ND(0.2)	µg/L		· ·	1766/23
1,1-Dichloroethane	ND (0.2)	µg/L			1766/23
1,1-Dichloroethene	ND(0.2)	µg/L			1766/23
1,2,3-Trichloropropane	ND(0.2)	µg/L	·		1766/23
1,2-Dichlorobenzene	ND(0.2)	µg/L			1766/23
1,2-Dichloroethane	ND(0.2)	µg/L			1766/23
1,2-Dichloropropane	ND(0.2)	µg/L			1766/23
1,3-Dichlorobenzene	ND(0.2)	µg/L			1766/23
1,4-Dichlorobenzene	ND(0.2)	µg/L			
2-Chlemethul i lei	ND(0.2)	µg/L			1766/23
2-Chloroethylvinyl Ether	ND(0.2)	µg/L			1766/23
Benzyl Chloride	ND(0.2)	µg/L			1766/23
Bromobenzene	ND(0.2)	µg/L			1766/23
Bromodichloromethane	ND(0.2)	µg/L			1766/23
Bromoform	ND(0.2)	μg/L			1766/23
Bromomethane	ND (0.2)	µg/L			1766/23
Carbon Tetrachloride	ND(0.2)	μg/L			1766/23
Chlorobenzene	ND(0.2)				1766/23
Chloroethane	ND(0.2)	µg/L			1766/23
Chloroform	ND (0.2)	µg/L			1766/23
Chloromethane	ND(0.2)	µg/L			1766/23
cis-1,2-Dichloroethene	ND(0.2)	μg/L			1766/23
cis-1,3-Dichloropropene	ND(0.2)	µg/L			1766/23
Dibromochloromethane	ND(0.2)	µg/L			1766/23
Dibromomethane	ND (0.2)	µg/L		· · ·	1766/23
Dichlorodifluoromethane	ND(0.2)	µg/L			1766/23
Methylene Chloride	ND(0.2)	µg/L		•	1766/23
Tetrachloroethene	ND(0.2)	µg/L			1766/23
trans-1,2-Dichloroethene	ND(0.2)	µg/L			1766/23
trans-1,3-Dichloropropene	ND(0.2)	µg/L		_	1766/23
Trichloroethene	ND(0.2)	µg/L		•	1766/23
Trichlorofluoromethane	ND(0.2)	µg/L			1766/23
Vinyl Chloride	ND(0.2)	µg/L			1766/23
ATHAT CUTOLIGE	ND(0.2)	µg/L			
					1766/23
Analyzic	Date			,	

Analysis

	Prepared	<u>QC Batch</u>	Analyst	Analytical Method
EPA Method 8010	NA	1GC3232	DKT	8010

Laboratory analyses were performed on samples utilizing procedures published in Title 40 of the Code of Federal Regulations, Parts 136 or 141, or in EPA Publication, SW-846, 3rd edition, September, 1986. ND(), where noted, indicates none detected with the detection limit in parentheses. Samples will be retained for thirty days unless otherwise notified.

CONTINENTAL AMALYTICAL SERVICES, INC. Bakh CITE Baker Director Glendale Road • Salina, Kansas 67401-6675

913-827-1273 • 800-535-3076 • FAX 913-823-7830

Page:

Continental Analytical SERVICES, INC.

Page: Client: Louis Berger and Associates, Inc. Date Sample Rptd: Attn: Susan Knauf 08/22/94 Date Sample Recd: 100 Halsted Street 08/20/94 CAS File No: 94-6151 East Orange, NJ 07019 CAS Order No: 24399 Client P.O.: Proj:JG1073

Lab Number: 94081718 Sample Description: DCF Tank

Date Sampled: 08/20/94 Time Sampled: 1559

5

Analysis	<u>Concentration</u>		Date
	concentration	Units	Analyzed Book/Page
EPA Method 8010	•	•	
1,1,1,2-Tetrachloroethane	ND(0.2)		08/21/94 /
1,1,1-Trichloroethane	ND(0.2)	µg/L	1766/23
1,1,2,2-Tetrachloroethane	ND(0.2)	µg/L	1766/23
1,1,2-Trichloroethane	ND(0.2)	µg/L	1766/23
1,1-Dichloroethane	ND(0.2)	µg/L	1766/23
1,1-Dichloroethene	ND (0.2)	µg/L	1766/23
1,2,3-Trichloropropane		µg/L	1766/23
1,2-Dichlorobenzene	ND (0.2)	µg/L	1766/23
1,2-Dichloroethane	ND (0.2)	µg/L	1766/23
1,2-Dichloropropane	ND (0.2)	µg/L	1766/23
1,3-Dichlorobenzene	ND (0.2)	µg/L	1766/23
1,4-Dichlorobenzene	ND (0.2)	µg/L	1766/23
2-Chloroethylvinyl Ether	ND (0.2)	µg/L	.1766/23
Benzyl Chloride	ND (0.2)	µg/L	1766/23
Bromobenzene	ND(0.2)	µg/L	1766/23
Bromodichloromethane	ND(0.2)	µg/L	1766/23
Bromoform	ND(0.2)	µg/L	1766/23
Bromomethane	ND(0.2)	µg/L	1766/23
Carbon Tetrachloride	ND(0.2)	µg/L	1766/23
Chlorobenzene	ND(0.2)	µg/L	1766/23
Chloroethane	ND(0.2)	µg/L	1766/23
Chloroform	ND(0.2)	µg/L .	1766/23
Chloromethane	ND(0.2)	µg/L	1766/23
cis-1,2-Dichloroethene	ND(0.2)	µg/L	1766/23
cis-1,3-Dichloropropene	ND(0.2)	µg/L	1766/23
Dibromochloromethane	ND(0.2)	µg/L	1766/23
Dibromomethane	ND(0.2)	µg/L	1766/23
Dichlorodifluoromethane	ND(0.2)	µg/L	1766/23
Methylene Chloride	ND(0.2)	µg/L .	1766/23
Tetrachloroethene	ND(0.2)	μg/L	1766/23
trans-1,2-Dichloroethene	ND(0.2)	µg/L	1766/23
trans-1,3-Dichloropropene	ND(0.2)	μġ/L	1766/23
Trichloroethene	ND(0.2)	µg/L	1766/23
Trichlorofluoromethane	ND(0.2)	µg/L	1766/23
Vinyl Chloride	ND(0.2)	µg/L	1766/23
	ND(0.2)	µg/L	1766/23
			1/00/23

Analysis	Date			
	 Prepared	QC Batch	Analyst	Analytical Method
EPA Method 8010	NA	1GC3232	האת	8010

Laboratory analyses were performed on samples utilizing procedures published in Title 40 of the Code of Federal Regulations, Parts 136 or 141, or in EPA Publication, SW-846, 3rd edition, September, 1986. ND(), where noted, indicates none detected with the detection limit in parentheses. Samples will be retained for thirty days unless otherwise notified.

CONTINENTAL ANALYTICAL SERVICES, INC.

Bang

Baker, Pirector Glendale Road • Salina, Kansas 67401-6675 913-827-1273 · 800-535-3076 · FAX 913-823-7830

8

·							a	110	64				BT _/L	Qu)				NGE W	-8					
A VAC PROJECT # 24	-00	50	-		04	יזב" ד1	-8/ WOL]	17/	71	CHOICLE	12-0CE	ANALY	81 <u>//</u> <u>&eu </u>	• 1	FC4			OTHER	TOTAL	ROW	MATE			 TO
SAMPLE	TD4E	HOURS	440	now	TELP	сн	619		The		lige		- 401	104				- 191	<u></u>	Dates	{ # 254 y)	C	OMMENT	18
ter Black							1000		0945	-	-					1,24	=			· · · ·				
fer Blank						2	1000		0945	_	-	-				0.728								
21. Check						14	100		1024	R	展	(- ·]	A I		-15	RA	17	F	$\neg \neg$	·				· ·
ol. Check						2	061		1024		<u> </u>	\geq		100	200	110	1-0		1773					
21. Check							160		1048			229	269	155		147	<u>250</u> 254	X	1730					
21. Check				 		2	100			235			262	150	243	172	19 I	<u>~</u>	-0-					
	0840		ļ	 			1000		1104		-								88,8		<u>├</u>			
	0835		 	 		2	1000		1105			(-	2.88		85.9	·	-0-		<u>├</u> ──┤			
	0835		ļ	<u> </u>		μ	1000		1124		~	(1			\$	8				
2° outlet	0835		ļ			2	1000		1125	-							2	<u></u>	9.05	5	+			
Enlet Dur	0935	<u> </u>	ļ	ļ	ļ	1	(100)	<u>}</u>	(143	-		-	· ~			(9.05	f	1000	<u> </u>				
Enlet Dup Rep	0835		<u> </u>	<u> </u>	<u> </u>	2	(00)	<u> </u>	1143	~	<u> </u>		-	~		(7.97		7.97		+		<u></u>	
Enlet	1015		1	ļ	<u> </u>	11	1000	ļ	1201		<u> </u> −				2.49		87.6		90.1	 	╂╾╼─	<u> </u>	······	_
10 outlet	1015			<u> </u>		2	1000	ļ	1201		1-	<u> </u>		<u> </u>	-		~		0		+	 		•
2° outlet	1015		· ·			1	1000		1303	-	1-			<u> </u>		1	<u> </u>	<u> </u>		 		<u> </u>		-
talet spike	1012					2	100	·	1304	245	240		2.84	165	282	169	342		1967		+	╂		
Inlet sake	13					1	B	<u> </u>	1357	250	239	243	293	167	278	165		<u> </u>	1936	<u> </u>	+			
Enlet	1155					2	1000	1	1357	-	<u> </u> -			-	2.11	-	80.9		83,0		+			 · .
&T check	1430			1		$\downarrow L$	1000	ļ	1930	<u> </u>	1	<u>}{</u>	Ŧ	I-P)	RE	<u> </u>	<u></u>				+	<u></u>	 ,
RTcheck	473+					2	1000	<u> </u>	1431	1 -	<u>‡ ~</u>	1`	<u> </u>	<u>† "</u>	1				+ ·				<u>,</u>	
1° out	155				1	\perp	1000	1	1459	-	<u> -</u>	1-	1-		1-				10	1		+		
2°out	1155	1			1	2	1000	·	1500		-	1	1-	=			-		0			+		
Inlet	1400					1	1000	<u>></u>	1517		1-		9,06		2:03	-	75.2	- <u> </u>	862			+		
1°out	1400	>				2	1001	<u></u>	1277	1-		l'a	<u> </u> -	1-	1-	<u> </u> ˆ	<u> </u>		-0-			+		
2°out .	1400	1				1	1000	<u></u>	1535		1-	1	1-	1-	-	1			-0			+		
2°ont. Inlet	1530					1	1000		1643			1			1.62	<u> </u>	69.0		70,6			+		
1º out	1530						1000		161					1-	1-	<u>↓</u>	1		- Levense			4		
2°out	1530				:	2	1000	2	163	! -	-	-	-	-	-	-	1~		0	-				
ET	1695					+	100-0		1719			-		=	1-	-	-		0	-				
Inlet	1635					_	1000	_	1720	1	-	-	-	-	1.33		71.0	1	72.3					
l'ont	1635						1000		1736		-	-	-	-	-		-		-0-	·			<u></u>	
1 001	100					-+-									1	-t	1	4	-0-	1			•	

HUb 22 U 4

......

PAGE W-9

		~~					0	bol	1916				°87	154	J	: •	P	AGE_U	1-9			
ERRA VAC PROJECT + 24-	-005		-		DA	.TE _	- <u>8/</u> -	1001	/ 	0420.1	\$12 DCE	120110			RE	TT	rce	OTHAN	TOTAL	FLOW	MITE	COMMENTS
SAMPLE	THE	HOUNE	V.40	PLOW.	1111	он	80	,	THE		4	-01		<u>اور</u>	FgA	ugit		~ 1	- ugl	(mitra)	. (#>++y]	40°C isothanal
Water Black						$\overline{\Pi}$	1000		1023	_		-				0.808	_		0.808			Into c D= 60°C
Water Blank		 				2	1000		1024		~				-	0.856			0.856			
std						1	100		1115	ρ	C	CA	-4	16	RA	7	\overline{C}	\mathcal{D}^{\cdot}				change in conditions
sta						2	100		1116		1-	\geq /	`	P				[And the second sec
C31						1	100		/139	209	202		260	142	222						<u> </u>	RECAL
Cal						2	100		1140		211		254	147	236	139	242					
Cal						1	100		1201	239	215	228	252	151	241	143	243		<u> </u>	<u> </u>	┼	?
Calv			Τ	-		2	100		1202	-	_	~	5	-		1.17	-	k	<u> </u>	 		
C_2						1	100		1341	201	200	201	(197)	132	222	(IS)	212	ľ	<u> </u>	{		new std RECAL
Cal						2	100		1341	201	192	197	203	(128)	20	KUP	204	<u>}</u>		 		now std
calv	1				1	1,	100		1400	201	189	(93)	(194)	(129	203	KIOP	(187	1				
Cal V						2	100		1400	198	180	190	(196)	(12)	(189	(15.7)	1697]	<u> </u>	<u> </u>		
C21 V						i	100		1422	238	248	217	269	148	240		242	<u>{</u>				Alew Septa
Cal V						2	100		1422	235	198	213	251	140	214	120	605	1	<u></u>	 		
$C_{a}(v)$	+					1	100		1532		\mathbb{Y}_{-}	EC	<u>14</u>	1	1	RK	IA-	F	P		13	12:40°C
				1	1-	2	100		1502		$\backslash l$	+	121	4	117	pr>			1	1	<u> </u>	
	+-		1		1	1,	100		1527	245	231	236	281	160	261	151	266		1832	<u> </u>		I-AK
C_{i}	+					2	100	1	1522	2.39	224	236	259	158	257	151	270		1197			
Inlet	0835	<u> </u>	1		1	1,	1000		154	290	X	-	-	<u> </u>	204		48.6		50.7			· · ·
Inlet Rep	0835	1				12	1000	,	1540	1	710	~		-	2.60	2-	53.1		85.8	Ł		
1° out	0835	1	+	1	-	Ţ	1000		1601	-	\sim	-	-		<u> -</u>	0.23	4-		0,231	the second se	-	
2° out	0835		+	1	-	2	(001		1602		-		-	-	-				-0			
Inlet	1010		1-			Ī	100		1619		-	-		-	1.48	! ~	53.5	1	55.0			
I ant	1010			-	-	6	1	_	162		-	-	-		<u> </u>	1	<u> -</u>		-0-			
ET	155	1			+	Ţ,	100	- T	163		-	-	-	-					D	·	_	-
	1550		-	+		12			163		-	-	-	-	-	-		·	4	1		
the second se			╉	+-	- -	1,	100	_	165		1-	-	~	-	-		-		0	1		
2° out	1019	1	1	_	_		Trow	<u> </u>	-10.2	<u> </u>		-		_								

892 P85 AUG 22 194 - 11:02 TERRA VAC PROJECT + 24-0050

DATE 8/20/94 (cont) ANALYST ASW

PAGE W-10

		Lin ar	<u> </u>	1	1	—	VOL	ANAL	-	0402	41200	+14004	Labore				•		-			
SAMPLE	THE	ROUNS	740	now	TOP	CH			The	ugt	- 100		લાસ્ટા		TOE		PCA	OTHER	TOTAL	NOW	RATE	T
Inlet	1210					1	1000		165	-					101	trot			100	(1110)	(d March	COMMENTS
10 out	120		1	<u> </u>		1,	1000		1714				-		1/101		0241		63.2	;	<u>{</u>	
20 mit	1210		1	1	<u> </u>		1000			-		<u> </u>			<u> </u>		<u> </u>		0	 	<u> </u>	
Inlet	1405					1		<u></u>	1715	-	f	1-	1		+	<u> </u>	1	ļ	Ð	Į		
Inlet Dup						T.	1000		1131		-		1-		free	1-	58.8		59,8	·	<u> </u>	
1°out	1405					12	1000		1132				<u> </u>	1	1.19	-	70.5		71.7	Í		
2° out	1405		<u> </u>			4	600		1718	-		<u> </u>	-			1			Ð			
	1405					2	1000	÷	1749	-		-	-	<u> </u>		-	-		-0-	1		
Inlet	1950				· · ·	4	1000		1804	-		-	-		1.05	~	55.0		56.0			
1º out	1550					2	1000		1805	~	-	~	-	~	-	~	-		Ð	·		
Inlet Spike Inlet spike Rep	13743					L	1000		1820	224	224	228	212	142	234	117	213		1594	·		
Inlet Spike Rep	100					2	1000		1820	222			224		238		223		1618			
														<u></u>	-20	1-1	-22		1010			
			· .								·											· · · · · · · · · · · · · · · · · · ·
-				.					<u> </u>												<u> </u>	
						-																
· · · · · · · · · · · · · · · · · · ·		<u></u>			}	-+																
			~		{	-+	{-															
					{	-		{														
						-				∦												
						-		<u></u>														· · · · · · · · · · · · · · · · · · ·
	~					-				· ·												
						_				1												
······										.	T	•						-+		+		
						Τ					·											·
						Τ					+											
						1					.		<u> </u>							-, -		
												1			1			1	. 8	1		

DA1101 7	1	Libert		T i		VOL		-	CHOCU	12006			<u>MSU</u>	tre	- 	PCI	OTHER	<u>1-11</u>	NON	MITE	· · · · · · · · · · · · · · · · · · ·
SAMPLE	THE	2001,945	VAC	now	m	CH 149	16 3 19 19 19 19 19 19 19 19 19 19 19 19 19	Tric		100	191	. 654	901	806	Lugel	- 44.1	-04	- MA	D-strat	(PANAU)	COMMENTS
Jater Black	+			ļ		1 100	_	0821	-	-	1-	-	-	-	0.294	-		0.294	Î		
Jeter Blank						2/100	0	0827	-	 :	<u> </u>	-	-	-	0.288	-		0.288		· · ·	
Cal						1 110	-	0929	229	247		226	153	264	130	242					D_{1}/T_{1}
$C_2/$					· · ·	2/100	2		224			284	154	266	1182	251					Bed Inject
(2)						1 100	<u>></u>	0950	272	702	282	316	(199)	360)	(199)	4/2		2342			
C2 V						2 100		0950	268	298	270)	335	196	356	(194)	396)		23/2			
C21 V						1 100	>	1017		284		307		322	174	318		2130			0001
Cr(V						2 100		1017	214			316)			188			2246			RECAL
Colv		· .				1 100	1				217			234	- T-	239		2276			
<u>czl /</u>						2 100		1043			219					277					ليمهر
Std & 25°c						1 100	1	1153	0	0		200	171	222	141.0	2.20					,
sta @ 25°C						2/00	+	1157	R	E	-E	42	- (- A	S (K	-A-	77					new std /new ty
Call	1					100				001		- / //									new sta / new 124
Colv	††-					-			227	226	228	264	157	259	150	276		<u>1189</u>			· · · ·
-1.t-	0810					4		1400			227	265	156			278		1791			
alet Dup	0810				[1000		1429						1.37		86.0		87.4			
10 +						1000		1430		<u> </u>				-4		82.2		82.2			· · · · · · · · · · · · · · · · · · ·
2° out	0810				- ¹	1000		1449		-					-		ľ	A.			
nlet			-+		2			HSO				_			~	-		Ð			· · ·
1° out	1010	<u> </u> -				1000	1	<u>1506</u>	\leq	-	-			121		73.2	· ·	14.4			
2° out	1010	<u> </u>				1000		1507			-	_	~	-		-		Ð			ter and the second s
	1010				/	1000		1523		_		-	-		-			0			· · · ·
mlet	1210			<u> </u>	2	1000		1523		-		-	-	6	-	49.6	4	49.6			**************************************
o out	1210			<u> </u>		1000		15-18	~		-	~	~	~		0		0-1			
o out	1210			<u> </u>	2	1000		1541	\sim	-	·~	-	-	~		0		0			•
nlet	1410				_11	1000		1602	~	-	~	-1	~	-		39.9		39,9			
0 ×	1410				2	1000		1603	-	-	~	-	_		- 1	<u> </u>		Ð			
e out	1410	_ 1				1000	_	1619			-			-		<u> </u>		0 0			

11:00

AUG 22 194

892 P03

.....

8AMPLE	1	Ger	<u> </u>	T	T	Π	VOL	~	-	Crisci I	11200	- +1300	660	1 -	TCE	-	1 701	075426	W-12		1				
ET	THE	NOUNS	VA0	now	TOLE	7			7808	لو،		101	U _W 1		1.00 F	Line	808	uga	- 100 M	(marco)	MIE (1)4.1		сомм	IENTS	. '
<u> </u>	1600			 		14	1000		1638		1-		-	-					-0-	Î					
2° art Inlet	1600	·	<u> </u>	<u> </u>	 	2	1000		1639	-	-	-	-	-	~	-	-		-0-	1		+		<u> </u>	
Inlei	1600		<u> </u>	<u> </u>		1	1000		1639 1656	~ :	-	-	~	-	_	~	4816		48.6	<u> </u>		+			
1º out	1600		L	<u> </u>		2	1000		-	-	-	~	-	-					-0-		+	+			
let pip Spike pike Rep	0810 1419 0910 141					11	100		1113	248	243	251	283	172	285	172	308		1969			+			
pike Rop	0810						100					752	070	1-2	205	168	208					┿	<u> </u>		
									1113		1220	DJ.	1211	170	215	168	300	· · · · ·	1930				<u></u>		
											╢────		·									<u> </u>	_		
											∦														
······	┼──┼										 	ļ								•					-
	┟╾╍╌┠					-							· ·										· · · · · · · · · · · · · · · · · · ·		
······································			·			_												·····				<u> </u>	*******		
						+			·		┝───			· · · ·										<u>`</u>	<u>.</u>
•									·····	·												1			
······································						+													ļ						
																	T							<u> </u>	
																									•
~~~~		·						T								+		{			+			<del>~</del>	
				T		Т								{				<u></u> {							
											┝ <b>╌</b> ─┤					╼┯╍╂		<u> </u>						·	
•						-{-										<del></del>									
				-+		+		{-	{	·	{														
· · · · · · · · · · · · · · · · · · ·				{-													<u> </u>					_			7
		~	╾┤╴							<u> </u>															
		{-										<u> </u>					· .							·	-
											· · · · ·	·													-1
						-																****************	· <u> </u>		-
				<u> </u>								. [												·····	-1
										H												<u> </u>	<u> </u>		4
											·														
. 4																									
					· •					•															
																	· .						•	· · ·	
			•	-							· .			•		· .						,	• •		
•																				· .	:	2			
																		•		· .					
•									1																

ć 100

# Attachment C List of On-site GC and Associated Equipment

## GC Model

### Shimadzu GC-9A

## Equipment

Pre-marked 40 milliliter vials 10 microliter liquid syringes 1000 microliter gas-tight syringes Blank water Neat standards of compounds of interest Gas chromatograph equipped with flame ionization detector Wide-bore capillary column Integrator

# Attachment D GC Quantification Limits for Selected Target VOCs

### FIELD GC QUANTIFICATION LIMITS DCF FACILITY PILOT TEST STUDY

COMPOUNDS	SOIL HEADSPACE DETECTION LIMIT (ug/l)	WATER HEADSPACE DETECTION LIMITS (ug/l)
		· · · · · · · · · · · · · · · · · · ·
Methylene Chloride	0.83	9.60
Trans-1,2-Dichloroethene	0.43	1.47
Cis-1,2-Dichloroethene	0.45	3.45
1,1,1-Trichloroethane	0.68	1.36
Chloroform	1.04	7.46
Benzene	0.12	0.63
Tricholoroethene (TCE)	0.57	1.97
Toluene	0.13	0.69
Tetrachloroethylene (PCE)	0.77	2.00

Note: Values indicated are for guidance purpose due to potentially indefinite field interferences.

DLM_GC3.XLS

# Attachment E **Static Head Space Methodology**

#### TERRA VAC CORPORATION STANDARD OPERATING PROCEDURE FIELD SCREENING WATER ANALYSIS BY THE STATIC HEADSPACE METHOD

#### Theory of Method

The partition of slightly soluble compounds in water between the liquid and vapor phases is well established. The static Headspace Method takes advantage of this partition to increase the sensitivity of field analysis of slightly soluble compounds in water.

Direct injection of water into a wide-bore capillary column is limited to 2 microliters. The same column can accept 1000 microliters of vapor. If the partition coefficient of a compound is less than 500 the resulting mass injected will be greater for 1000 microliters of vapor. The partition coefficient of the chlorinated hydrocarbons and aromatic hydrocarbons usually encountered in field analysis are significantly lower than 500.

#### Equipment

Premarked 40 milliliter vials 10 microliter liquid syringes 1000 microliter gas-tight syringes Blank water Neat standards of compounds of interest Gas chromatograph equipped with flame ionization detector Wide-bore capillary column Integrator

#### Procedure

A premarked 40 milliliter vial is filled to the mark with Blank Water, capped and allowed to equilibrate at constant temperature for at least 30 minutes. An aliquot of the headspace is withdrawn with a gas-tight syringe and injected onto the GC column. The Blank Water is then spiked with a neat standard mix of the compounds of interest. After at least 30 minutes of equilibration at constant temperature, an aliquot of the spiked water headspace is withdrawn with a gas-tight syringe and injected onto the GC column. A response factor is calculated for each compound and stored in the memory of the integrator.

Water samples are collected to the same volume mark, capped and allowed to equilibrate at least 30 minutes at constant temperature. A 1000 microliter aliquot of the sample headspace is withdrawn with a gas-tight syringe and injected onto the GC column. Peaks are identified and quantified by the integrator.

# Static Headspace Method (SHM)

The SHM for soil analysis is based on EPA Methods 5030, 8015, and 8020, from SW-846. In these methodologies, samples are Direct injection of the sample into the chromatographic system is cuitable for concentrations of VOCs greater than 1 ppm. As cleanup sites, we have opted for the direct injection approach. Since the concentrations of a VOC in the vapor and aqueous phases that either the vapor or aqueous phases can be injected to obtain of environmentally important VOCs between aqueous and vapor phases are well established and therefore points toward water as

The sensitivity of the chromatographic response to the vapor or liquid phases is governed by the following equation, where 'a' represents the ratio of the quantities of a substance introduced into the chromatograph:

_	хđ
a	 
	vl*(K + Va/Vl)

(equation 1)

where:

AT =	volume of gas injected volume of liquid injected partition coefficient
	(reciprocal of Henry's Constant) ratio of volumes of headspace to the aqueous phase

Since the limiting volumes of the liquid introduced into our magabore is on the order of 1 ul, and the limiting volume of the gas is about 1000 ul, the above equation becomes:

$$\frac{10 \exp 3}{(K + Va/V1)}$$
 (equation 2)

This relationship indicates that the gain in sensitivity of the analysis(a > 1.0) is attained when K < (10 exp3 - Va/V1) for average volumes of Va and V1 (typically Va/V1 is less than 10). (-) The VOCs to be analyzed at Sites have K's in the 4 to 50 range, therefore the above equation indicates a considerable increase in sensitivity when the vapor is injected compared to the liquid. We therefore opt for direct injection of the vapor phase.

3)

Soil samples will be extracted with water and the VOC concentration calculated from known partition coefficients of the VOC's between the vapor and aqueous phases ;viz,

Mass in (Headspace + Water) Cs = -----Mass of soil

	Ch*Va + (Ch*V1)/Hc	
C\$. =	*******	(equation
	Ms	• • • • • •

Where Cs = concentration in soil sample (mg/Kg) Ch = concentration in headspace (mg/L) Va = Headspace Volume (L) V1 = Volume of Aqueous Phase (L) HC = Henry's Law Constant Ms = Mass of Soil Sample(Kg)

To minimize transfer and handling, the soil samples (10-15g)will be placed directly into the jars containing water (300 ml)at the time the split spoon is opened. Once soil samples are received at the field laboratory, the sample will be placed in a constant temperature bath held at  $20.0\pm0.1$  deg.C. The headspace will be sampled with a 1.0 ml gas-tight syringe and injected directly into the GC. The advantage of this approach is evident in the simplicity and lack of sample preparation steps during which contamination and/or analyte losses are known to occur with extraction and purge-and-trap procedures. Also this approach provides faster turnaround of results as well as more reliable and accurate data since samples are analyzed sooner than purge and trap methods.

The sensitivity (S) of the Static Headspace Method (SHM) is given by the following variant of equation 1:

 $S = \frac{d * Vi}{(K + Va/Vl)}$ 

(equation 4)

where:

d = chromatographic detector sensitivity Vi = Volume injected into Chromatograph Va/Vl = ratio of Volume of Headspace to the aqueous phase

By suitably adjusting the volume ratio, the injection size (100 to 1000 ul) and taking into account the approximate 50 fold increase in sensitivity of the PID over the FID, then according to the above equation, the SHM sensitivity can be adjusted to a factor of almost 1000 for any given analysis. The interaction of these three parameters provides a considerable amount of control over the analytical procedure. At values of Hc < 10exp-3, the sensitivity decreases and the usefulness of the SHM is questionable. The Hc's of the VOC's at this site are 10exp-2 or larger, well above this lower limit.

Example: Rochester Froject

The implications of Equation (1) relative to our work at

the Hc of the ketones and alcohol is about 0.001 and wa were limited to 0.141 fiquid injections. Therefore

 $a = 1000/(0.1(1000 + \sqrt{3}/\sqrt{1}))$ 

if Va/V1 z 1 then a = 10

In spite of the unfavorable Hc, if you can only shoot 0.1µl (instead of 1µl) then you are better off with the Headspace Method..

For VOC's less water  $= o_1^{1}$  'y than these the advantage of the HSM increases. For example, a 25 ppb sol'n of VCM (He = 1) give 170,000 area unit when 1000  $\mu$ l vapor is injected at range setting of 0. (Va/V1 = 0.16)

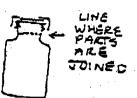
The treachery of dealing with Hc ( or Hv for Henry's variable) can be reduced by making a calibifation curve based on the equation :

PFM(sol'n) = CM(K + Va/V1)

- 3

which becomes, FFM(solin) = Gh*Kvoc or each VOC has its own Kvoc

when Va/V1 = constant


P. 05

The use of the Equation: PART 1

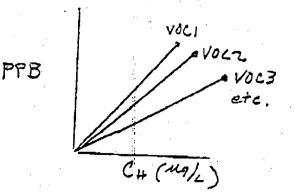
PPB = Ch * Kvoc (5)

Ch in ug/1 in the case

Equipment: A Mason Jar is filled with water to the point where the opening is sealed to the main body of the jar. This setup gives a Va = of 0.16.



Procedure: Shoot a 1 ml blank of the headspace, then add 1 ul of a mixture of ACE, DCM, 111-TCA, BEN, TCE, TOL, PCE, oXYL, mXYL, p-XYL and shake periodically over a one hour period. (Thermostat Jar at 20°C if possible). Shoot 1 ml of the Headspace; the data is shown below


		:			
	CONC	GC AREA (VOC)	GC AREA Blank	H/S CONC	Kvac
ACE DCM 111-TCA BEN TCE TOL PCE pm-XYL a-XYL	198 329 337 230 365 217 407 532 220	470 2057 15914 15381 9350 16480 17377 34971 11707	0 0 0 0 0 0 0 0 0	.37 29.62 213.2 48.57 144.05 59.62 307.82 163.36 53.01	535 11 1.58 4.53 2.53 3.64 1.32 3.26 3.29

NOTES:

CONC(PPB) is based on fact that each VOC is 10% of 1 ul sample added to the jar which contains ca. 400 ml water or 0.25 ul/l water. Therefore the CONC(PPB) is 0.25 * density of each VOC. GC AREA BLANK is zero in all cases so there is no need to correct the GC AREA(VOC). Kvoc. This slope is CONC(PPB)/H-S CONC

#### SUMMARY :

This simple experiment has given us 9 calibration curves which go thru the origin. While Hc is implicit in the constant, Kvoc no prior knowledge of it is necessary. If Hc's are available we can calculate Kvoc and use this theory value in Equation 5,





THE USE OF THE EQUATION:

## PART 2

PPB = Ch+Kvoc

# (Ch in ug/1)

"To do Headspace or not to do Headspace, or whether it is nobler to Purge and Trap, that is the Question"

Furthermore if you choose the Headspace Method, what ratio of air/water is the best. Do you half fill the jar or fill it almost to the top? There are limitations on how low a Ch value we can measure and still report our usual ±15% precision; at some point all we can say is "IT's THERE". We prefer a Ch above our Practical Quantification Limit (PQL), but this may not be achievable with some very soluble VOC's.

Let's assign a low value to PPB, say 20. Obviously, the product of Ch and Kvoc must equal 20 (no problem here). We have

	· .		The stand of the s	Bumb :
Ch		Kvoc		number of
	2	10.00	COMMENT	
	20		Ch too close to MDL	•
	200	1.00	'better	
		.10	DPef L.	

est. but is Kvoc = .1 practical?

Kvoc in turn is a function of Henry's constant and the air/water ratio(Va/Vw).

Kvoc = (1/Hc) + Va/Vw

We can use this equation to calculate a table of Kvoc's from a reasonable range of Hc (1 to .001) and Va/Vw (9 to .15):

<b>Ö</b> ~~		
7.00	1.50	.15
10.00 9.00 109.00 1009	2.50 11.50 101,50	1.15 10.15 100.15 1000.2
	9.00	10.00 2.50 9.00 11.50 09.00 101.50

To answer the original question; NO, a Kvoc = .1 is not practical.

Furthermore, if the solution contains a very sol'y VOC such as acetone (HC = .001) we a stuck with a Kvoc = 1000. If this same sol'n contains an ordinary VOC with an Hc between .1 and 1, then there is an advantage in choosing a Va/Vw = 0.15. This choice will give us a Ch some 2 to 10 times higher than the Va/Vw  $\doteq$  9 choice. (as mentioned earlier if we fill a mason jar up to the line on the neck we get Va/Vw  $\pm$  .15).

To translate all this stuff to GC AREA units we assume PPB = 2 Va/VW = .15, FID range=0, and a RES. Factor = 0.0026 (TCE, DCE, DCA, TCA)

Kvac	RF=.0026	AREA+ RF=.00065
1.15	3344.48	13378
10.15	378.93	1516
100.15	38.40	154
1000.15	3.95	15

+ based on 0.5 ml injection--double for 1.0ml. For the PID and iml shot mult by ca. 100

As a final step in this section, lets translate the 20 ppb to a soli concentration. Using the FID and 409 ml water we feel comfortable with 20 ppb; if the jar contains 20 g soil then the soil conc is

PPB(soil) = 20*V1/Kg soil = 20*0.409/.020 = 409

This is a very respectable level to operate at, compared to a lot of cleanup criteria, Also bear in mind that we can reduce our comfort zone to ca. Sppb with the PID. (See Example 4 ).

EXAMPLE 3: The HSM on soil using the PID. This example covers 2.527915 Sud Spike recovery.

CONDITIONS.

Temp 1 to H meyabore column, PID detector at range 1. Temp Bath =  $20 \circ C$ 

functio	SAMPLE ID	Va/V	CONC () MMA	ug/1) TOL	CONC ( pp MMA	WATER TÖL	deri MMA	red Kvoc TOL
BLANKS BLANKS CALIBRN CALIBRN ANALYSIS SPIKF ACCOURY		1.03 1.03 1.31	.04 1.19 1.20 1.77 1.77 2.26 3.65	0 .015 .780 .820 .41 .4 .17 1.1	205 205 325 321 % reg 86	7 50 7.59 3.89 3.80 3.80 50very 86	133 180	7.76 9.24
DATA	PPB of the	SOIL			3230	38,40		

NOTES: 2 1 ul tol, 25 ul mma in 10 ml mech - 20 ul this sol'n injected.

This is a simple straight forward example based on some real data. The intent here is to illustrate the possibilities and internal consistency of the HSM.

IEVUL ANA HIAMESI

Gas Chromatograph

Shimadzu GC-9A (GC-15A) GC Model

#### Associated Equipment

Shimadzu C-R 5A Integrator (CR 4A)Supelco SPB-1 Wide Bore Capillary Columns Zenith Supersport Laptop Computer Balston Zero Air Generator ( Speedaire Compressor and Tank Compressed Gas Cylinders and Regulators Syringes - Assorted Chemical Standards Glassware - Assorted Ford Van



#### Quality Control

A standard bulb blank will be analyzed daily to verify syringe and bulb cleanliness and to demonstrate that the analytical system is free of interferences. Duplicate samples will be collected at a minimum of once per day to establish the precision of the analytical methodology. Due to limitations of field analytical conditions, minimum quantification limits will be established in lieu of Method Detection Limits. Minimum Quantification Limits are established based upon each compound's detector response and a minimum peak area which is well above background noise levels.

APPENDIX C DRAFT TECHNICAL MEMORANDUM—EXTENDED SOIL VAPOR EXTRACTION SYSTEM PILOT STUDY

### DRAFT TECHNICAL MEMORANDUM DRY CLEANING FACILITY EXTENDED SOIL VAPOR EXTRACTION SYSTEM PILOT STUDY 8 FEBRUARY 1995

#### 1.0 Overview

Data from the 30 day Soil Vapor Extraction System (SVE) Pilot Study at Dry Cleaning Facilities (DCF), completed in December 1994, indicates that small amounts of volatile organic compounds (VOC's) were being extracted from the soils. The vapor extraction test will be extended for an additional 30 days in order to further evaluate the removal trend over time. Data from this extended study will used to evaluated whether the test should continue.

#### 2.0 Issue

The 30 day SVE extended pilot study will be performed in accordance with DCF Work Plan Pilot Test Study Dual Phase Extraction System dated June 17, 1994, with the following modifications:

- (1) Vapor treatment will not be necessary due to the GAC contaminant load rate of approximately 0.5 lbs/day achieved at the completion of the 30-day pilot study ending December 20, 1994. This level is below both KDHE hourly emission rate standard of 2.3 lbs./hr and the maximum daily rate of 55 lbs/day.
- (2) Vapor samples will be collected weekly and transported to a laboratory for VOC analysis.

#### 3.0 Proposed Action

Two vapor samples per week will be obtained from the DCF SVE system using the following materials:

Desiccator, Gas sampling Bags, Hand Pump, Tygon Tubing.

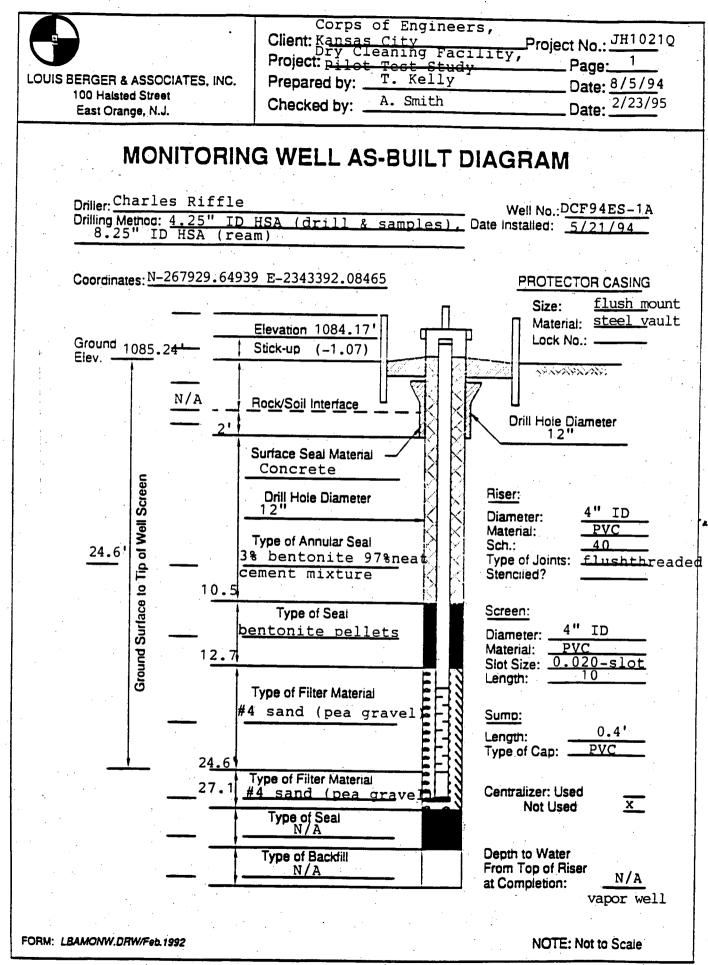
The sampling procedure and laboratory analyses are comparable to collection and sampling in original pilot study, and shall be conducted as described below:

Report vacuum level, temperature, and gaseous flow as read directly from gauges on manifold pipe. Attach desiccator/Gas sampling bag apparatus to pipe sampling location using Tygon tubing. Reduce vacuum in desiccator using hand pump. Gaseous flow will discharge into Gas sampling Bag as a result of vacuum differential. Increase and decrease vacuum in desiccator two times in order to purge bag. Upon completion of second purge, fill bag a third time and retain gaseous material in Gas sampling bag for transport to laboratory for analysis. Two samples shall be collected - one to be analyzed, and a second to be archived should 1st sample become damaged or lost in transport.

The sample shall be analyzed for VOC's in air (14 compounds) as per (1) Modified EPA SW-846 method using EPA 8010 and 8020, and (2) TPH-GRO in air using modified EPA 8015. Sample results shall be reported to LBA in 4 days.

sp 8 February 1995

Commander, Engineer District, Kansas City CEMRK-MD-H, Garth Anderson Kansas City, MO 64106
Katie Watson, Fort Riley - DEH
Susan Parslow, LBA
Fort Riley, Dry Cleaning Facility Draft Technical Memorandum - Extended Pilot Study
Jim Stamatis, LBA George Parris, LBA Susan Knauf, LBA Fred McCarthy, LBA


Enclosed please find the Technical Memorandum concerning sampling precedures and frequencis for analysis of VOC concentrations in extracted vapor for the 30-day Extended SVE Pilot Study at the Dry Cleaning Facility.

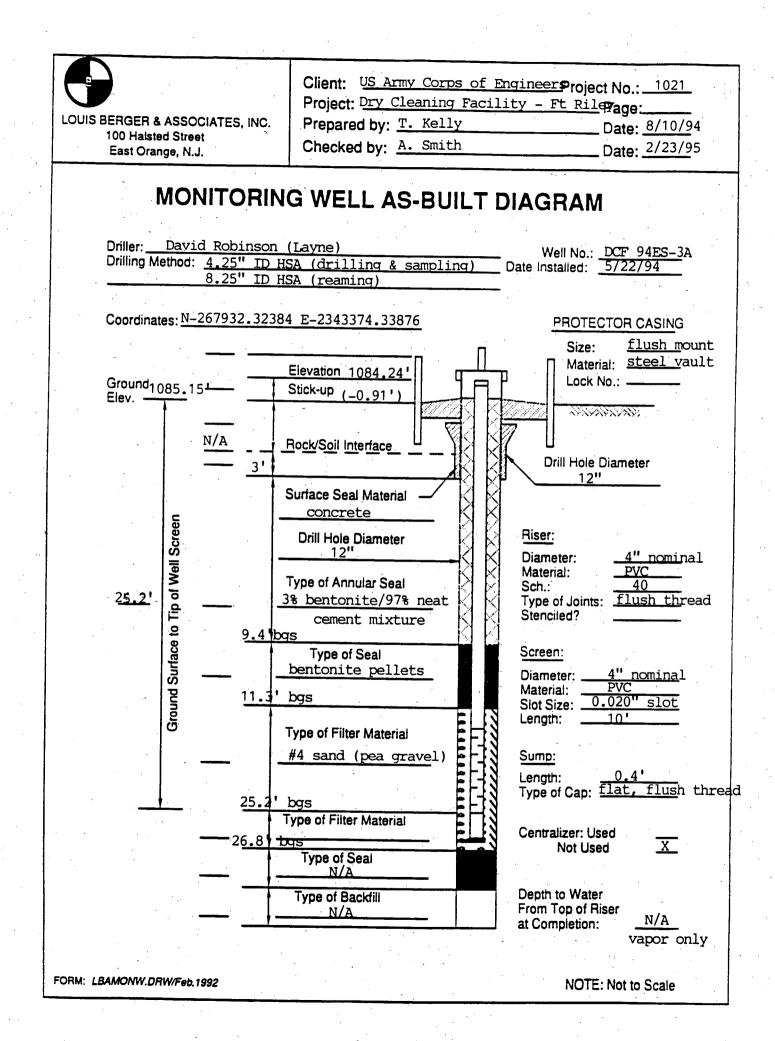
If you have any questions, please call me at (201)-678-1960, extension 467.

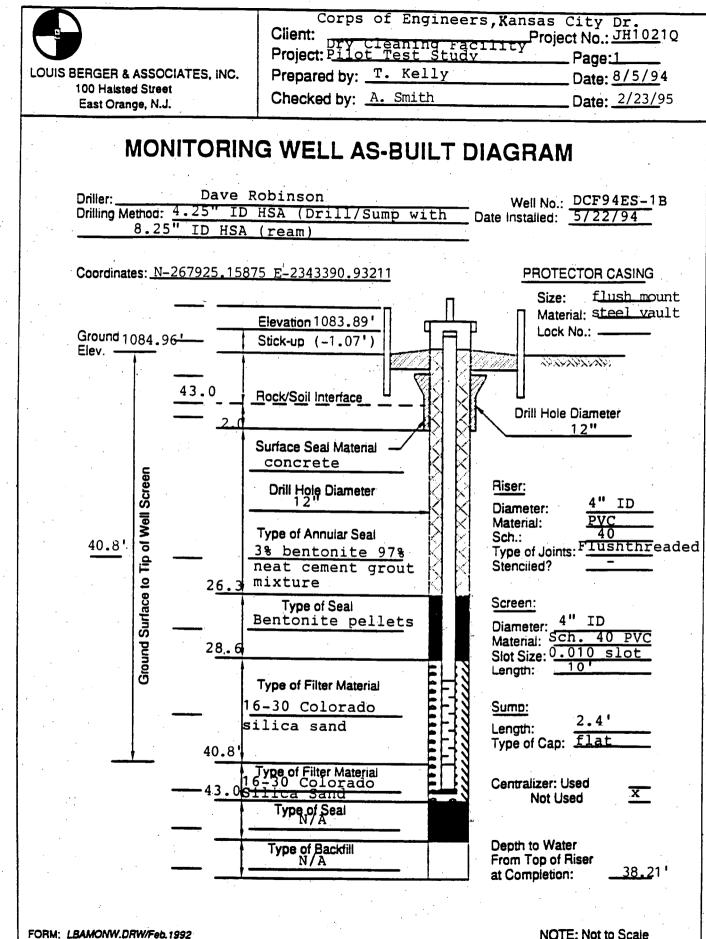
sp 8 February 1995

APPENDIX D

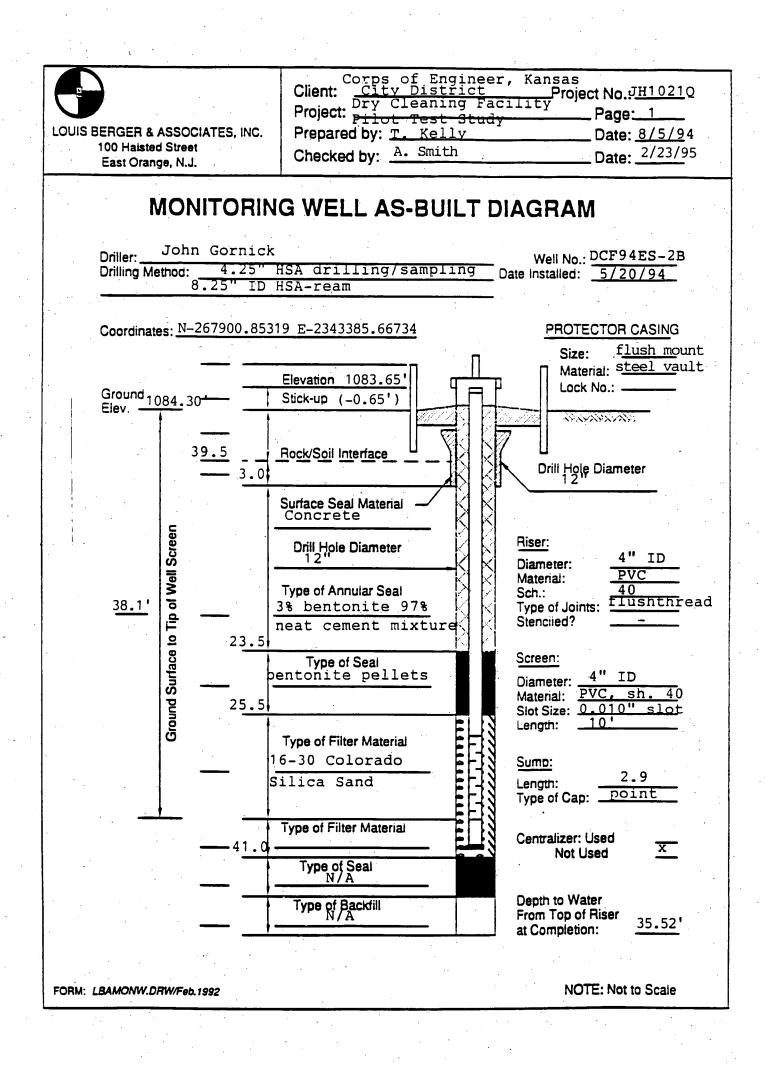
# APPENDIX D SOIL BORING LOGS AND AS-BUILT WELL CONSTRUCTION DETAILS

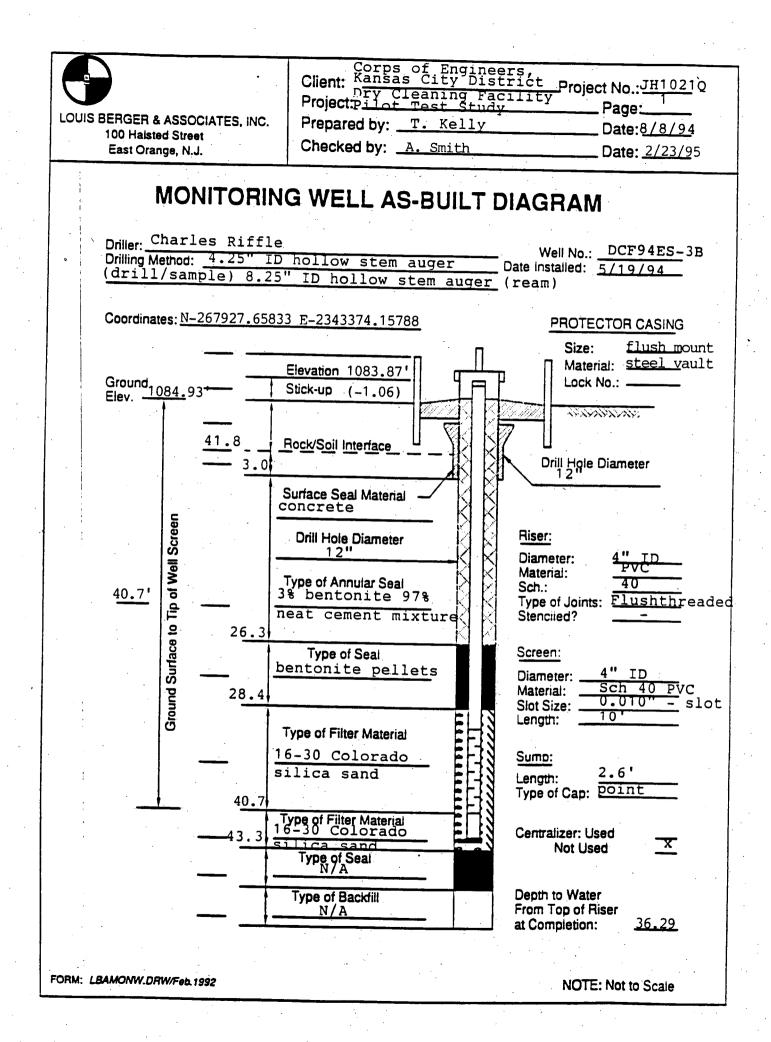


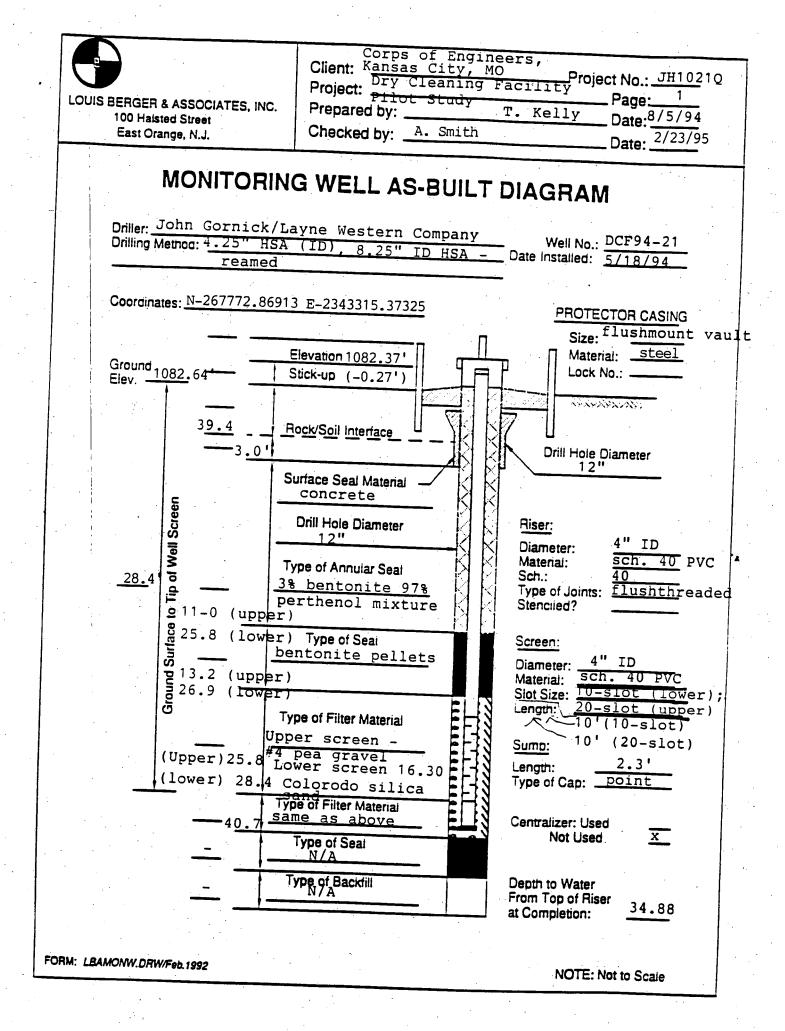

.


. . .

	OUIS BERGER & ASSOCIATES, INC. 100 Haisted Street East Orange, N.J.	Corps of Engineers, Client: Kansas City, District Project No.: JH10210 Project: Pilot Test Study Page: 1 Prepared by: T. Kelly Date: 8/8/94 Checked by: A. Smith Date: 2/23/95
	MONITORIN	G WELL AS-BUILT DIAGRAM
ر ، ،	Driller: Charles Riffle Drilling Method: <u>TK 8/2at</u>	Well No.: DCF94ES-2A 8.25" ID HSA Date Installed: 5/21/94
	Coordinates: <u>N-267896, 5954</u>	5 E-2343385.84587 PROTECTOR CASING
		Elevation 1083.76'     Size:     flush mour       Stick-up (-0.49')     Material:     steel vaul
	- 2.0	Rock/Soil Interface Drill Hole Diameter
		Drill Hole Diameter
		Type of Annular Seal     Material:     PVC       % bentonite 97%     Sch.:     40       % bentonite 97%     Type of Joints: Elushthrea       at cement grout     Stenciled?
		Type of Seal       Screen:         entonite pellets       Diameter:         /8"       PVC, sch 40         Slot Size:       0.020-slot         10       10
		Type of Filter Material 4 sand (pea gravel) - Sump: Length: 0.4
	2 <u>4.9</u> 	Type of Filter Material Type of Filter Material Type of Cap: <u>flat</u> Centralizer: Used Not Used <u>x</u>
		N/A     Depth to Water       Type of Backfill     Depth to Water       N/A     From Top of Riser       N/A     at Completion:       vapor well or
	RM: LBAMONW.DRW/Fed.1992	

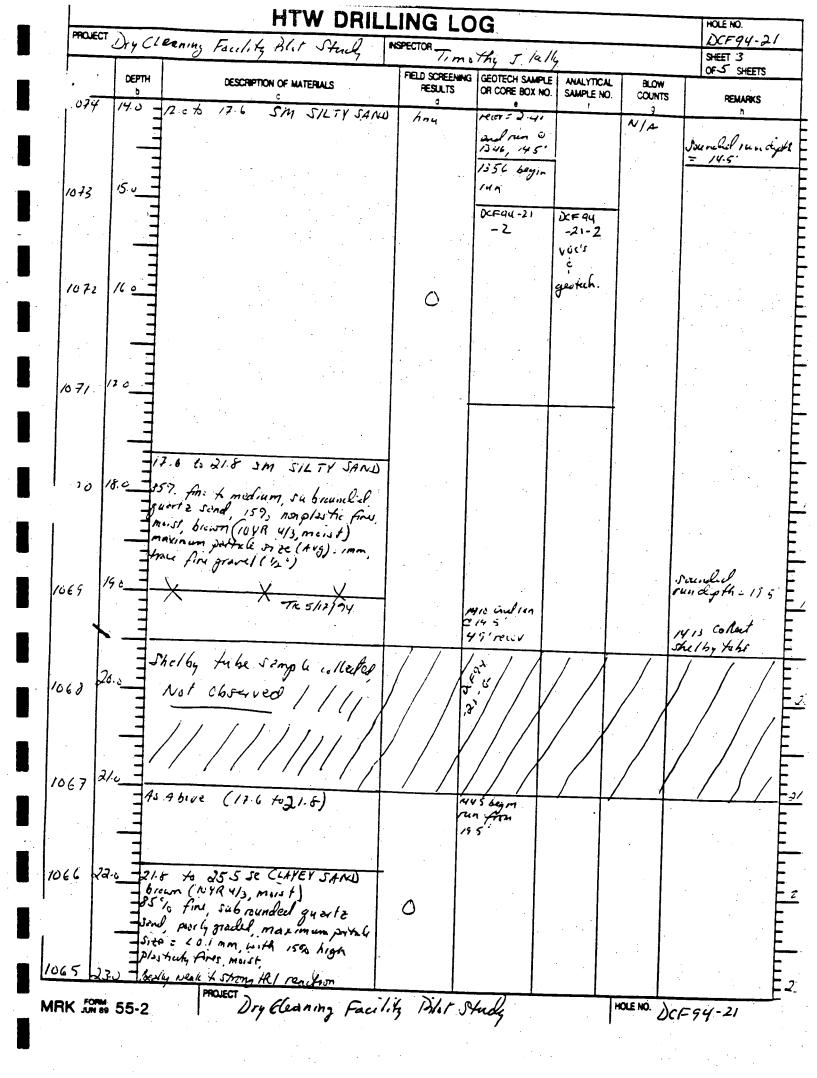

**)** •.


- .






NOTE: Not to Scale








	ANN	· · · · · ·			DRILL								-9421.
1 COMPANY NAME Louis Barger EAssoc., Inc 2. DRILLING						Kayne	West	Ern	Company	Inc.	SHE	SHEETS	
PROJE	<u></u> Dry Ca	Learing	Facility	I.			4. LOCAT	NON Fort	F R	iley, KS			
		John C					6. MANU		DESIGN	ATION OF DRILL	•		
	AND TYPES ( AMPLING EQ		425" I 3" OD (	D hellow	stem 24	94ri	100.4		11	crnwct beve men			f se
								STARTED			DATE CON	MPLETED	•
2 OVER	BURDEN THI	CKNESS _39.4	<u></u>	<u> </u>	`_ <u>.</u>		15 DEPT	H GROUNDW	ATER. EN		5/18/	94	
3 DEPTH					 · .		16 DEPT						•
4 TOTAL	L DEPTH OF						37 7 17 OTHE	6 BG	5a VEL ME/	Lay JI	<u>hr , 40</u> ECIFY	min	
8 GEOT	ECHNICAL S			OISTURBED	UND	ISTURBED			V/A		······	. <u></u>	
0 2010	155 509 011	EMICAL ANALYS		3	1	· ·				·	N/A		
		EMILAL ANALYS	EPA	-30 5290 21	META	LS	JTHER	ISPECIFY		HER SPECIFY	OTHER I	SPECIFY	21. TOTAL C RECOVE
	SITION OF H	·				S WELL	OTHER (SPECIFY)					111	1 4 6
	•	· .		<u>.</u>				yest /	A	en the	Fli	lly	
ELEV	СЕРТН		DESCRIPTION	OF MATERIALS		RESI	REENING JLTS	GEOTECH S. OR CORE BO		ANALYTICAL SAMPLE NO		Ĭ	REMARKS
cf7	/0-	657. fi Sand plastic glay(7 Medium 4//www.um	559. M Hy Fine 154R 31 to cian	ectium 5, very 9 1), moist	te les lork Lau	c			•	(1-2') ^C 1145		ID 4. august DD Gil Sampi Sampi Sal d	hours
) <b>8</b> (	·								-	2.0 · 1 DC F94- 21-1 Cycetich)		Sail System with Sail hnu r	classification, color munsell color cha color cha
85	30	3.2 70	45 TR -	117475	M				4	-		egu, va Zbove	as ppm limts (isol backgreu
		SILT 80% fin	y same	lum, suh	rounded			andrum			•		iso buty to
1084	ں 4 	fo high Coard g	11 Les/ Cz	city Anes	trau			4.5 ° @					the He te pict

HOLE NO. **HTW DRILLING LOG** DCF94-21 PROJECT NSPECTOR Timethy Dry Cleaning SHEET Z Pilot Stuck Faciliti J. Kelly OF.5 SHEETS FIELD SCREENING CEOTECH SAMPLE ANALYTICAL BLOW DEPTH DESCRIPTION OF MATERIALS RESULTS OR CORE BOX NO. SAMPLE NO. COUNTS REMARKS đ -53 50 47 to 6.9 SP POORLY -Nº /A 5 N/A hnu (His GRADED JAND this page 95% fine, sub rounded queste ð Sand, with 59. nm plastic 6.0 fines, must, grayish brown 1082 6. (2.54 5/2), Poorly graded 1 must man partsize = Allunum 7.0 6.9 to 9.8 SP DOORLY G -ED SAND WITH GRAVEL PCORLY GRAD 1051 75% fine, Subangaler, guarte sand with 209fire, lithic (ash /cinclers) sub ingular graves and 1080 non plastic fires menst, 5% dork gray ( 2 5 , 4/1) (most) Mostly poorly graded movement Perrich size = + 112 9.0 MICV = 2.5 Allusium '7 Trestal Sixended run i 11554-95 H = 9.5 TIC 5/17/94 1338 biyin 9.8 LO 10 7 Siv-SM WELL CRADED SAND WITH SILT AND GRAVEL RO ?. Fing to melium Sondf Cool, querte Cindurs) with 2000 fine lithic growel 107. ACA prostic finos, frau cobbus Notice provide for a fine of the growel 100 1078 0 dark reliand brown (SYR2512, monst) Fill moist, weak to no Multion, 1077 110 to id. OSC CLAYEY 10.7 JAND FILL + ALLUVIUM Sand Chief 1007 sond), 207 bis to meetium platticity fines must fine rectlets, weak to no Hil realtan Rutblack (7.5 YR 2.5/1, maist) 1076 12.0 to 17.6 IM SILTY SAND 65 % fire to malium, subrunled guartz Sand, 3500 non plushe 1075 130 fins, moist, very clark grayish brun (IVYR S/2, moist), roots 411uvium 167 ¥ Dry Cleaning Facility, Fort Riley, Pilot Stuck HOLE NO. DCF94-21 MRK 🔊 55-2



HOLE NO. HTW DRILLING LOG DCF94-21 PROJECT Dry Cleaning Facility Dilet Study INSPECTOR Timothy SHEET 4 J. K.K. OF 5 SHEETS FIELD SCREENING GEOTECH SAMPLE ANALYTICAL BLOW ٦Y DEPTH DESCRIPTION OF MATERIALS RESULTS OR CORE BOX NO. SAMPLE NO. COUNTS REMARKS ħ 230 - 21-5 to 255 SC CLAYEY SAND - 8590 Fin Sand, 1570 high 165 hnu N/A plaiticity finer news 2.6 <u>24 -</u> 1064 1454 end inn C J4.5' renchythant Runded 6 Midrum to Course, Tithin to quarte gravel begga in 1512 25.0 1063 ne dium to com find 255 to 275 SC CLAYEY SAND 26 - As Abive but finin . of 1" - Stringers of fine TA 5/17 1002 1062 fin & meelium send, string A4 0 reaction, moist trace correct 27.5 - gravel (chirt) TIC 5/17 27.5 to 30.8 SP POURLY CHADED S.+MD 294 95% fine & michium pourly 1060 280 gradiel subreunder quest ? Sand with 5% nonplastic tryin 201=35' fines, moist fine day to sill TIC 5/17 stringer of 30.5. 1655 290 end no co ind im @ sounded our 29 5 1517 dipth: -95 1545 Begin run 30.0 1058 Ω 31.0 - 30.5 to 31.2 'SP-SC POCRLY GRADED SAND WITH CLAY AND GRINEL 602 FIN & medium sond 1057 30% fine to corre gravel 10% medium to hugh plasticity fines bown (104R 4/3, meast) moist town (fire into bed) grading bimedal, pur HOLE NO. CF94-21 PROJECT Dry Cleaning Fourthy Rich Study MRK 50 55-2

**HTW DRILLING LOG** HOLE NO. DEF94-21 PROJECT Fort Rile, Dry Cleaning Facility P.S INSPECTOR . SHEET 5 J. KIL Timothe OF 5 SHEETS FIELD SCREENING GEOTECH SAMPLE ANALYTICAL BLOW DEPTH DESCRIPTION OF MATERIALS RESULTS OR CORE BOX NO. SAMPLE NO. COUNTS REMARKS đ •76 ħ 32.0 31.2 to 38.3 SW LELL-GRADED hny 2/4 10000 fine to medium. Sub rounded guartz Sand, with a trace of lithic grovel hight brownish gray (2546/2, wet to The of moist 655  $\mathcal{O}$ to wet no Hil reaction, hell gradid. 2.5 receiv 34.0 1054 34.4°@ 1550, Facult rend oth Pad run 1605 beginrun 16 30 TR SIT 350 1053 RT 18F94-21 dolling complete to 40.2' 5/14/94 0725 ream Scray-21 360 -2 from o' to 40.2 bolew grade with 12" any sis to allow for Constra Dim Wood black suger 37.0 1051 plug usel, .... 0 Kove @ 5 Hom of 4.6 1153 plug pushed up ~ 1.5' into 350 Sugers, Some out 10.50 KOV: w/ inner hit 2.3 complete hali to end run 38.3 to 394 ML SANDY əf 39.4 SILT, dark gray (N41, wet) 40.71 109 sapsel dilatancy, louplesticity up to 100 loughness, high dery strange 5 sport 1612hr 1049 39.0 TK yot they Fines with 2000 fins sand laminated Norny All reaction NE your 39.4 to 40.2 light a live gray belick verif-(54 6/2, moist) weathered shall 10 48 40.2 Icetun Mn tocally iron steined Dolleil Esophil cutting at observed Battom of hole med in hellow sta F. 25' ID Aufis 047410 PROJECT HOLE NO. DC1-94-21 By Chaing Fachty Rist Study MRK 55-2

			HTW	DRILL	ING L	OG	· ·		HOLE NO. DCF94F5-11			
1. COMPAN	Y NAME	Rama	É Asca-inter	2.	DRILLING SUBC	ONTRACTOR	Inda C		SHEET 1			
3. PROJECT	<u> </u>	10 Daryer	E Associates,	inc		<u>CATION</u>	Vestern Comp	2ny	OF ( SHEETS			
Fort	Riley	Dry Clea	ning Facilit	Pilet St	dy 1	Fort )	Riley, KS 2	my Clean	ing Facility			
5. NAME OF	DRILLER	0			6. N	ANUFACTURER'S D	ESIGNATION OF DRILL	1				
7 01750 11	John	Gornici					<u>V-57</u>					
7. SIZES AN AND SAN	id ethes u Ipling Equ	HPMENT 2	125" I D hollow	Stem 244	<u> </u>	OLE LOCATION	Fameratik	I. IFA	CIU'NE			
			<u>, o o crannuqa</u>	Sergera			Ecorner of B					
		Ļ		·		1085 Amil estim fiel from DCF92-3 elevetion						
		· -		• •		DATE STARTED		11. DATE COM				
12. OVERBL	JRDEN THIC	CKNESS				DEPTH GROUNDWA	TER ENCOUNTERED	5/22/1	7			
		43. U	·			34.0'						
13 DEPTH	DRILLED IN	TO ROCK					AND ELAPSED TIME AFTE	R DRILLING CO	MPLETED			
14. TOTAL I			<del> </del>				EL MEASUREMENTS (SPI					
		43	3.0				LL MEADUREMENTS (SPI					
18. GEOTEC	CHNICAL SA	MPLES	DISTURBED	UND	ISTURBED	19. TOTAL NUM	BER OF CORE BOXES	14	•····			
		MICAL ANALYSIS					r	<u> </u>				
CU. JAMPLE	ur un uni A	-miure analysis / 10	VOC	META		THER (SPECIFY)	OTHER (SPECIFY)	OTHER (S	PECIFY) 21. TOTAL CC RECOVER			
	~	<u></u>							59.4 *			
22. DISPOSI	ITION OF H	OLE	BACKFILLED	MONITORING		THER (SPECIFY)	23. SIGNATURE OF INS		1.1			
						end weter	Temthy	A Kel	lig .			
			<b>_</b>		FIELD SCREEN	ING GEOTECH SA	MPLE ANALYTICAL	BLOW	Y			
ELEV. a	DEPTH		C C C C C C C C C C C C C C C C C C C	.5	RESULTS	OR CORE BO	DX NO. SAMPLE NO.	COUNTS g	REMARKS h			
1085	0.0 -	0.0 % 0	3.6 Concrete		hing		N/A	NA	1430 5/20/90			
	-							120	Beigin chilling in			
				· · · · · · · · · · · · · · · · · · ·					425' 7 1) hollow			
		06 to 1	10 Rozel 6.d -	2 Bston	]	1430 beg	pin		stim adjers 2n			
08Y	10					lun	<u> </u>		3º00 continuou			
7 0		1 .	3 & GC CLAYEY			DCF94C			Sonplinfrom			
	-	very dark	grey (2.5 / 3/1	, most)	0.	-18-1			0.6 (0-0.6 "is			
			to coarse, sub			1.0 100	~  .		concrete) Soil			
		1 mestore	gravel with	Chgulor					deson bed sword			
1083 0	2.6	fine to co	erse lithic & g	u artz					to Unified Soil			
	-	sond and	302 hinh als	Hich					Classification			
		fines, mor	302 high pla st, FILL	7				•	System and the			
				. ·					Munsell Sout			
	3.0 =					. v			color chart			
152									how readings			
	·				· ·	O. Treco	iv i	i	given 25 ppm			
		н. 1							equivo lents			
				•	·			•	150 bity/en26			
1051	4.0 -	3.8 6 8	AND CLAYE	Y GRAVEL	1	200 rur 1435			beckground.			
, ~, , ,		Ver da	K Lown (	ر. ر)					Dound Lipth			
		localle al	K brown (10YR_	(12, Moist)	C	1438			= 4.1'			
		90011(1.1	hic, quartz, bri	16 VIJA		beginru		·				
		559. fine	to coarse littlic (contrined)	suarte								
080	5.0 -	· · ^			1 .	F	1 I		1			

,

- .

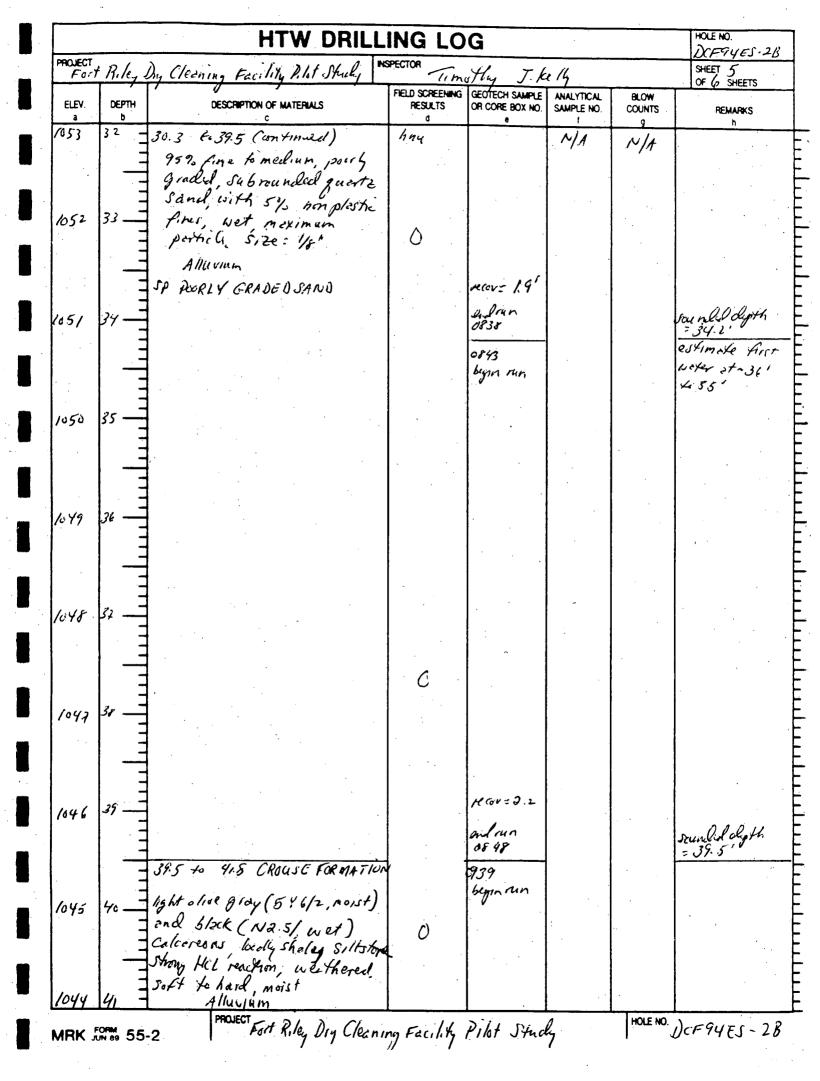
N

**HTW DRILLING LOG** HOLE NO. DCF9YES. IB PROJECT **INSPECTOR** SHEET 2 Fort Riley An Cleaning Facility Alst Stu Г. OF & SHEETS FIELD SCREENING GEOTECH SAMPLE ANALYTICAL BLOW DEPTH ELEV. OR CORE BOX NO. DESCRIPTION OF RESULTS SAMPLE NO. COUNTS MATERIALS REMARKS b đ h 1080 5.0 3.8 to 8.4 (Continued) NĴA 5. N/A hnu 20% high plastity fires, mist, meximum partich size = 3 ravel & Send subergular, 0 Strong Her reaction FILL - 6. 1071 locelly GC CLAYEY GRAVEL WITH SAND AL TE 5/20' FILL 1078 7 NCOV = 2.5 8.0 - 8. 1077 8 4 to 14.0 SM SILTY JAND Buildepth = end run =black (10YR 2/1 must) grading 9.0 1405 1076 to gray ish brown (2.545/2, moist) 80% fire, subougutor, quarte Sand with 20% nonplostic first, maximum particle size 15-25 12 5/20 15-25 1450 beinn run 1075 100 = ~ 0.1mm ist, weak HCI 0 reaction locally ALLUVIUM 1074 12.0 1073 1072 130 Hau= 4.2' 5 drun 1457 PHOLECT Fort Riley Dry Cleaning Facility Pilot Study HOLE NO. DEF 94E S-1B MRK 50 55-2

HOLE NO. **HTW DRILLING LOG** IXF94ES-18 SHEET 3 PROJECT INSPECTOR Fort Riby Dry Cleaning Facility Pilot Stud J. Kelly Timothe OF & SHEETS TELD SCREENING GEOTECH SAMPLE ANALYTICAL BLOW DEPTH OR CORE BOX NO. ELEV. RESULTS SAMPLE NO. COUNTS DESCRIPTION OF MATERIALS REMARKS đ 14.0-14.0 40 18.3 NIA 1671 DCF9465 79 N/A hny 12% fine, subrounded quartz - 18-2 Sand with 30%. high plastaty fines, moist, trace coorse sand 14.0.1021.8 (from zore, 15.0 maximum particle size = 1/8" no flat reaction, dark yellowish 15 1070 exallepth 0 un known) 5/22/94 bring (10 YR 4/4, moist) ALLUVIUM k o 16 1069 Ľĩ 1068 1067 <u>I</u>f 18.3 4221.8 7 As Abure, with ~ 60% sand and 407, fines Hior = 5.0 ludrun 1530 soundled dipth 19.<u>0</u> -19 1066 = 19.2' 1538 begn run 20.0 1065 1064 21.0 ·L 220 - 21.8 to 34.0 SM SILTY SAND Э. 1063 inter beds of 100 % fine to mecham, Subrounded guartziond and elive gray (54512, moist) 70% fin sond, guartz, subrounded 062 continues HOLE NO. DEF9465-13 Fort Riley Dry Cleaning Facility Pilot Stucky MRK JUN 89 55-2

HOLE NO. **HTW DRILLING LOG** DEF94ES-1B NSPECTOR Time SHEET 4 OF 6 SHEETS PROJECT Fort Riles Dry Cleaning Facility Plat J T. Kell GEOTECH SAMPLE FIELD SCREENING ANALYTICAL BLOW DEPTH RESULTS OR CORE BOX NO. SAMPLE NO. COUNTS REMARKS ELEV. DESCRIPTION OF MATERIALS đ b q ( Continued) SM banton. tic interbals(?) 1062 23.0 NJA زكم to 340 NJA 21.8 hny vith 30% meclium plasticity fines, moist maximum particle size = 2 mm moist towet 104=3.81 lind run 1544 soundistely th = Ø · 2 locally, locally ironstriked 24.0 1061 1608 11 5/20 ALLUVIUM Bym 25.0 1060 2 U 059 158 <u>-</u>2 ٥ 1057 24.0 ACOV=21 Bunchelchythend min 1614 29.0 1056 1645 bejnn run 30. 9 1055 1054 310 Q 052 PHOJECT Fort Riley Dry Cleaning Facility Pilot Study HOLE NO. JOF94ES - 1B MRK JUN BY 55-2

HOLE NO. **HTW DRILLING LOG** DCF94ES-1B PROJECT INSPECTOR SHEET 5 Timothy J. Kelly Fort Cleaning For Sty R KI Stud Rile, Am OF 6 SHEETS GEOTECH SAMPLE FIELD SCREENING ANALYTICAL BLOW RESULTS OR CORE BOX NO. DEPTH SAMPLE NO. COUNTS REMARKS ELEV. ON OF MATERIALS SM SILTY SAND 3. N/A 20 21.8 to 34.0 DCF94ES. N/A 10.53 hnu 18-3 70% fine, Subrounded guartz 5/22/94 Send wy 30% medium to low ligth from plasticity fines, iron staned 33.0 3. 1052 21.8% locely, dive gray (5 ¥ 5/2, 34.0 moist) moist to wet locally 0 RON=2.0 Meximum pertice size = 2mn Sounded dipth emlinn Alluviúm 34.2 14 55 1051 RADED SAND WITH SILT Chill Ary (54 5/2, most for wet) 1707 begin run 90%. fine to meetium, Subround of quart 2 sand with 10% non. 350 1050 plastic fines , grades from above locally iron - stained lay ons fusually conser, "(bains" send), pourly graded, moist for wet .*3*1 36.0 1049 Alluvium  $\mathcal{O}$ 1048 37.0 3 1047 35.0 Mar =2.0 entrun sunliddigth = 39.2' 1046 39.0 ·712 731 bey , n run 1045 400 0 1044 HOLE NO. DCF94ES-1B PROJECT Fort Riley Dry Cleaning Facility Pilof Study MRK JUN 89 55-2


HOLE NO. **HTW DRILLING LOG** DEFGYES - IB INSPECTOR PROJECT SHEET G Caning Facility Blot Sta Timothy Fort R.G. A. T. OF & SHEETS FIELD SCREENING GEOTECH SAMPLE RESULTS OR CORE BOX NO. ANALYTICAL BLOW DEPTH ELEV. DESCRIPTION OF MATERIALS SAMPLE NO. COUNTS REMARKS Ъ đ h 39.0 to 42.8 SPSM NA 1844 41 NA hnu POORLY GRADED SAND WITH SILT Alluvium 1043 42 4: 19:0V=2.9 Ò endrin 42.5 gradis to coersers soul and fine gravel anthe clastr of chiert & voriog stel shale 43.0 CROWSE LIMESTONE 1737 Bitom of hile 642 43 4: Aug + refusel 2+ 43.0' 17:50 pn 4 4.25' I Daugers black (NQ.5/ wet) silts 44. limestone, strong flel reaching hand, fresh to shyftly weathered moist, leminexed PROJECT HOLE NO. IRK JUN 89 55-2

**HTW DRILLING LOG** HOLE NO. DCF945-2R 2. DRILLING SUBCONTRACTOR Loyin Weitern Compony 1. COMPANY NAME SHEET 1 LouisBerger & Associates Inc OF & SHEETS 3. PROJECT 4. LOCATION Cleaning Fraility Pilate Stuc Fort Rike Fort Rile 5. NAME OF DRILLER 6. MANUFACTURER'S DESIGNATION OF DRILL John Gornick ORV -5 4.25' ID hillow Stem 7. SIZES AND TYPES OF DRILLING Zinglys 8. HOLE LOCATION AND SAMPLING EQUIPMENT 32-8'NW of E Corner of Blog 180 30,0 NE 9. SURFACE ELEVATION 3" OD Conthinans Somplar 1085 astimated relative to DCF92-3 elevenion 10. DATE STARTED 11. DATE COMPLETED 5/19/94 5/20/94 12. OVERBURDEN THICKNESS 15. DEPTH GROUNDWATER ENCOUNTERED 39.5' ~36 below ground firifale 13. DEPTH DRILLED INTO ROCK 16. DEPTH TO WATER AND ELAPSED TIME AFTER DRILLING COMPLETED 36-66 BTSC 7 days sihr, 210 14. TOTAL DEPTH OF HOLE 17. OTHER WATER LEVEL MEASUREMENTS (SPECIFY) 41.8 18. GEOTECHNICAL SAMPLES 19. TOTAL NUMBER OF CORE BOXES DISTURBED UNDISTURBED NA 20. SAMPLES FOR CHEMICAL ANALYSIS VOC METALS OTHER (SPECIFY) OTHER (SPECIFY) OTHER (SPECIFY) 21. TOTAL CORE RECOVERY NA 56.7 % 22. DISPOSITION OF HOLE BACKFILLED MONITORING WELL 23. SIGNATURE OF INSPECTOR OTHER (SPECIFY) Extruction 7 kel mothe 4ell FIELD SCREENING ANALYTICAL GEOTECH SAMPLE BLOW ELEV. DEPTH DESCRIPTION OF MATERIALS RESULTS OR CORE BOX NO. SAMPLE NO. COUNTS REMARKS b đ 0.0 to 0.6 ancret and real NA 1085 6.0 MA 1655 5/19/94 4ng bed, at easy prior to driking Begin drilling, 3"OD continuius 0.6 to 05 (fire to coose gravel aid bed) 655 Sampler, 4.25 Beginrin 0.8 to 14 Tusta 3.2 SM SILTY SAND WITH GRAVEL 1.0 1084 ID hollow Sten cuyers. Soil 60% fire to meetium subrunded described excerting guartz Sand, mist, with to Umpel for 2. The to everse grand Ø dessificina and 25%, medium plasticky System and Mun 2.0 1083 Pines, very dark grayish buinn 5 sell Sol Colorchar (2543/2, moist) maximum how readings Paita le Size = -2.5" given as ppm FILL equivalents of iso buty lere stave 1082 32 to 4/ SM SILTY JAND background WITH GAAVEL Ç reddish black (2.5YR 2.5/1, most) 619. fire to coarse, angular to recov= J. J 4. ب Subanyuler, lithic sand 25% 1081 Sundal dyth fine to coarse lithic gravel and 1704 Sul 15 % nonplastic fines moist, max-MA weak Hel raction 1706 begin run 1080 PROJECT For FA, ley Dry Cleaning Facility Pilot Stucky HOLE NO. JOF44ES-3B MRK FORM 55

**HTW DRILLING LOG** HOLE NO. DEF44ES.ZB PROJECT INSPECTOR Fort SHEET 2 Rile, Dry Cleaning Facility Blat Sty ke lla *J*. limothy OF 6 SHEETS FIELD SCREENING GEOTECH SAMPLE ANALYTICAL BLOW ELEV. DEPTH RESULTS DESCRIP TION OF MATERIALS OR CORE BOX NO. SAMPLE NO. COUNTS REMARKS 4.16 9.9 G-C CLAVEY GRAVEL 1050 5 hna NA NJA WITH SAND clive gray (58 4/2, most) method, 50% fire to coorse, anyular, 1079 6.5 While gravel, with soffals The ske Soft clerts, 309, Malion + high G plesticity fires, 202 five to werse lithic abbles moist 1078 7.0 8.0 277 G 1076 19 ACOV= 0.6 9.9 Soundal choth 1210 entrun 1724 begin 9.9 6 155 SP. SM POORLY C-RADED SAND WITH SILT 1075 run block (54 5/1, moist) & Ading to light slive brown (2.54 5/3 mossif) 90% fine, subraunched guarte sand pour ly grached with 10% non plastic G 11.0. 1074 Times moist maximum portale ice 202mm 12.0 1073 1072 130 0 07 PROJECT Fort Rile, Dry Cleaning Facility Pilot Stacky HOLE NO. D.F94ES-2B MRK JUN 89 55-2

**HTW DRILLING LOG** HOLE NO. DEF94ES-2B PROJECT Fort R. le, INSPECTOR SHEET 3 Dry Cleaning Face t ko Pilastitude OF 6 SHEETS FIELD SCREENING GEOTECH SAMPLE ANALYTICAL BLOW DESCRIPTION OF MATERIALS ELEV. DEPTH OR CORE BOX NO. RESULTS SAMPLE NO. COUNTS REMARKS 140 1071 9.9 to 15.5 SP-SM POORLY NA N/A hny Alor=3.1 GRADE SAND WITH SILT end run sounded dyth 1729 1810 Legin 1070 150 run 15.5 to 17.4 MH SANDY CLASTIC SILT black (2.5 Y2.5/1, wet) 1069  $\mathcal{O}$ 70% slow dileton in actium to low toughness medto high day strugth, pur plasticity fines 369, fine sand wet, with 1468 reclant jaw @ ~ 16', roots 17.4 to M.S MH SANDY ELASTIC SILT As Above, but grading to dark brown (7.5YR 3/2, mist), with a 40% fore to med Send 1067 roots recore 3.6 ' 1066 end run Journel of the 1816 19.5 to 27.8 SC (LAYEY 19.7' SAND 1818 begin brown (104R 4/3, most) ru.n 1065 607. Fine to medium, subrounded quartz sand with 400 high plesticity fines, moist Maximum porticle size =. Amin mosts Moist. 1064 21 m Treslig 0 22 1063 062 HOLE NO. DEF 94ES-2B PHOLECT Fort Riley Dry Cleaning Facility Pilot Study MRK 10 55-2

**HTW DRILLING LOG** HOLE NO. DCF94EJ-2B PROJECT Fort Riley Dry Clezning Facility Pilot Stuck, INSPECTOR SHEET 4 OF 6 SHEETS Timetty J. Kelly FIELD SCREENING GEOTECH SAMPLE ANALYTICAL BLÒW ELEV. DEPTH DESCRIPTION OF MATERIALS RESULTS OR CORE BOX NO. SAMPLE NO. COUNTS REMARKS 19.5 to 27 & (continued) SC CLAYEN SAND Brown (10 YR 413, MOTS F) 1062 23 NJA NA . 22 hny 60% fine to medeum sub round el quarte sand with 40% ju lo 1 high plasticity fires, moist, 24_ recov=5.0" maximum particlisize = 1mm. endrun Rundial clip th = \$25 Alluvium 1905 begin run 1060 25 2 1059 26 20 1058 278 to 29.5 SP POURLY GRADED J 1057 SAND light yellowsh brown (104R 614 Moist) 95% poorly gradiel, Am tomechum subrounded quarte rcox=3·3 Sand with 5% locatly high 1056 endrun plesticity fires locally (clay-A15 sounded doth rich interfeels) ALLUVIUM 29.5 to 30.3 SM SILTY SAMI) 0805 OF30 0830 5/20 /44 TR 5/2 continue dulling brinn (104R 513, minst) 70% 1055 30. Am 29.5 fine. Subrounded guartz send ith 30% non plastic fines, mast to wet ALLUVIUM 0 30.3 to 39.5 SP PORLY GRADED 1054 31 light yollowish brown NYR 6/4 Moist) grading to (2.545/2, wer) grayish brawn with ron-Stained loyers locally, 1053 HOLE NO. DEF 94ES-2B PHOLECT Fort Riley Dry Cleaning Facility Pilot Study MRK 500 55-2



ELEV.	DEPTH	Dry Cleaning Facility Pilet Study DESCRIPTION OF MATERIALS	RESULTS	GEOTECH SAMPLE OR CORE BOX NO.	ANALYTICAL SAMPLE NO.	BLOW COUNTS	OF G SHEETS REMARKS
a 10 44		39.5 to 91.8. Ight olive gray (54 6/2, maist) end black (N2.5 wet) calcareous, area thereal shale.	+ ecov = 2-0 - 0950	Dendrui	~/A	2 N/A 2.1)	h 5/20 0950 copolote 5" Drilling, legging of hole, pull 200407, prep tr
1043	<i>¶</i> 2	· · · · · · · · · · · · · · · · · · ·					
				-			.*
1042	43						
						· · -	· ·
							· .
	=						
-							
•	<u> </u>						
· .							
	-						
	-						
				-			
- 					• •		
	-						
					- -		
							-
						· .	
		-2 PROJECT Fort Riley Dry Clean					DCF94ES-2B

	-				•	RILL							HOLE	NO. ⁵ 94E5+3
1. COMPAN	IV NAME	us Ber	ger \$1	Asrocio	Ker, G	2.	DRILLING	SUBCONT	RACTOR Layne	Wes	tern Com	peny	SHEE OF (	t 1 Sheets
3. PROJEC	Fort A	, le Dy (	Cleani	y Fecil	1.45 RI	1 Study	1	4. LOCA			y, KS	<i>L I</i>		
5. NAME O	F DRILLER	harles	Riffe	2 R				6. MANL	FACTURER'S D	ESIGNA		- ·· ·		
7. SIZES A	ND TYPES C	FDRILLING	425"	ID hal		m duger		8. HOLE	LOCATION 6	5.91	Not BIA	, ISUE CON	ner,	39.3'N
AND SAM	MPLING EQU	HPMEN I	2° 01	spl.t	gazn.	<u>semplir</u>	-	9. SURF.	ACE ELEVATIO	N	Y Oky			
· .					•	:		10	J <u>J S' eJHi.</u> E STARTED	make	of from i	(F9 <b>9-3</b>	eleve	tin
	· ·					· — · · · · · · · · · · · · · · · · · ·		10. DAII 5/i	E STARTED <b>8/94</b> TH GROUNDWA		1	11. DATE COM <u>5/19/94</u>		
12. OVERB	Urden Thi	CKNESS 4/1	8'					15 DEP	TH GROUNDWA		COUNTERED			
13. DEPTH	DRILLED IN		, ²	• •				16. DEP	TH TO WATER	AND EL	APSED TIME AFTE	R DRILLING CO	MPLETED	(Stick up
14. TOTAL	DEPTH OF	HOLE						17. OTH	ER WATER LEV	7 0 C 'EL MEA	SUREMENTS (SPI	<u>( 1567</u> , ECIFY)	16 m	· · · · · · ·
18. GEOTE		43.2	2	DISTURE					A. 9. TOTAL NUM	1A		· · · · · ·		•
•									9. TUTAL NUM	BER UP	CORE BOXES	NIA		81.57
20. SAMPLI	es for chi	EMICAL ANALY		VOC A 824		METAI	LS	OTHE	R (SPECIFY)	0Ť	HER (SPECIFY)	OTHER (S	PECIFY)	21. TOTAL C
22. DISPOS				the only	$\rightarrow$			071/5						75.6 TR5/24
22. 013503		ULE		BACKFILLE	.0	MONITORING		Grinne	R (SPECIFY)	23. 5			1.	127/24
					·		FIELD S	1	GEOTECH SA		ANALYTICAL	BLOW (	eu, 1	·····
ELEV. a	DEPTH b		DESCRIP	TION OF MA	TERIALS			SULTS d	OR CORE BC		SAMPLE NO.	COUNTS		REMARKS h
10F5	0.0 _	0.0 to 2	5.6 a	ncrefi			hn	પ				Not Yakan	5/1/14	1.500
									н. - С			from 3.6 to	Begin (	brilling
	_	06 40				·						3.5	Starte	a, Simply
1084	/·0	80% 2		with e	69, 52	nd, 1025		ð.					from	1.0' %
		The fi									DEFAYES		cut a	concrete
		1.0% CLAY	3.0 C	L SA.	NDY	LEAN					-313-1		rizel b	ed shor. Contonia
	=	609, h.	gh plas	Heitz m	Aum			l.			@1545		split.	ipoms
1083	20	toughness	s slow	. ditte	long (+	e no		•					From	10'5
	-	dilstone most, u	). Medi	um digs	trength	fires							refus	of hemo
		lithic S. Meximum Strong Ho	ind and	1070 +	the gra	in the col	GC.		•					th 140# lic hami
1052	5.0	strong the	Cr reace	Tim Tim									sil de	winked
		3.0 4 5	T.0 C	L SAN	DYL				3-5 DCF94E	s	· · · · · · · · · · · · · · · · · · ·	3'65	kth z	Ed ling
		As Abri			+ Y hrow	vn.			-3B-1 Czestech			1-2-1-1	Classif	Sol.
	-	(BYR	4/3, Mo	ist)					3-51.8	1				n end
1081	4.0 <u>-</u>							3	recovery				Manse culor c	ll foil chart
	-					•			-				how N	achings
				e e e e e e e e e e e e e e e e e e e	•								grien	25 ppm lants 150
	_								1 .					
1080				• -									puty R	ne short

ROJECT	dRI.		NSPECTOR	hy I kelly		• • • • • • • • • • • •	<u>)CF94Es-3D</u> Sheet Z
ELEV.	DEPTH	Dry Cleaning Facility Right Study DESCRIPTION OF MATERIALS		GEOTECH SAMPLE OR CORE BOX NO.	ANALYTICAL SAMPLE NO.	BLOW	OF 6 SHEETS REMARKS
1080	5.0 -	CC	đ	e	f ·		h
		5. 4 J. 4	hnu	5-7' recovey =	N/A	5-7' 4-1-1	W= weight of the
		Astbure		1.8			Acmmar
	=	50% fire, subengular, parts Sand 40% row plasticity fires					
o 79	6.0 -	Moist to wet solor (?), den	40-				
077		send inforbed @ - 5.6; mex	TR 5K				
		54 to SM SIL TY SANDTE 5/10	3				
	_	Sand 409 tow plasticity fine, Moist to wet odor (?), clean Send interbed @ 5.6 mcx Particle size - v 5mm 54, to SM SILTY SAMD + 5/10 64 to usually no ACCI reaction locally strong Stack (2 51 2.5/1, MUNST)	-		19 1		
	=	Stack (2512511. March)	10			*	
c78	7.0	70 10 90 45 46048				, ,	
		locally very dark gray (54		Mar =		4-1	
		3/1, maist)		1.6		Lo A 18"	
	· -		1.80			-	
077	80		~7.81				
	-						• •
	=						
	9.0						
1076	//º	SM. SILTY SAND 90 to 110 As Abure				9-11	
	=	but trave ill a		récor = 1.7		W-1-2-3	÷
		but brown & black mother			•		. •
	-				•		
10.75	10.0						
					· ·		
1074	11:5		0.4				
1074	-		-	recover, 8		-12"	· ·
	=	11.0 SM SILTY SAND	•		·	6-3-3	1645 pull oct spoon
		grades from greater 2. pros fo				TR Sla	
	1 =	12. fine, Subargular rounded. Instructed Send with 30%					
1073	42.0	guartz send with 30%	1.0				
		low presticity times minst,					
		sew rye Odor ( 6 ryanie ) y sades to					
	=	Hark gray ish brown					
1572	130 =			· .	. · · .		••
		13. to 15. c As Abave	1.2	ROV=17		13-15	
	=	sut silty soul				1-1-2-2	
					1	1-1-2-2	
			•	-		1 	· ·
671	1/7.0	-2 PROJECT Riley Dry Clean		L	· · ·	L.,	L XF94E5-3B

	·	HTW DRILL		G		· ·	HOLE NO DEF94ES-3B
ROJECT Fort	Rile Dr	4 Cleaning Faulity Pilst Study	SPECTORTIMOThe	J. Kelly			SHEET 3 OF 6 SHEETS
ELEV. a	) DEPTH b	DESCRIPTION OF MATERIALS c	FIELD SCREENING RESULTS d	GEOTECH SAMPLE OR CORE BOX NO.	ANALYTICAL SAMPLE NO. f	BLOW COUNTS	REMARKS
071	14.0-	B.O to 15.0 SM SILTY SAND	hnu				
· · ·					-		
70	150 -					15-17	
70				DEFGYES	DCF94ES		
	_			-38 <b>9</b> 0 1730	-33-2 @ 1725		
			0	recov = 1.8			. •
069	160 7						
				·			· .
							· · ·
	- - - - -			-			· · ·
168		undictur hel o 1 al 20:		1 14			ellect shelby take
		underturbel sample a Keekel in shelby type		3			Sample from 17.0
		Sheloy take		5			to 19.5' ( bettom clepth taped,
1	18.0	NAMALE NAT	X /	(and )			tube is 25 km
К7		SAMPLE NOT		DEPHILS DE			
		OBSERVED		· / · ·	V /		
					. /	$  /   \Lambda$	
•	19.3			V ·/		¥ /	
166			V /				
			1. /		V /		
•	-	19.5-21.5 AS Abive	· · · · · · · · · · · · · · · · · · ·			2-1-1-2	······
1065	200-	Sim Silty Sand		1.7'RIN		14.5-21.5	. '
063		(brown ( WYR 4/3, moist)					
•		Meximum particleste: «Imm					
							•
64	21.0 -			· · ·			
569							
		•					
		21.5 to 23.5 SM SILTY SAND		recor= 2.0'		21.5 to	
.13	22.0	As Above but fines more plastic				23.5'	
202		Approximately 80% fine,				W-1.2- 3	
		Subaunded quarter send, 20%			·		
		fines, 100% soul stongers lackly methy no Hisreaction, Lenk to					
562	230	strong locally, max pathicistes imm	1 k V3				
	OFM 55	PROJECT		· · · · · · · · · · · · · · · · · · ·	<b>-</b>	HOLE NO.	794ES - 3B

HOLE NO **HTW DRILLING LOG** DCF94ES-31 PROJECT INSPECTOR Sheet 4 Fort Riley Dry Cleaning Facility Pilot Stuc Timothy J. Kelle OF & SHEETS GEDTECH SAMPLE FIELD SCREENING ANALYTICAL BLOW DEPTH OR CORE BOX NO. ELEV. RESULTS SAMPLE NO. DESCRIPTION OF MATERIALS COUNTS REMARKS 16G 2 23.0 SM SILTY SAND (21.5 to hny 238) -238 to 275 SC CLAYEY SAN Acor = 240 1061 20 8095 fine to meetium, Albrounded quartz sand with local 5/18/94 /800 Ô stringers to 100% fore to meetium shitdown for Jand, with 20% high plasticity He day hole advanced \$ 255 1060 25.0 fires, brown (108 413, morst) to grayish briwn (2:515/2) recov=20 25.5 moish iron-started sand 27.5 DCF44ES 5/19/94 0840 inter lamina after 26.5 W- 1-2 1059 26.0 ] Moist towel -38-3 Continue du lling from 6 25.5 % Spooning from 27.5' Cosych 5/14/41 27.0 1058 recov = 27.5 to 29.5 As Above, 1.6' 27.5-29.5 with 100% send inter layors 1057 28.0 5-4-4up to 0.2' thick 4 Moist to wet 290 1056 29.5 CO 31.5 SC CLAYEY SAND 29.5to 19COV = 1.7' 31.5 - 60% fire to medium Subrounded 1055 30.2 1-5-6-7 Quartz Sand, modium Youghnoss Modium plastick, rapid dilatary, fines, moist to wet, (2.545/1 monst) gray 1054 310 31.5 4 32.5 AS Above recov = 1.5 31.5 % 33.5 1053 HOLE NO. DCF94ES-3B Fore Rilay Dry Claiming Facility Pilot Stuck MRK JUN 89 55-2

ROJECT	ر ۱۷		NSPECTOR			· · ·	HOLE NO. DCF94ES-3B SHEET 45 TILS
Fort ELEV.	B, Ley Dry Depth	Description of materials	FIELD SCREENING RESULTS	GEOTECH SAMPLE OR CORE BOX NO.	ANALYTICAL SAMPLE NO.	BLOW COUNTS	OF 6 SHEETS
a 53	32.0 - 17	CLAYEY SAND	d		t	9	<u>h</u>
			hny				
		TKS/19/54 25 & 344 358 p-SM POURLY GRADED SAND WITHS					
	- 2	-SM POURLY GRADED SAND WITH S	11				
652	33-0 - 90	1% fire to motium, subrund	ap				
	- 9	verte sond, puerly gradiet					
·	- 2-	ith ~ 18% noneto low		recor = 1.8'			
		lasticity fires, moist to	6			37.5 %	
	14	iep (locally) meximum postice			· ·	35 5	
051	34.0 -	Aze = tam so 15mms west				6-12-18	
	<u> </u>	ray (2.575/1, must) with				2-3.4.4	
		con-stand Inter laminal					· ·
							estim of weter
0.50	350 -	340 A 41-5 SP DOURLY 36.350 GRADED SAND					C 360'6-seef
5.70		75 to fine for meetium			ļ		on coor change
	E I	ich rounded guartz sand with		rloov = 1.8	· ·	355	e weter Soturte
		Is non plestic fines and a		-		4037.5	ſ
		trace of fire littic gravel,	0			6-12-	
549	16° - 1	1eximum day Sele Gan- 1. 1			·	18-22	
	- `	clorelinge from Aley ( ) 5451					
	7/	to syrong prin					
	7	·544/6, Wet) setturated throw	7K	a.			
	27. 30	white spoon this black lamino	✓ .				
048	- e	2 37.4, poor & gradied		- 		· ·	
		17 5 to 39.5		MCOV = 1.7		37.5%	
			0		-	39 5	
047	380	As Abure, back to gray (184R				5-10-13	
		1/1, wet) @ 39.5 siturethel	-			- 10	
	′ <u>ا</u> _	no Hed					
	39.0 -						
646							
						20 - 1	
	-];	89.5 \$ 41.5 25 2bave		recer = 2 0		39.5 A 41.5	
		ith 0.4 inter layer of ML	0		•	4-3-15	
1043	40.0 - (	SANDYSILT) @ 39 9 to 40.3				- 16	
		hite Clay inter laminal from					
		11.0 to bottom of spoon	<b>`</b>		• •		
		V					
1044	41.						
		PROJECT Forf R. lay Dry Clean			1	HOLENO	cF94E5-3B

**HTW DRILLING LOG** HOLE NO. DEFAYES-3B PROJECT INSPECTOR Fort Riley Dy Cleaning Facility Rist Nerdy SHEET. Timothy Jkely OF 6 SHEETS FIELD SCREENING GEOTECH SAMPLE ANALYTICAL BLOW ELEV. DEPTH IATERIALS RESULTS OR CORE BOX NO. SAMPLE NO. COUNTS REMARKS 4 ď h N/A 41.0 SP DOORLY GRADED SAND 1044 hna (35.8to 41.5) 415 2 Hecov = 43.5 11:5 to 41.8 Interbol-SP PODELY GRADED SAND 100% Fire to medium Subsimili 1.8 49-28-45-50/3 querte sand meximum 41. 1843` perficit size ~ Imm wet, 0 to 43 olive grey (51\$12, moist) to the ory dark gray calcareous (N31, moist) weathered, 1042 43 Doundal of 432' Bottom hele 07 lemineted solly shele sett moist to dry, strong 1520 Bajin Haming w/ 12" oddugers and Hel reaction 44 1041 inner bit HOLE NO. DCF94ES-3B PROJECT Fort Riley Dry Cleaning Facility Blot Study MRK JIN ap 55-2

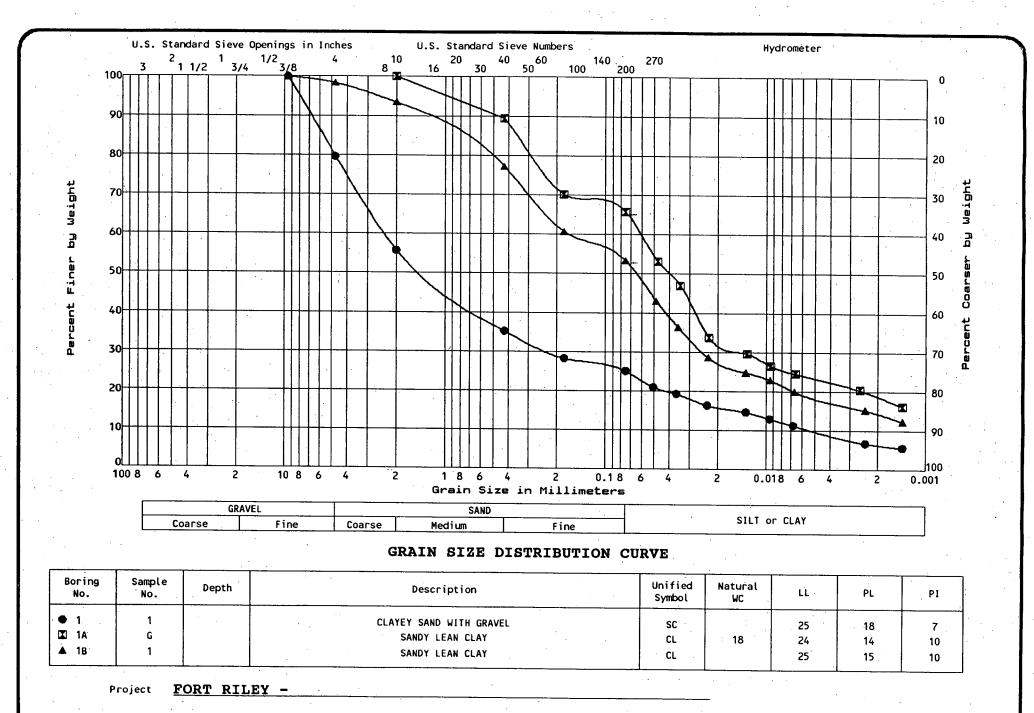
APPENDIX E GEOTECHNICAL LABORATORY TEST RESULTS

	1		· · ·		ELITANTS, INC.
Date:	June 14, 1994			14700 Lenex	W. 107th Street a. Kansas 66215
• •	Louis Berger & 100 Halsted St East Orange, N	reet		7810 N P. O. B Kansas	492-7777 Fax (913) 492 I. W. 100th ox 301541 5 City. Missouri 64190-1541 91-7717 FAX (816) 891-7048
Ațtention: -	Dr. Rao Nivarg	ikar	· ·		
29	Ft. Riley Lab	Tests	· ·		-
Job No	02941153				
Gentremen					
We are tran	3	with er separate cover	2copies of the	ne.	
II Field Dai Regarding	ta X Laboratory	Data 🗆 Report			· .
<ul> <li>Footing</li> <li>Drilled</li> <li>Piles</li> <li>Concret</li> <li>Asphalt</li> <li>Roofing</li> <li>Aggrega</li> <li>Non-des</li> <li>of Steel</li> <li>Non-des</li> <li>of Conc</li> <li>Grain S</li> </ul>	Piers ate structive Testing structive Testing rete ize Analysis	<ul> <li>Boring Logs</li> <li>Location Diagram</li> <li>Soil Samples</li> <li>Rock Core Samples</li> <li>Construction Materi Samples</li> <li>Moisture-Density</li> <li>Consolidation</li> <li>Triaxial Compressio</li> <li>Permeability</li> <li>Field Boring Logs</li> <li>X Atterberg Limit</li> <li>x Porosity</li> </ul>	ial n s s s he Part t		y vey aditions velopment on ertise under
on the data,	and cannot assume	responsibility or liability for	or interpretation of	f this data by	others.
Remarks:				· -	
· .				· · ·	
·					
	· · · · · · · · · · · · · · · · · · ·			· · ·	
Yours truly,					
	CONSULTANTS, INC.		•		· .
	Mula MA	(A)			· · · · · · · · · · · · · · · · · · ·
<u> </u>	Richard M. Scot	t, C.E.T.	•	•	
•			•		
-		•			

.

FORT RILEY 02941153 6/11/94

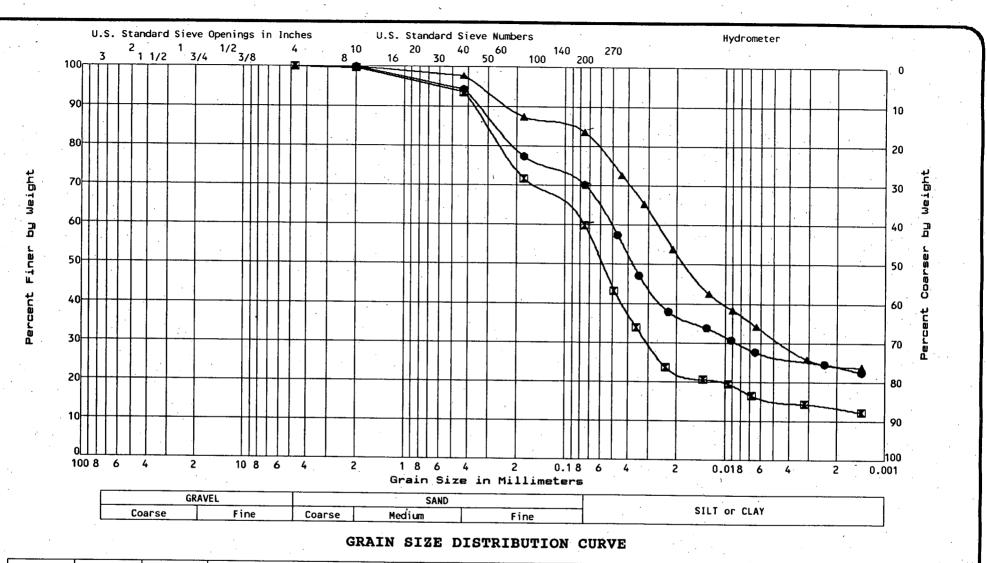
#### LABORATORY ANALYSIS RESULTS


BORING #	G <u>SAMPLE</u> <u>#</u>	VIŞUAL DESCRIPTION	WATER CONTENT,	DRY DENSITY,		POROSITY,	SATURATION.
• .		· · · · ·	<u>%</u>	pcf		<u>%</u>	<u>%</u>
. 1	1				2.620	· ·	
1A	G	SANDY LEAN CLAY, GRAY BROWN	18.1	102.5	2.672	38.5	77.2
1B 1B 1B	1 2 3			• • •	2.640 2.663 2.662		
21 21 21 21	G 1 2 3	LEAN CLAY WITH SAND, GRAY BROWN	21.0	92.8	2.679 2.647 2.679 2.645	44.7	69.5
2A	G	LEAN CLAY WITH SAND, GRAY BROWN	24.9	96.1	2.686	42.7	89.7
3B 3B 3B	G 2 3	SILT, GRAY BROWN	32.0	83.5	2.672 2.660 2.659	49.9	85.8
B-2 B-2	2 3				2.664 2.663		
ES	3B				2.663	•	

#### TEST PROCEDURES ON ENCLOSED RESULTS:

ASTM D421 ASTM D422 ASTM D854 ASTM D2216 ASTM D4318

EM 1110-2-1906, APPENDIX II

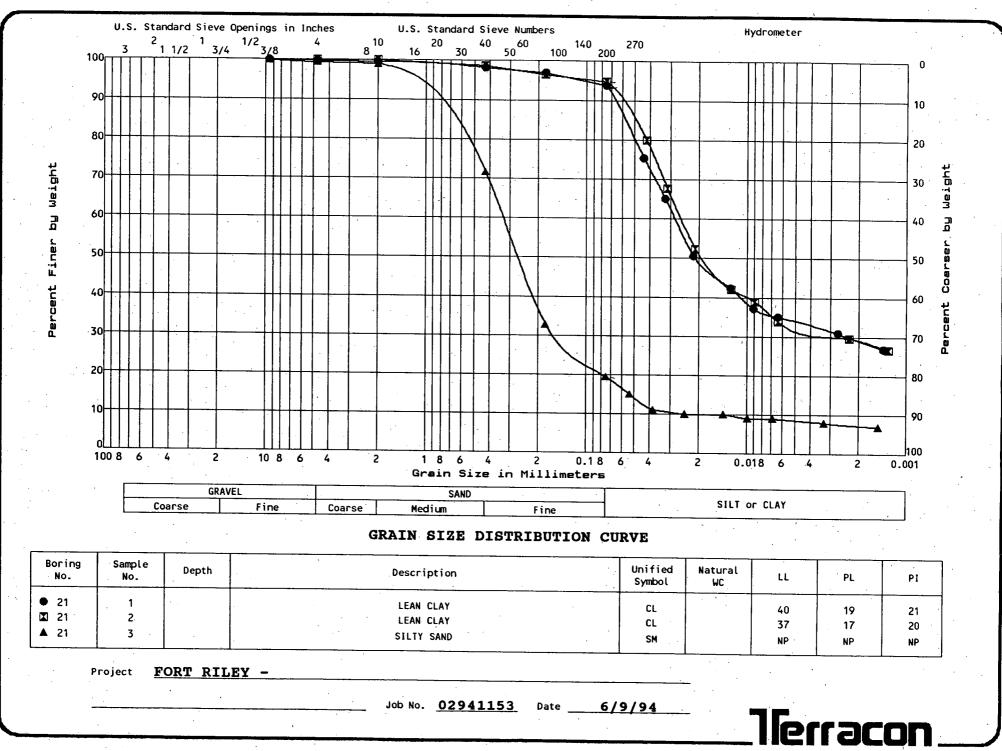

lerracon



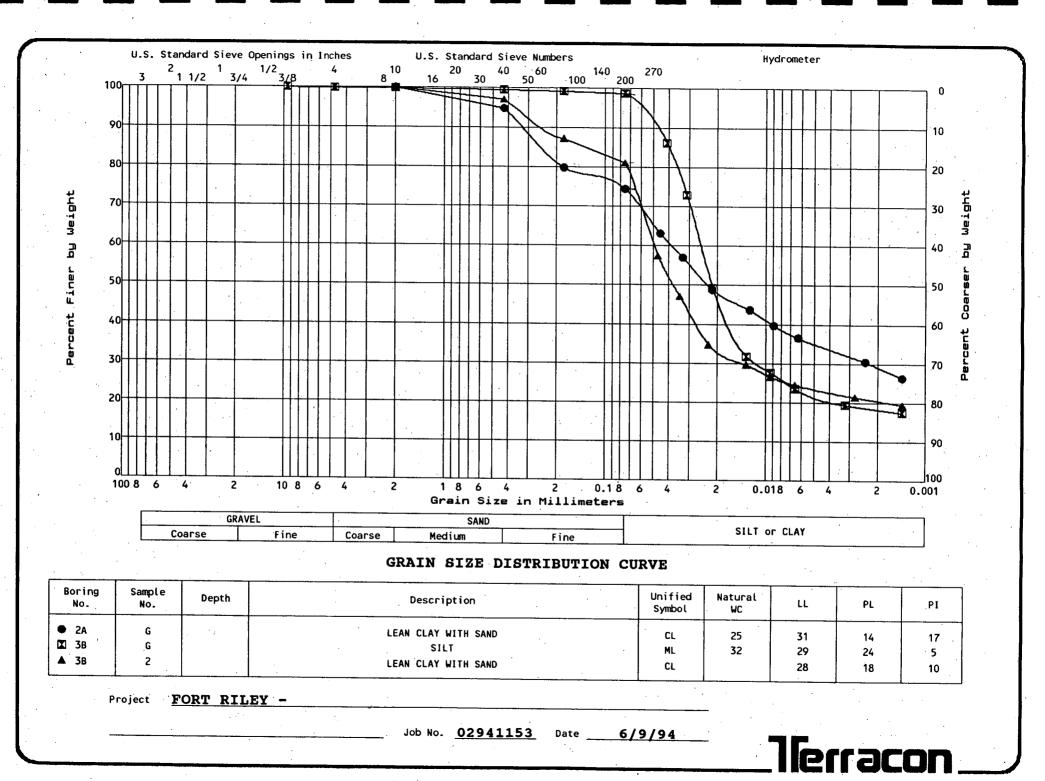
Job No. 02941153 Date 6/9/94

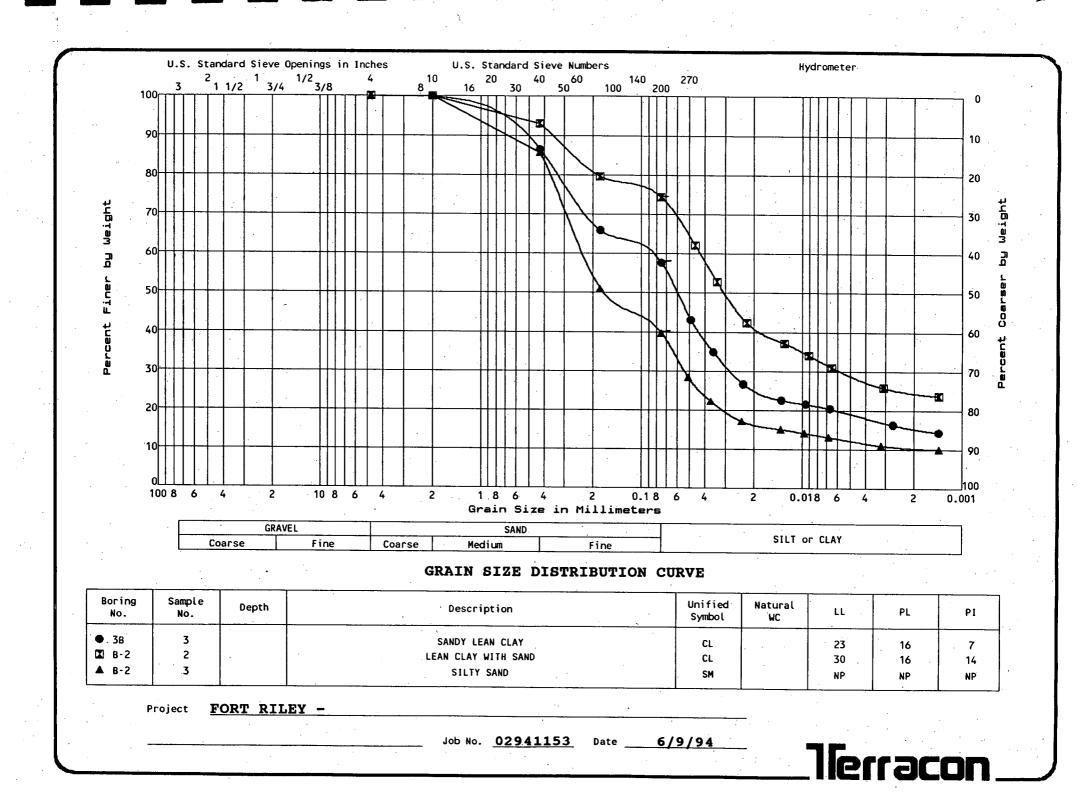
<u>][erracon</u>

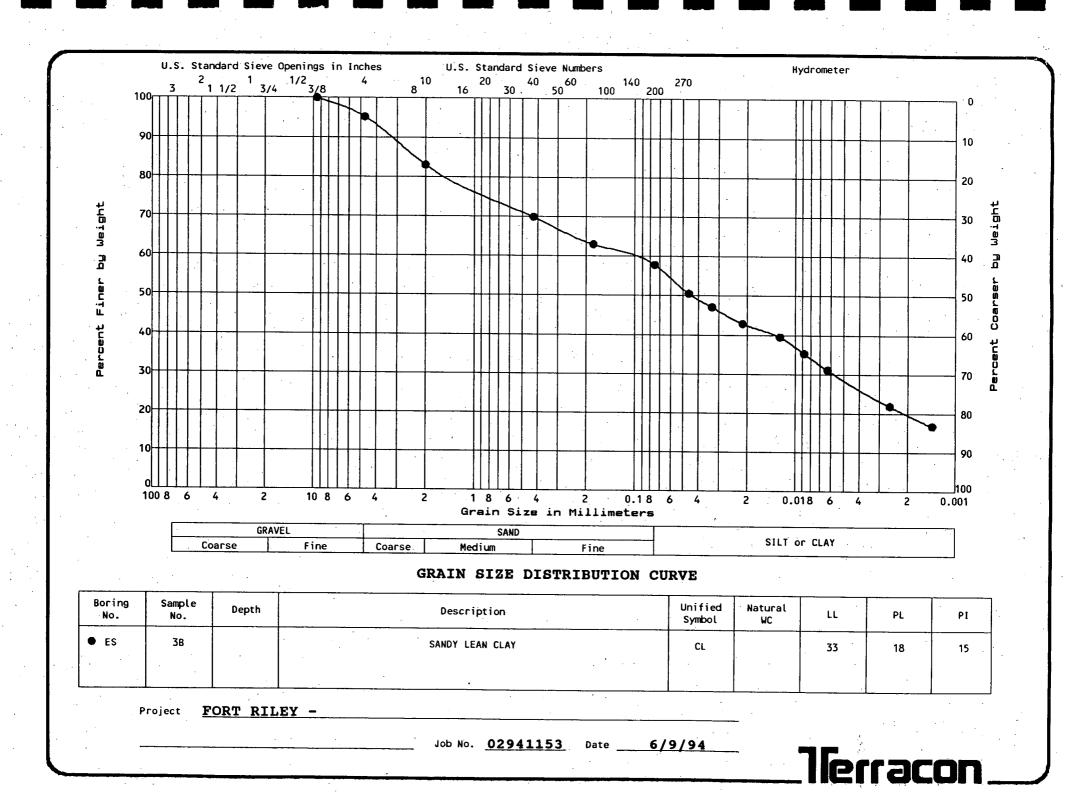
.




Boring No.	Sample No.	Depth	Description	Unified Symbol	Natural WC	LL	PL	PI
● 18 ■ 18 ▲ 21	2 3 G		SANDY LEAN CLAY Sandy Silt Lean Clay with Sand	CL ML CL	21	28 18 33	14 16 15	14 2 18


Project FORT RILEY -


Job No. 02941153 Date 6/9/94


Jerraco



.







## **APPENDIX F** FIELD GC DATA-VOC ANALYTICAL RESULTS

TERRA VAC CO PROJECT #24- VE - 1		NN.							·										DRY C	RGER & ASS LEANING FAC			
DATE	TIME	CH2CL2 (ug/l)	t-1,2- DCE (ug/l)	1,1- DCA (ug/l)	c-1,2- DCE (ug/l)	CHCL3	1,2 ⁻ DCA (ug/l)	1,1,1- TCA (ug/l)	BENZENE (ug/l)	TCE (ug/l)	TOLUENE (ug/l)	PCE (ug/l)	CHLORO- BENZENE (ug/l)	ETHYL BENZENE (ug/t)	XYLENES (ug/l)	OTHER VOC (ug/l)	TOTAL .VOC (ug/l)	FLOW (SCFM)	VACUUM ("Hg)	RATE (LB/DAY)	RUN TIME (DAYS)	TOTAL POUNDS REMOVED	
11/21/94	14:30							· ·							· · · ·								
11/21/94	14:45	BOL	BDL	BDL	BDL	BDL	BDL.	BDL	BDL	2.32	BDL	139	BDL .	BDL	0.34	4.62	146	START 59.7	2.4	. 0	0	0	
11/21/94	15:23	BDL	BDL	BDL	1.27	BDL.	BDL	BDL	BDL	3.31	BDL	149	BDL	BDL	BDL	2.78	157	65.2	2.4	0.78 0.92	0.01	0.01 0.03	
11/21/94 11/21/94	16:01 16:38	BDL BDL	BDL	BDL	2.09	BDL	BDL	BDL	BDL	3.52	BDL	153	BDL	BDL	BDL	4.27	163	65:0	2.4	0.95	0.04	0.06	
11/21/94	17:16	BDL	BDL BDL	BDL	2.82 3.73	BDL .	BDL	BDL	BDL	3.89	BDL	160	BDL	BDL	BDL	5.90	173	68.5	. 2.4	1.06	0.09	0.08	
11/22/94	09:09	BDL	BOL	BDL	3.73 10.5	BDL	BDL BDL	BDL	BDL	4.06	BDL	165	BDL .	BDL	0.23	7.76	181	65.0	, 2.4 ·	1.06	0.12	0.11	
11/22/94	10:28	BDL'	BOL	BDL	10.7	BDL	BDL	BDL	BDL	3.44 3.44	BDL BDL	151 153	BDL BDL	BDL	BDL	8.18	173	64.7	2.6	1.00	0.78	. 0.79	
11/22/94	11:08	BDL	BDL	BDL	10.6	8DL	BDL	BDL	BDL	3.38	BDL	153	BDL	BDL BDL	0.57	6.47 7.71	174 174	64.6	2.7	1.01	0.83	0.85	
11/22/94	11:45	BDL .	BDL	BDL -	10.4	BDL	BDL	BDL	BDL	3.33	BDL	152	BDL	BDL	0.23	7.67	174	75.0 75.0	. 4.3 4.3	1.18	0.86	0.88	
11/22/94	12:22	BDL	BDL	BDL	10.3	BDL	BDL	BDL	BDL	3.27	BDL	152	BDL	BDL	0.22	7.80	174	75.0	4.3	1.17	0.89 0.91	0.91	
11/22/94	14:24 15:05	BDL BDL	BDL BDL	BDL	9.81	BDL	BDL	BDL	BDL	3.11	8DL	152	BDL	BDL	BDL	6.90	172	. 78.0	4.2	1.20	1.00	1.04	
11/22/94	17:32	BDL	BDL	BDL BDL	9.56 9.21	BDL BDL	BDL BDL	BDL	BDL	3.11	BDL	150	BDL	BDL	BDL	6.32	169	75.0	4.3	1.14	1.02	1.07	
11/23/94	09:30	BDL	BDL	BDL	6.48	BDL	BDL	BDL BDL	BDL BDL	3.74 1.92	BDL	149	BDL	BDL	BDL	5.88	168	77.8	4.3	1.17	1.13	1.19	
11/23/94	10:48	BDL	BDL	BDL	6.87	8DL	BDL	BDL	BDL	2.02	BDL BDL	156 161	BDL BDL	BDL BDL	BDL	2.42	166	80.0	4.7	1.20	1.79	1.98	
11/23/94	12:44	BDL	BDL	BDL	6.53	BDL	BDL	BDL	BDL	2.83	BDL	161	BDL	BDL	BOL	2.37 1.85	172	. 79.8	4.8	1.23	1.85	2.04	•
11/23/94	14:05	BDL	BDL	BDL	6.38	BDL	BDL	BDL	BDL	1.98	BDL	169	BDL	BDL	BDL	2.79	180	79.9 79.9	4.7 4.7	1.24	1.93	2.14	
11/23/94	14:45	BDL	BDL	BDL	6.42	BDL	BDL	BDL	BDL	1.73	BDL	169	BDL	BDL	BDL	2.34	179	89.0	6.4	1.29 1.43	1.98 2.01	2.21 2.25	
11/23/94 11/23/94	15:24 16:03	BDL	BDL	BDL	5.67	BOL	BDL	BDL	BDL	1.38	BDL	169	BDL	BDL	BDL	2.10	178	91.2	6.4	1.46	2.04	2.25	
11/23/94	16:42	BDL	BOL	BDL ·	6.36 6.12	BDL BDL	BDL BDL	BDL .	BDL	1.81	BDL	170	BDL	BDL	BDL	2.19	180	- 89.0	6.4	1.44	2.06	2.33	
11/23/94	17:20	BDL	BDL	BDL	6.16	BDL	BDL	BDL	BDL BDL	1.79 1.69	BDL BDL	169 173	BDL	BDL	BDL	1.53	178	89.0	, 6.4	1.42`	2.09	2.37	
11/24/94	10:42	BDL	BDL	BDL	4.99	BDL	BDL	BDL	BDL	BDL	BDL	1/3	BDL BDL	BDL BDL	BDL	2.42	183	89.0	6.4	1.46	2.12	2.41	
11/24/94	12:09	BOL	BDL	BDL	5.41	BDL	BDL	BDL	BDL	1.54	BDL	170	BDL	BDL	BDL BDL	2.11 1.64 ⁻	167 179	90.4 87.7	6.8	1.36	2.84	3.43	•
11/24/94	12:52	BDL	BDL	BDL	5.29	8DL	BDL .	BDL	BDL	1.25	BDL	168	BDL	BDL	BDL	1.55	179	87.7	7.0	1.41 1.39	2.90	3.51	
11/24/94 11/24/94	14:25	BDL	BOL	BDL	4.66	BDL	BDL	BDL	BDL	1.27	BDL	160	BDL	BDL	BDL	1.57	167	87.7	7.0	1.35	2.93 3.00	3.55 3.64	
11/24/94	15:06 16:00	BDL BDL	BDL BDL	BDL BDL	4.98 5.06	BOL	BDL	BDL	BDL	1.36	BDL	164	BDL	BOL	BDL	2.51	172	87.7	7.0	1.36	3.03	3.68	
11/25/94	09:57	BDL	BDL	BDL	4.60	BDL	BDL	BDL BDL	BDL	BDL	BDL .	162	BDL	BDL	BDL	1.43	169	87.7	7.0	1.33	3.06	3.73	
11/25/94	11:07				4.00	COL	DUC	BDL	BDL	BDL	BDL .	170	BDL	BDL	BDL	0.32	175 .	84.9	7.4	1.34	3.81	4.73	
12/06/94	10:20			· ·													· .	STOP	7.4	1.34	3.86	4.79	
12/06/94	11:02	BDL	BDL	BDL	1.62	BDL	BDL	BDL	BDL	1.10	BDL	29.8	BDL	BDL	BDL	BDL	32.5	START 41.9	0.0 2.8	0.00	3.86	4.79	
12/06/94	17:00	•														DDL		STOP	2.8	0.12 0.12	3.89 4.14	4.79 4.82	
12/08/94	09:15 10:20	BDL	BOL				· · · ·											START	0.0	0.00	4.14	4.82	
12/08/94	15:42	BDL	BDL	BDL	3.06 3.27	BDL BDL	BDL BDL	BDL BDL	BDL	0.96	BDL	27.6	BDL	BDL ·	BDL	BDL	31.6	47.3	2.9	0.13	4.18	4.83	
12/09/94	10:45	BDL	BDL	BDL	2.59	BDL	BDL	BDL	BDL .	BDL	BDL	26.2	BDL	BDL	BDL	BDL	29.5	47.3	2.9	0.13	4.41	4.85	
12/09/94	14:41	BDL	BDL	BDL	2.41	BDL	BDL	BDL	BDL	BDL	BDL	21.1 19.4	BDL BDL	BDL	BDL BDL	0.33	24.0	52.1	3.0	0.11	5.20	4.95	
12/10/94	11:43	BDL	BDL	BDL	1.93	BOL	BDL.	BDL	BDL	BDL	BDL	16.6	BDL	BDL	BDL	BDL BDL	21.8 18.5	56.8 56.4	3.2 · 3.6	0.11	5.36	4.97	
12/10/94	14:01	BDL	BOL	BDL	1.98	BDL	BDL.	BDL	BDL	BDL	BDL	16.5	BDL	BOL	BDL	BDL	18.4	50.4	3.6	0.09 0.09	6.24 6.34	5.06 5.07	
12/11/94 12/12/94	13:55 13:05	BDL BDL	BDL	BOL	1.55	BDL	BDL	BDL	BDL .	BDL	BDL	14.9	BDL	BDL	BDL	BDL	16.4	51.9	3.4	0.08	7.33	5.07	
12/12/94	. 14:50	BDL	BDL BDL	BDL BDL	· 1.25 1.43	BDL BDL	BDL	BDL	BDL	BDL	BDL	12.0	BDL	BOL	BDL	BDL	13.3	54.0	3.6	0.06	8.30	5.21	
12/13/94	11:23	BDL	BOL	BDL	1.43	BDL	BDL	BDL BDL	BDL	BDL	BDL	12.3	BDL	BDL	BDL	BDL	13.7	54.0	3.6	0.07	8.37	5.22	
12/14/94	11:17	BDL	BDL	BDL	BDL	BDL ·	BDL	BDL	BDL	8DL BDL	BDL BDL	11.7	8DL	BDL	BDL	BDL	12.9	54.2	. 3.4	0.06	9.23	5.27	
12/14/94	15:27	BDL	BDL	BDL	0.93	BOL	BDL	BDL	BDL	BDL	BDL	12.8 10.3	BDL BDL	BDL BDL	BDL BDL	BDL BDL	12.8	56.2	. 3.5	0.06	10.2	5.34	
12/15/94	11:08	BDL.	BDL	BDL	0.83	BOL	BDL	BDL	BDL	BDL	BOI	0.6	BOL	BDL	BDL	0.57	11.3 10.9	54.0 49.3	3.6	0.05	10:4	5.35	
12/15/94	20:30									-	DDL .					0.57	10.8	49.3 STOP	· 3.5 3.5	0.05	` 11.2 11.6	5.39	
12/15/94 12/16/94	21:00 11:24	80	0.01														·	START	0.0	0.00	11.6	5.41 5.41	
12/17/94	11:24	BDL .	BDL BDL	BDL BDL	0.86 BDL	BDL	BDL BDL	BDL	BDL	BDL	BDL	9.1	BDL	BDL	BDL	BDL	10.0	51.7	3.5	0.05	12.2	5.42	
12/18/94	11:01	BDL	BDL	BDL	BDL	BDL	BDL	BDL BDL	BDL	BDL	BDL	8.97	BDL	BDL	BDL	BDL	8.97	54.1	3.5	0.04	13.2	5.47	
12/19/94	11:34	BDL	BDL	BDL	BDL	BDL	BOL	BDL	BDL	BDL BDL	BDL BDL	7.94	BDL	BDL	BDL	BDL	7.94	49.4	3.4	0.04	14.2	5.51	
12/20/94	11:10								00L	JUL	DUL.	8.25	BDL	BDL	BDL	BDL	8.25	49.3	3.5	0.04	15.2	5.54	
														•				STOP	3.5	0.04	16.2	5.58	

TERRA VAC CO PROJECT #24- VE - 2		N				•													DRY C	ERGER & ASS CLEANING FA		
																				VE - 2		. ·
DATE	70.05		t-1,2-	1,1-	o-1,2-		1,2-	1,1,1-					CHLORO-	ETHYL		OTHER	TOTAL				RUN	TOTAL
DATE	TIME	CH2CL2 (ug/l)	DCE (ug/l)	DCA · (ug/l)	DCE (ug/l)	CHCL3 (ug/l)	DCA (ug/l)	TCA (ug/l)	BENZENE (ug/l)	TCE (ug/l)	TOLUENE (ug/l)	PCE (ug/l)	BENZENE (ug/l)	BENZENE (ug/l)	XYLENES (ug/l)	VOC (ug/l)	VOC (ug/l)	FLOW (SCFM)	VACUUM ("Hg)	RATE (LB/DAY)	TIME (DAYS)	TOTAL POUNDS REMOVED
11/25/94	11:07		•				,											(,	(	(000/11)	(6/(10)	KENOVED
11/25/94	11:15	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	33.6	·			•		START		0	0	0
11/25/94	11:52	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	41.2	BDL	BDL BDL	BDL	BDL	33.6	54,1	6.2	0.16	0.01	0.00
11/25/94	12:28	BOL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	52.8	BDL	BDL	BDL .	BDL	41.2 52.8	54.3	5.8	0.20	0.03	0.01
11/25/94	13:59	BDL.	BDL	BDL	1.17	BDL	BDL	BDL	BDL	BDL	BDL	55.6	BOL	BDL	BDL	0.27	57.0	6 50.2 50.2	6.0 6.4	0.24 0.26	0.06	0.01
11/25/94	14:59 15:59	BDL BDL	BDL	BDL	1.87	BDL	BDL	BDL	BDL	BDL	BDL	58.6	BDL	BOL	BDL	0.49	61.0	45.8	6.4	0.26	0.12	0.03
11/25/94	16:36	BDL BDL	BDL BDL	BDL . BDL	2.24	BDL	BDL	BDL	BDL	1.07	BDL	59.7	BDL	BDL	BDL	0.48	63,5	45.8	6.4	. 0.26	0.10	0.04
11/26/94	10:05	BDL	BDL	BOL	2.28 3.69	BDL BDL	BDL	BDL	BDL	BDL	BDL	56.9	BDL	BDL	BDL	0.23	59.5	40.9	. 6.4	, 0.22	0.23	0.05
11/26/94	11:23	BDL	BDL	BDL	3.75	BDL	BDL BDL	BDL	BDL BDL	BDL	BDL	53.0	BDL	BDL	BOL	0.50	57.2	39.8	7.8	0.20	0.96	0.21
11/26/94	13:50	BDL	BDL	BDL	3.28	BOL	BDL	BDL	BDL	BDL BDL	BDL . BDL	50.6	BDL	BDL	BDL	BDL	54.3	39.5	, 7.8	0.19	1.01	0.22
11/26/94	15:10	BDL	BDL	BDL	3.08	BOL	BDL	BDL	BDL	BDL	BDL	52.0 46.6	BDL BDL	BDL BDL	BDL	BDL	55.2	34.2	7.9	0.17	1.11	0.24
11/26/94	15:47	BDL	BDL	BDL	1.99	BDL	BDL	BDL	BDL	BDL	BDL	40.0	BDL	BDL	BDL BDL	BDL	49.7	28.2	4.6	0.13	1.17	0.25
11/26/94	16:26	BDL	BDL	BDL	3.14	BDL	BDL	BDL	BDL	BDL	BDL	49.3	BDL	BDL	BDL	BDL 0.55	49.0 53.0	34.4	4.6	0.15	1.19	0.25
11/26/94	17:02	BDL	BDL	BDL	3.19	BDL	BDL	BDL	BDL	BDL	BDL	49.5	BDL	BDL	BDL	BDL	52.6	34.4 28.1	4.4	0.16	1.22	0.25
11/27/94 11/27/94	10:13 11:31	BDL BDL	BDL	BDL	2.97	BDL	BDL	BDL	BDL	BDL	BDL	67.6	BDL	BDL	BDL	0.14	70.7	34,5	4.4 5.8	0.13 0.22	1.25 1.96	0.26 0.38
11/27/94	12:30	BDL	BDL BDL	BDL BDL	2.92	BDL	BDL	BDL	BDL	BDL	BDL	58.8	BDL	BDL	BDL .	1.62	63.3	34.6	5.8	0.22	2.02	0.38
11/27/94	13:42	8DL	BDL	BDL	2.10 2.15	BDL BDL	BDL BDL	BDL	BDL	BDL	BDL	31.3	BDL	BDL	BDL	0.26	33.6	28.0	2.0	0.08	2.06	0.40
11/27/94	15:09	BDL	BDL	BDL	1.79	BDL	BDL	BDL BDL	BDL BDL	BDL	BDL	34.2	BDL	BDL	BDL	0.34	36.7	28.0	.1.6	0.09	2.11	0.41
11/27/94	16:08	BDL	BDL	BDL	1.60	BDL	BDL	BDL	BDL	BDL	BDL BDL	41.5	8DL	BDL	BDL	0.30	43.6	28.0	1.4	0.11	2.17	0.41
11/28/94	09:44	BDL	BDL	BDL	1.61	BDL	BDL	BDL	BDL	BDL	BDL	40.0	BDL BDL	BDL BDL	BDL	BDL	41,6	28.1	1.4	0.10	2.21	0.42
11/28/94	11:06	BDL	BOL	BDL	1.79	BDL	BDL	BDL	BDL	BDL	BDL	39.6	BDL	BDL	BDL BDL	0.32 0.45	41.5 41.8	27.8	1.2	0.10	2.94	0.49
11/28/94	11:58	BDL	BDL.	BDL	. 1.71	, BDL /	BDL	BDL-	BDL	BDL	BDL	38,9	BDL	BDL	BDL	0.45	41.0	· 27.8 27.7	1.1	0.10	3.00	0.50
11/28/94 11/28/94	13:26	BDL	BDL	BDL	1.75	BDL	BOL	BDL	BDL	BDL	BDL	40.0	BOL	BDL	BDL	0.61	42.4	27.6	1.2 1.2	0.10 0.11	3.04 3.10	0.50
11/28/94	14:04 14:50	BDL BDL	BDL BDL	BDL BDL	2.02 1.79	BDL	BDL	BDL	BDL ,	BDL	BDL	42.3	BDL	BDL	BDL	0.42	44.8	27.6	1.2	0.11	3.10	0.51
11/28/94	15:30	BDL	BDL	BDL	1.79	BDL BDL	BDL BDL	BDL	BDL	BDL	BDL	41.9	BDL	BDL	8DL	0.67	44.3	27.8	1.1	0.11	.3.15	. 0.51
11/28/94	16:10	BDL	BDL	BDL	2.00	BDL	BDL	BDL BDL	BDL BDL	BDL	BDL	42.1	BDL	BDL .	BDL	0.61	44.7	27.7	1.4	0.11	3,18	0.52
11/28/94	17:15	BDL	BDL	BDL	1.91	BDL	BDL	BDL	BDL	BDL BDL	BDL BDL	44.2 42.3	BDL ·	BDL	BDL	0.66	47.0	27.8	1.1	0.12	3.21	0.52
11/29/94	09:37	BDL	BDL	BDL	1.86	BDL	BDL	BDL	BDL	BDL	BDL	42.3	BDL BDL	BDL BDL	BDL BDL	0.74	45.0	27.8	1,4	· 0.11	3.26	0.53
11/29/94	10:10											50.4	DDL	BUL	DUL .	0.78	42.0	27.2	1.4	0.10	3.94	0.60
12/06/94	10:20																	STOP START	1.4 0.0	0,10	3.96	0.60
12/06/94 12/06/94	12:07 17:00	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	22.2	BOL	BDL	BDL	BDL	22.2	22.4	2.8	0.00 0.04	3.96 4.03	0.60 0.60
12/08/94	09:15			•			•						·					STOP	2.8	0.04	4.24	0.60
12/08/94	11:10	BDL	BDL	BDL	BDL	BDL	BDL	BOL	BDL									START	0.0	0.00	4.24	0.61
12/08/94	15:42	BDL	BDL	BDL	1.03	BDL	BDL	BDL	BDL	BDL BDL	BDL BDL	29.0	BDL	0.27	BDL	BDL	29.3	15.7	2.8	0.04	4.32	0.61
12/09/94	10:45	BDL	BDL	BDL	BDL	BOL	BDL	BDL	BDL	BOL	BDL	21.9 19.6	BDL BDL	0.23	BDL	BDL	23.2	15.8	2.8	0.03	4.51	0.62
12/09/94	14:41	BDL	BDL	BDL	BOL	BDL	BDL	BDL	BDL	BDL	BDL	18.7	BDL	BDL	BOL	0.26	19.8	11.2	3.0	0.02	5.30	0.64
12/10/94	11:43	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	18.4	BDL	BDL	BDL	BDL BDL	18.7 18.4	27.2 19.1	3.2	0.05	5.47	0.65
12/11/94	13:55	BDL .	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	18.2	BDL	BDL	BDL	BDL	18.2	15.6	3.4 3.4	0.03	6.34	0.68
12/12/94 12/12/94	13:05 14:30	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	13.0	BDL	BDL	BDL	BDL	13.0	11.1	3.4	0.03	7.43 8.40	0.71 0.73
12/13/94	11:23	BDL	BDL BDL	BDL BDL	BDL BDL	BDL BDL	BDL	BDL	BDL	BDL	BDL	12.8	BDL	BDL	BDL 1	BDL	12.8	11.1	3.2	0.01	8.46	0.73
12/14/94	11:17	BDL	8DL	BDL	BDL	BOL	BDL BDL	BDL	BDL	BDL	BDL	13.0	BDL	BDL	BDL	BDL	13.0	8.56	3.4	0.01	9.33	0.74
12/14/94	15:27	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL BDL	BDL	12.8	BDL	BDL	BDL	BDL	12.8	8.53	3.5	0.01	10.3	0.75
12/15/94	11:08	BDL	BDL	BDL	BDL	BDL	8DL	BDL	BDL	BDL	BDL BDL	10.9	BDL	BDL	BDL	BDL	10.9	8.52	3.6	0.01	10.5	0.75
12/15/94	20:30									DUL	BUL	11.9	BDL	BDL	BDL	BDL	11.9	6.97	3.5	0.01	11.3	0.76
12/15/94	21:00																•	STOP	3.5	0.01	11.7	0.76
12/16/94	11:24	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL .	BDL	13.2	BDL	BDL	BDL	BDL	13.2	START 15.5	0.0	0.00	11.7	0.76
12/17/94	12:01	BDL	BDL	BDL	BDL	BDL	BDL	BDL	8DL	BDL	BDL	11.6	BDL	BDL	BDL	BDL	11.6	19.1	3.6 3.4 \	0.02	12.3 13.3	0.77
12/18/94 12/19/94	11:01 12:10	BDL BDL	BDL BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	11.9	BDL	BDL	BDL	BOL	11.9	20.8	3.6	0.02	13.3	0.79 0.81
12/20/94	12:10	DUL	BUL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	11.4	BDL	BDL	BDL	BDL	11.4	24.6	3.5	0.02	15.3	0.83
						,												STOP	3.5	0.03	16.3	0.85

									- :	•												
TERRA VAC C	ORPORATIO	NN																				
PROJECT #24																			LOUIS BE	ERGER & ASS	OCIATES	
VE-3					· .									•						LEANING FA		
														۰.						VE - 3		
			t-1,2-				4.9.1															
DATE	TIME	CH2CL2	DCE	1,1- DCA	c-1,2-		1,2-	1,1,1-					CHLORO-	ETHYL		OTHER	TOTAL				RUN	TOTAL
DATE	TIME				DCE	CHCL3	DCA	TCA	BENZENE	TCE	TOLUENE	PCE	BENZENE	BENZENE	XYLÈNES	VOC	VOC	FLOW	VACUUM	RATE	TIME	POUNDS
		. (ug/l)	(ug/l)	(ug/l)	(ug/l)	(ug/i)	(ug/l)	(ug/l)	(ug/l)	(ug/l)	(ug/l)	(ug/l)	(ug/l)	(ug/l)	(ug/l)	(ug/l)	(ug/l)	(SCFM)	("Hg)	(LB/DAY)	(DAYS)	REMOVED
																	(	(,	( •••••)	(	(5/110)	ILLING VED
11/29/94	10:10			•				•										START		0	0	•
11/29/94	10:22	BDL	BDL	BDL	18.1	BDL	BDL	BDL	BDL	3.11	BDL	954	BDL	BDL	BDL	2.77	978	39.1	4.0	3.44	-	0
11/29/94	10:59	8DL	BDL	BDL	14.3	8DL	BDL	BDL	BDL	2.73	BDL	806	BDL	BOL	BDL	6.86	830	39.0	3.6	2.91	0.01	0.03
11/29/94	11:38	BDL	BDL	BDL	13.9	BDL	BOL	BDL	BDL	2.55	BDL	773	BDL .	BDL	BDL	11.0	800	39.1			0.03	0.11
11/29/94	12:41	BDL	BDL	BDL	12.7	BDL	BDL	BDL	BDL	2.35	BDL	671	BDL	BDL	BDL	. 9.52			3.6	2.81	0.06	0.19
11/29/94	14:03	BDL	BDL	BOL	11.4	BDL.	BDL	BDL	BDL	1.96	BDL	607	BDL	BDL	BDL		695	39.1	· 3.4	2.44	0.10	0.30
11/29/94	14:40	BDL	BDL	BDL	- 11.6	BDL	BDL	BDL	BDL	1.92	BDL	589	BDL	BDL		8.94	629	39.2	3.2	2.22	0:16	0,44
11/29/94	15:22	BDL	BDL	BDL	11.5	BDL	BDL	BDL	BDL	1.86	BDL	589	BDL		BDL	5.71	608	39.2	3.2	2.14	0.19	0.49
11/29/94	16:00	BDL	BDL	BDL	10.9	BDL	BDL	BDL	BDL	1.64	BDL	562	BDL	BDL	BDL	9.53	612	39.2	3.0	2.15	0.22	0.55
11/29/94	16:40	BDL	BDL	BDL	9.86	BDL	BDL	BDL	BDL	1.63	BDL			BDL	8DL	8.34	583	39.2	3.0	2.05	0.24	0.61
11/29/94	17:19	BDL	BDL	BDL	10.1.	BDL	BDL	BDL	BDL	1.03	BDL	515	BDL	BDL	BDL	7.03	534	39.0	3.0	1.87	0.27	0.66
11/30/94	10:20	BDL	BDL	. BDL	6.22	BDL	BDL	BDL	BDL			513	BDL	BDL	BDL	6.07	531	39.2	3.0	1.87	0.30	0.71
11/30/94	12:04	BDL	BDL ·	BOL	6.72	BDL	BDL	BDL		0.57	BDL	362	BDL	BDL	BDL	4.90	374	38.8	2.8	1.30	1.01	1.84
11/30/94	13:34	BDL	BDL	BDL	6.72	BDL	BDL		BDL	BDL	BDL	431	BDL	BDL	BDL	, 8.46	447	63.0	7.3	2.53	1.08	1.98
11/30/94	14:40	BDL	BDL	BDL	6.62			BDL	BDL	1.39	BDL	409	BDL	BDL	BDL	6.61	424	62.9	7.3	2.40	1.14	2.13
11/30/94	15:27	BDL	BDL	BDL		BDL	BDL	BDL	BDL	1.18	BDL	397	BDL	BDL	BDL	7.43	413	63.2	7.2	2.34	1.19	2.24
11/30/94		BDL			6.27	BDL	BDL	BDL	BDL	1.28	BDL	386	BDL	BDL	BDL	6.81	401	62.9	7.3	2.27	1.22	2.32
11/30/94	16:08		BDL	BDL	6.05	BDL	BDL	BDL	BDL	BDL	BDL	383	BDL	BDL	BDL	6.85	396	62.8	7.4	2.23	1.25	2.38
	16:47	BDL	BDL	BOL	5.87	BDL	BOL	BDL	BDL	BDL	BDL	371	BDL	BDL ·	BDL	5.51	382	62.8	7,6	2.16	1.28	2.44
11/30/94	17:28	BDL	BDL	BDL	5.80	BDL	BDL	BDL	BDL	BDL	BDL	364	BDL	BDL	BDL	5.45	375	62.8	7.7	2.12	1.30	2.50
12/01/94	09:57	BDL	BDL	BDL	4.43	BDL	BDL	BDL	BDL	BDL	BDL	327	BDL	BDL	BDL	1.78	334	64.4	7.8	1.93	1.99	3.89
12/01/94	10:38	BDL	BDL	BDL	4.31	BDL	BDL	BDL	BDL	BDL	BDL	334	BDL	BDL	BDL	1.77	340	64.3	7.6	1.97		
12/01/94	<b>`11:33</b>	BDL	BOL	BDL	ູ 4.19	BDL	BDL	BDL	BDL	BDL	BDL	327	BDL	BDL	BDL	1.46	332	64.3	7.6		2.02	3.95
12/01/94	12:27	BDL	8DL	BDL	4.06	BDL	BDL	BDL	BDL	BDL	BDL	324	BDL	BDL	BDL	1.76	330	64.6	7.5	1.92	2.06	4.02
12/01/94	15:10	BDL	BDL	BDL	3.95	BDL	BDL -	BOL	BDL .	BDL	BDL	316	BOL	BDL	BDL	1.73	322			1.91	2.10	4.09
12/01/94	15:18	BDL	BDL	BOL	4.06	BDL	BOL	BDL	BDL	BDL	BDL	314	BOL	BDL	BOL	1.15		64.6	7.4	1.87	2.21	4.31
12/01/94	16:03	BDL	BDL	BDL	4.11	8DL	BDL	BDL	8DL	BDL	BDL	332	BDL	BDL	BDL		319	64.8	7.4	1.86	2.21	4.32
12/01/94	16:44	BDL	BDL	BDL	4.00	8DL	BDL	BDL	BDL	BDL	BDL	329	BDL	BDL	BDL	1.16	337	69.0	8.3	2.09	2.25	4.38
12/01/94	17:33	BDL	BDL	BDL	3.92	BDL	BDL	BDL	BDL	BDL	BDL	325	BDL	BDL		0.78	. 334	69.0	8.3	2.07	2.27	4.44
12/02/94	10:00	BDL	BDL	BDL	3.17	BDL	BDL	BDL	BDL	BDL	BDL	281	BDL	BDL	BDL	1.21	330	66.0	8.3	1.96	2.31	4.51
12/02/94	12:32	BDL	BDL	BDL	3.12	BDL	BDL	BDL	BDL	BDL	BDL	279			BDL	0.35	284	77.2	8.2	1.97	2.99	5.86
12/02/94	13:15							002	DDL	DUC	BUL	2/8	BDL	BDL	BDL	0.31	. 282	77.1	8.2	1.96	3.10	6.06
12/06/94	10:20									• •					÷			STOP	8.2	1.96	3.13	6.12
12/06/94	12:07	BDL	BDL	BDL	3.53	BDL	BDL	BDL	BDL	BDL	BDL							START	. 0.0	0.00	3.13	6.12
12/06/94	17:00				0.00	DDL	DDL	DDC	001	DDL	DUL	352	BDL	BDL	BDL	1.11	356	47.6	2.7	1.52	3.20	6.18
12/08/94	09:15										•		· ·					STOP	2.7	1.52	3.41	6.49
12/08/94	14:04	BDL	BDL	BDL	2.52	BDL	BDL	BDL	BDL									START	0.0	0.00	3.41	6.49
12/08/94	16:27	BDL	BOL	BDL	2.52	BDL	BDL	BDL	BDL	BDL	BDL	282	BDL .	BDL	BDL	BDL	285	46.8	2.9	1.20	3.61	6.61
12/09/94	12:59	BDL	BDL	BDL	2.30	BDL	BDL	BDL		BDL	BDL	289	BDL	BDL	BDL	BDL	292	49.3	2.8	1.29	3.71	6.73
12/09/94	15:35	BDL	BDL	BDL	∡.32 1.95	BDL	BDL		BDL	BOL	BDL	280	BDL	BDL	BDL	0.38	283	46.7	3.0	1.19	4.58	7.79
12/10/94	13:15	BDL	BDL	BDL	1.85	BDL		BDL	BDL	BDL	BDL	274	BDL	BDL	BDL	0.28	277	51.5	3.1	1.28	4.67	7.93
12/10/94	14:45	BDL	BDL	BDL			BDL	BDL	BDL	BDL	BDL	212	BDL	BDL	BOL	BDL	214	51.2	. 3.4	0.98	5.57	8.95
12/11/94	15:45	BDL	BDL	BDL	1.78	BDL	BDL	BDL	BDL	BDL	BDL	211	BDL	BDL	BDL	BDL	213	48.8	3.4	0.93	5.64	9.01
12/12/94	14:05	BDL	BOL			BDL	BDL	BDL	BDL	BDL	BDL	181	BDL	BDL	BDL	0.62	183	51.3	3.3	0.84	6.68	9.94
12/12/94				BDL -	1.06	BDL	BDL	BDL	BDL	BDL	BDL	144	BDL	BDL	BDL	BDL	145	51.4	3.2	0.67	7.61	10.6
12/12/94	15:30 12:04	BDL	BDL	BDL	1.07	BDL	BDL	BDL	BDL	BDL	BDL	i 141. ·	BDL	BDL	BDL	BDL	142	51.4	3.2	0.66	7.67	10.7
		BDL	BDL	BDL	0.97	BDL	BDL	BDL	BDL	BDL	BDL	135	BDL	BDL	BDL	BDL	136	50.0	3.5	0.61	8.53	11.2
12/14/94	11:55	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	111	BDL	BDL	BDL	BDL	111	51.0	3.6	0.51	9.52	11.2
12/14/94	16:08	BDL	BOL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	95.4	BDL	BDL	BDL	BDL	95.4	48.9	3.4	0.42	9.69	11.9
12/15/94	11:48	BDL	BOL	BDL	0.77	BDL	BDL ·	BDL	BDL	BDL	BDL	99.5	BDL	BOL	BDL	BDL	100	48.8	3.5	0.44	10.5	12.2
12/15/94	20:30			•									-					STOP .	3.5	0.44	10.5	
12/15/94	21:00																	START	0.0			12.4
12/16/94	12:00	BDL	BDL	BDL	0.81	BDL ·	BDL	BDL	BDL	BDL	BOL	92.4	BDL	BDL	BDL	BDL	93.2	48.8		0.00	10.9	12.4
12/17/94	12:38	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	79.2	BDL	BDL	BDL	BDL	93.2 79.2	48.8	3.4	0.41	11.5	12.5
12/18/94	11:37	8DL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	70.5	BDL	BDL	BDL	BDL	79.2	53.5	3.5	0.36	12.5	12.9
12/19/94	12:47	BDL.	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	66.5	BDL	BDL	BDL	BDL			3.4	0.34	13.5	13.2
12/20/94	11:10						•							DUC	BUL	BUL	66.5	55.8	3.4	0.33	14.5	13.6
									1. 1.							10 J. 10		STOP	3.4	0.33	15.5	13.9
DEL OW DETEC																						

		•							1. C			•										
TERRA VAC CI PROJECT #24- VE - 4		N ·				•	,		•			·					•		DRYC	RGER & ASS LEANING FA		
DAŢE	TIME	CH2CL2 (ug/l)	t-1,2- DCE (ug/l)	1,1- DCA (ug/l)	c-1,2- DCE (ug/l)	CHCL3 (ug/l)	1,2- DCA (ug/l)	1,1,1- TCA (ug/l)	BENZENE (ug/l)	TCE (ug/i)	TOLUENE (ugA)	PCE (ug/l)	CHLORO- BENZENE (ug/l)	ETHYL BENZENE (ug/l)	XYLENES (ug/l)	OTHER VOC (ug/l)	TOTAL VOC (ug/l)	FLOW (SCFM)	VACUUM ("Hg)	RATE (LB/DAY)	RUN TIME (DAYS)	TOTAL POUNDS REMOVED
12/02/94	15:00																	START		0	. 0	0
12/02/94	15:25	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	4.59	BDL	BDL	BDL	27.6	32.2	42.8	3.0	0.12	0.02	0.00
12/02/94	16:11	BDL	BDL	BDL.	BDL	BDL	BDL	BDL	BDL	BDL	BDL	4.46	BDL	BOL	BDL	11.6	16.1	42.7	3.0	0.06	0.02	0.00
12/02/94	16:51	BDL	BDL	BDL	BDL	8DL	BDL	BDL	BDL	BDL	BDL	4.21	BDL	BDL	BDL	7.21	11.4	42.7	3.0	0.00	0.03	0.00
12/02/94	17:37	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	4.02	BDL	BDL	BDL	5.52	9.55	42.8	3.0	0.04	0.00	0.01
12/03/94	10:07	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	3,16	BDL	BDL	BDL	2.29	5,45	38.1	. 3.0	0.02	0.80	0.02
12/03/94	10:58	BDL	BDL	BDL	BDL	8DL	BDL	BDL	BDL	BOL	BDL	3.32	BDL	BDL	BDL	2.53	5.85	37.9	3.0	0.02	0.83	0.02
12/03/94	11:46	BDL	BDL	BDL	BDL	8DL	BDL	BDL	BDL .	BDL	BDL	3.38	· BDL	BDL	BOL	2.96	6.34	38.0	3.0	0.02	0.87	0.02
12/03/94	12:35	BDL	BDL	BDL	BDL	BDL	BDL	BOL	BDL	BDL	BDL	3.25	BDL	BDL	BDL	2.34	5.59	42.4	2.9	0.02	0.90	0.02
12/03/94	14:05	BDL	BDL	BDL	BDL .	BDL	BDL	BDL	BDL	BDL	BDL	3.16	BDL	BDL	BDL	2.50	5.67	37.9	2.9	0.02	0.96	0.02
12/03/94	14:50	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	4.35	BDL	BDL	BDL	5.08	9.44	77.4	6.2	0.07	0.99	0.02
12/03/94	15:41	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	3.27	BDL	BDL	BDL	2.39	5.65	77.4	6.2	0.04	1.03	0.03
12/03/94	16:27	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	4.02	BDL	BDL	BDL	2.88	6.90	77.4	6.0	0.05	1.06	0.03
12/03/94	17:06	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	4.18	BDL	BDL	BDL	3.76	7.95	77.8	6.0	0.06	1.09	0.03
12/04/94 12/04/94	10:34 11:16	BDL	BDL	BDL	BDL BDL	BDL BDL	BDL BDL	BDL	BDL	BDL	BDL	5.99	BDL	BDL	BDL	1.17	7.16	85.6	5.6	0.06	1.82	0.07
12/04/94	12:04	BDL	BOL	BDL	BDL	BDL	BDL	BDL	BDL BDL	BDL BDL	BDL BDL	5.84	BDL .	BDL	BDL	1.17	7.02	85.5	5.6	0.05	1.84	0.07
12/04/94	13:25	BOL	BOL	BOL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	5.90	BDL	BDL	BDL	0.78	6.68	85.7	5.5	0.05	1.88	0.07
12/04/94	14:18	BDL	BDL	BDL	BOL	BDL	BDL	BDL	BDL	BDL	BDL -	6.17 6.15	BDL BDL	BDL BDL	BDL	0.55	6.72	85.8	5.5	0.05	1.93	0.08
12/04/94	15:00	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	6.13	BDL	BDL	BDL BDL	0.86 0.99	7.01	93.2 93.2	6.3	0.06	1.97	0.08
12/04/94	15:41	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	6.19	BDL -	BDL	BDL	0.80	6.99	93.2 93.6	6.2 6.0	0.06 0.06	2.00	0.08
12/04/94	16:27	BOL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	6.20	BDL	BDL	BDL	0.83	7.03	93.6	6.0	0.06	2.03 2.06	0.08 0.08
12/05/94	09:55	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	7.49	BDL	BDL	BDL	BDL	7.49	101	6.0	0.08	2.00	0.08
12/05/94	. 10:35	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	7.28	BDL	BDL	BDL	BOL	7.28	101	6.0	0.07	2.82	0.13
12/05/94	11:18	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BOL	BDL	BDL	6.96	BDL	BDL	BDL	BDL	6.96	99.3	6.0	0.06	2.85	0.14
12/05/94	12:09	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	7.50	BDL	BDL	BDL	BDL	7.50	101	6.0	0.07	2.88	0.14
12/05/94	13:26	BDL	BDL	BDL	BDL	BDL	BDL	.BDL	BDL	BDL	BDL	7.79	BDL	BDL	BDL	BDL	7.79	99.1	6.0	0.07	2.93	0.14
12/05/94	14:14	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	8.03	BDL	BDL	BOL	BDL	8.03	99.1	6.0	0.07	2.97	0.14
12/05/94	15:06	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL ·	BDL	BDL	8.00	BDL	BDL	BOL	BOL	8.00	97:3	6.0	0.07	3.00	0.15
12/05/94	15:57	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	8.37	BDL	BDL	BDL	BDL	8.37	96.7	6.0	0.07	3.04	0.15
12/05/94 12/06/94	16:48 10:11	BDL BDL	BDL BDL	BDL BDL	BDL BDL	BDL	BDL ·	BDL	BDL	BDL	BDL	7.91	BDL	BDL	BDL	BDL	7.91	99.2	6.0	0.07	3.08	0.15
12/06/94	12:07	BDL	BDL	BDL	BDL	BDL BDL	BDL BDL	BDL	BDL BDL	BDL BDL	BDL	9.28	BDL	BDL	BDL	BDL	9.28	112	5.8	0.09	3.80	0.22
12/06/94	17:00	UUL	DUL	000	BDL	DUL	BUL	DUL	DDL ,	BUL	BDL	9.92	BDL	BDL	BDL	BDL.	9.92	42.8	1.6	0.04	3.88	0.22
12/08/94	09:15												•					STOP	1.6	0.04	- 4.08	0.23
12/08/94	14:04	BDL	BDL	BDL	BDL	BDL	BDL	BOL	BDL	BOL	BDL	9.18	BDL	BDL	BDL	BDL	9.18	START 32.4	0.0 2.0	0.00	4.08	0.23
12/08/94	16:27	BDL	BDL	BDL	BDL	BDL	BDL ·	BDL	BDL	BDL	BDL .	16.5	BOL	BDL	BDL	BDL	16.5	32.4	2.0	0.05	4.28	0.24 0.24
12/09/94	12:59	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	9.38	BDL	BDL	BDL	0.30	9,66	45.8	2.0	0.04	5.24	0.24
12/09/94	15:35	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	8DL	BDL	9.60	BDL	BDL	BDL	BDL	9.60	48.5	2.1	0.04	5.35	0.28
12/10/94	13:15	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL .	BDL	BDL	10.3	BDL	BDL	BDL	0.22	10.5	42.5	2.4	0.04	6.25	0.32
12/10/94	14:45	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	10.2	BDL	BDL	BDL	BDL	10.2	. 48.3	2.3	0.04	6.31	0.32
12/11/94	15:45	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	14.0	BDL	BDL	BDL	BDL	14.0	48.3	2.3	0.06	7.35	0.38
12/12/94	14:05	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	14.0	BDL	8DL	BDL	BDL	14.0	45.6	2.2	0.06	8.28	0.44
12/12/94	15:30	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	10.3	BDL	BDL	BDL	BDL	10.3	45.6	2.2	0.04	8.34	0.44
12/13/94 12/14/94	12:04 11:55	BDL BDL	BDL	BDL BDL	BDL BDL	BDL BDL	BDL . BDL	BDL	BDL	BDL	BDL .	12.8	BDL	BDL	BOL	BDL	12.8	45.6	2.2	0.05	9.20	0.48
12/14/94	16:08	BDL	BDL	BDL	BDL	BDL	BDL	BDL BDL	BDL	BDL BDL	BDL	12.2	BDL	BDL	BDL	BDL	12.2	53.4	2.3	0.06	10.2	0.54
12/15/94	11:46	BOL	BDL	BOL	BDL	8DL	BDL	BDL	BDL	BDL	BDL .	11.9	BDL BDL	BOL	BDL	BDL	11.9	55.7	. 2.3	0.06	10.4	0.55
12/15/94	20:30		000	001	DPL	UUL	DOL	000	BUL	DUL	BUL	12.9	BUL	BDL	BDL	BDL	12.9	45.6	2.2	0.05	11.2	0.60
12/15/94	21:00																	STOP START	2.2 0.0	0.05	11.6 11.6	0.61
12/16/94	12:38	BDL	8DL	BDL .	BDL	BDL	BDL	BDL	BDL	BDL	BDL	13.1	BDL	BDL	BDL	0.36	13.5	48.5	2.1	0.00	11.6	0,61 0.65
12/17/94	13:15	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	13.8	BDL	BDL	BDL	8DL	13.8	40.5 51.0	. 2.2	0.06	13.2	0.05
12/18/94	11:37	BDL .	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	14.4	BDL	BDL	BDL	BDL	14.4	48.5	2.1	0.06	14.2	0.72
12/19/94	13:24	BDL	BDL	BÐL	BDL	BDL	BDL	BDL	BDL	8DL	BDL	16.5	BDL	BDL	BDL	BDL	16.5	45.7	2.1	0.07	15.2	0.85
12/20/94	11:10										•					· · ·	-	STOP	2.1	0.07	18.1	0.91

## APPENDIX G SUMMARY OF PILOT STUDY VACUUM PROBE MEASUREMENTS

	Air Flow	v From Vac	uum, scfm		Well	#1 - N	Iortheast Arra	У		Well #1	- Northwest	Arrav		Well #2	- South An	COV.	T	Mah	10 Marth C	
Date	Well #1	Well #2 W	eli#3 Weli	4 Probe 1				Probe 4 (25)					Probe 1	Probe 2 P	robe 3(7')	Prohe 4/25	Prohe 1		#2 - West Arra Probe 3(7') . I	
11/21/94 9:00	65				0			.0405 (.045	0.05	Ő	0.05			0.1	0.01	11000 4(20	0	0002	0	1008 4(2
11/22/94 9:00	65				0 .254	15 (.4)	002 (.02)	.0408 (.08)	0.1	0	0.17	0.08		· · · · · · · · · · · · · · · · · · ·	0.005			0		
11/22/94 11:00	75												0	0	0.000		0			
11/23/94 9:00	80			-	0.4(.4	5)	0.02	.0708 (.08)	0.1	0.05	0.17	0.08	_	01(.05 0		001(0)	0			
11/23/94 14:00	90				0.2 .655	5 (.55)	0.04			0.1	0.24		-	0.1	0.01	001(0) r	0		.1215(.15)	
11/24/94 9:00	90			1	0.2	0.5	0.03	.0809 (.085	0.2	0.1	0.19	.091(.09)	0	0.1	0.01	0.01			.1819	
11/25/94 9:00	65			1	0.2	0.5	0.02	.0708 (.075	0.1	0.05			_	0.05	0.01	0.01		_		0.0
11/25/94 11:00		55-45			0.051	I	C	•	0	0	0.01			0.1	0			· 0 0	0.15 0.11	
11/26/94 9:00		40-35			0 005			) (	0	ō	0			0.1	0	0		_		
										Ū				0.1	0.01	0.01	U U		.0305	
11/27/94 13:00		35-28			0	0			0	0	·	) (		0.1	0.01	0.07	· 0		.0106	
11/28/94 9:00		28			0 001					0				0.1	0	_	-	·		<u> </u>
11/29/94 9:00		27			0	0				0				0.1	0		01(.05)		.0103(.01)	
11/29/94 10:00		•	39		0.051		0.02	-		-	-	.0204(.04)		0.1	0	0	0	0	0.01	
11/30/94 9:00		-	39		0	0.1	0.01			0	_							_	.0509(.075	0.0
11/30/94 12:00			63		• •0	0.2		.0506(.55)	0.1	-	.182(.2)	. 0.03 .0709(.08)	-	0.1 0.1	0	0	. 0	-	.0508	0.0
12/1/94 10:00			65		0	0.2	0.05					.0609(.08)		0.1	0				.1921(.2)	0.0
12/1/94 15:00			70		0	0.2	0.05		0.1		.2325(.23)	• •		0.1	_	0			.2226	0.0
12/2/94 10:00				13	0	0.2	0.04					_			0	0			.2226	0.0
12/2/94 11:00				13	ō	0.2	0.06			<b>U.</b> I	.2220(.24)	.1125(.12)	0	· 0.1 0	0	0	0.05		.2329	0.01
12/3/94 10:00		•		39				. 0.00	<b></b>					U	0	0	0	0.	.2224	
12/3/94 12:00				78													· ·			÷
12/4/94 10:00				36											_					
12/4/94 13:00				4									· ·							
12/4/94 15:00				4																,
12/5/94 9:00			1	x									<b></b>							
12/6/94 9:00			·	12						-			ļ							
12/6/94 11:00	42	22		3					L				1							
12/7/94 0:00																				
12/8/94 9:00	47	16	48	13	0	0.5	0.09	0.16	0.02	0.02			<u> </u>		·	·				
12/9/94 9:00	55	27	_	3	0	0.5	0.08				0.4	0.2	0	0	0	0			3643(.38)	
12/9/94 13:00	~~	•,	48-48		0	0.5	0.09	0.15 0.15	0.2	0.2	0.37	0.23	0	0	· 0	0	-	0.035	0.38	
		•	46-49	1	0	0.5	0.09		0.2 0.2	0.2	0.38						0	0.04	0.38	(
12/10/94 0:00	55	19	52 48-49	.332(.3	-					0.2	0.44	0.37								
			<b>UL 40 40</b>			J)	0.1	.1718(.175)	. 0.2	0.2	0.44	0.28	0	0.01	0	0	0.0	350 .:	385435	(
12/11/94 0:00	52	15	51	8.332(.3)		0.5	0.09	0.405	0.2	0.25	0.44	0.24		.0508	0	0				
12/12/94 0:00	55	11		_		0.55	0.09	0.185	0.2	0.2	0.4	0.2		.0409	0	0	0	0.04 .	3943	
12/13/94 0:00	54	. 9		_		0.55	_	0.175		225(.	0.4	0.19		0304	0	0		0.045	0.375	(
12/13/94 0:00	54	8.5			_	0.55	0.1	0.18	0.2	0.22	0.37	0.18		908	0	0	003	0.04	364(.38)	(
	_			-			0.1	0.18	0.2	·	.3643(.38)			008	0	0	003	0.04 .3	364(.36)	. (
12/15/94 0:00	49	7	_		35	0.6	0.1	0.18	0.2 .		3843(.4)	.1619(.19)	0	008	0	0	003	0.04 .3	3838(.36)	(
12/16/94 0:00	52	16	49	9 0.	35	0.55	0.1	0.18	0.2	0.21			0	003	0	0	004	0.045 .3	374	
					<u>.</u>		·		0.2		3741(.38)									
12/17/94 0:00	54	19		_	34	0.6	0.1	0.18	0.21 .2	_		.1319	0	0	0	0	0	0.04	0.42	C
12/18/94 0:00	49	21		-	32	0.6	0.1	0.17	0.22	2125	3537	.1317	0	0	0	0	0	0.04	0.42	<u>,</u> 0
12/19/94 0:00	49	25			31	0.8	0.1	0.17	0.2 .2	2125	3542	.1319	0	0	0	0	0	0.05 .3	3343	0
12/20/94 0:00	49	25	56 4	6 Ö.	31	0.5	0.095	0.155	0.2	0.2	0.36	0.18	0	0	0	0	0	0.045	0.33	<u> </u>

Page 3: c:/spstab.x

	Air Flow	From Vac	uum, sch	• • •		Well #3 - No	rth Array			Well #3	- West Arra	y		Well #4	- Southwest	VernA I	<u> </u>	Wall #4	- Northwe	ast Arrev
Date	Well #1 W	/eli #2 W	ell #3 We	#4 Probe	1	Probe 2 F	robe 3(7')	Probe 4(25')	Probe 1		Probe 3(7')		Probe 1				Probe 1	Probe 2 Pro		
11/21/94 9:00	65				0	0	0	) 0.12									<u></u>			
11/22/94 9:00	65				1	0	Q	0.1	0.05	0	0			·			t			
1/22/94 11:00	75			ł	0.5	0	0	0.1	5									•		
11/23/94 9:00	80				1	0	0	0.14	0.05	0	0.02	0.0	2				ł			
11/23/94 14:00	90						0.02	0.22	.051	. 0	0.02	.0204(.02	)							
11/24/94 9:00	90				0.4	0.1	0.01	0.17	0.05	0.5	.0102	.0103(.02			·····		<u>}</u>		·	
									0.1	0	0.01	.0104					1			
11/25/94 9:00	85				0.4	0.1	0	0,11	0.1	0	0	. (								
11/25/94 11:00	4	5-55		005		0	0	0.01	0	0	0	(								
11/26/94 9:00	34	5-40			. 0	0	0	) (	0	0	0	(								
11/27/94 13:00	3	5-28			ò	0.0	- 01		a a	0	. 0	0.03					<u> </u>			
11/28/94 9:00		28			0	****	)01(.01)	.001(.01)			-	0.0					┣━━━			
11/29/94 9:00	· · · · ·	27			0	0	01(.01)				001(0)	0.01					┣───		i	
11/29/94 10:00			39		0.3	ő	0		0.1		001	0.01 .004	1		· · ·		1			•
11/30/94 9:00			39	_	0.4	0	0					.0103(.03					┣──			
11/30/94 12:00			63		2	0.1	0.01					.0103	1				I .			,
•			63	0.85*		0.1	0				.0203 (.01									
12/1/94 10:00			65	-	0.9		102(.02)		0.4	0		.0506(.05					<b></b>			
12/1/94 15:00			70		1.1		103(.02)		0.4		.0205(.04)	-		•						•
12/2/94 10:00			77	43	1.1		102(.01)		0.4		.04055(.0		_	0	. 0	0.01	0.05			
12/2/94 1:00				43					0.4	Ū	.047.000(.0		1 .		Ų	0.01	0.05	0	. 0	
12/3/94 10:00				39									0	.0	0	0.005	0.05	0	ő	
12/3/94 12:00				78									.051	0	-	103	.12	-	-	.0102 (.0
12/4/94 10:00				86								·	0.1	0	0	0.035	0.2		0.02	
12/4/94 13:00				94		· ·							0.15	Ö	0	0.045			0.02	0.0
12/4/94 15:00				94				•					0.1	ŏ	ō	0.045	0.25		0.025	0.0
12/5/94 9:00				00	,								0.05	0	0	0.04	0.2		0.015	0.0
12/6/94 9:00				12					<u> </u>				0.05	0	0	0.04	0.2		0.02	_
12/8/94 11:00	42	22 '	48	43						•			. 0	0	0.	0.01			0.02	
12/7/94 9:00	ice Storm					·····	÷						<u> </u>						<u> </u>	
12/8/94 9:00	47	16	48	33	3	0	0	0.2	2	0	0	.12(.15)	0	0	0	0.005	0.05	0	0	
12/9/94 9:00	55	-27	47	33	2.5	0	Ö	0.15	1.9	0	0	0.1	0	0	0	0.01	0.00	0	0	0.00
12/9/94 13:00			48-4	9	2.5	0.0	51(.1)	0.25	0.5	0	0	0.1	ō	0.02	0	0.02	0.15	ŏ	0.005	0.0
									0.25	0	0	0.1			-			•	0.000	0.0
12/10/94 9:00	55	19	52 43-4	9 2-2.5		238 0-	.15(0)	.051	0.65	0.02	0.06	0.28	.0204	. 0	0	0.02	.117(.1	0	0.02	0.0
						•			0.39	0.02	0.06	0.15					0.15	0	0.02	0.0
12/11/94 9:00	52	15	51	48 2.0-2.	5(2.4	0.5 .0	311(.07)	.0306(.05)	.3138	.0203	.0608	.1113(.11)	.0104	0	Ō	0.01	0.1	ō		.0102(.0
12/12/94 9:00	55	. 11	50	46 2.2-2.	5	0.8	0.1	.04507	.253	.0203	.071	1218 (.14	0.04	0	0	0.01	.1518	0.		.002(.02
12/13/94 9:00	54	9	50	48 2.2-2.	5	0.5 0-	.1	.0208	.2838	0.03	0.08	0.12	.0405	0	0	0.01	0.17	0	0.01	0.0
12/14/94 9:00	54	8.5	51	55	2.2	0.26 0-	.11	.0106	2.2-2.8	.0103	0.03	0.14	0.04	0	0	0.01	0.17	0	0.01	0.0
12/15/94 9:00	49	7	49	46	2.8	0.29.0	.09	.081(.1)	2.1	0.03	0.03	0.07	0.04	0	0	0.01	12-17	0.00		0.0
12/16/94 9:00	52	18	49	49	2.5	0.3 0-	.06	0.1	.2538	0.03	0.04	.051(.1)	0.04	0	0	0.01	0.1	0.0-0		0.0
12/17/94 9:00	54	40	51		12.4	0.00														
12/17/94 9:00	49	19	51	51 2.2-2.5		0.28		.041	.283	_	.0304	.081(.09)	0.04	0	0	0.01	0.1	.0	0	.0.0
12/10/94 9:00	49	21	54	49	2.5	0.25	0	.051	0.2	0.02	0.03	.071 (.08)	0.04	0	0	0.01	0.1	0.	0	0.0
12/19/94 9:00	49	25	58	46		2528	-	.051		.0102	0.03	0.11	0.04	0	0		_			

Page 3: c:/spstab.xis

**APPENDIX H** MEMORANDUM ON DCF PILOT STUDY POST EXTRACTION SOIL AND GROUNDWATER SAMPLING

# Louis Berger and Associates



814 W. Diamond Avenue Gaithersburg, MD 20878

(301) 216-0664 (Telephone) (301) 216-2205 (Telefax)

### MEMORANDUM

то:	Commander, Engineer District Kansas City Attn: CEMRK-EP-EA, Garth Anderson Kansas City, MO 64106
FROM:	Fred McCarthy
DATE:	13 April 1995
RE:	DCF Pilot Test Study Post Extraction Soil and Groundwater Sampling
CC:	Katie Watson, Mike Greene, Jim Stamatis, Susan Knauf, Larry Cerrillo, George Parri

#### Introduction

The purpose of this memorandum is to present the proposed locations and sampling procedures for the postextraction subsurface soil and groundwater sampling at the Dry Cleaning Facilities Area located in Fort Riley, Kansas. The intent of performing post extraction sampling is to compare results with baseline soil and groundwater data so as to evaluate the effectiveness of the pilot test system operation.

#### **Proposed Locations and Sampling Methodology**

#### **Subsurface Soil Sampling Locations**

The three post-extraction soil borings will be located as shown on Figure 1. These soil borings are located approximately two feet northeast of the baseline borings which were sampled in October 1994. No post extraction soil samples are proposed for collection adjacent to DCF94-21 because baseline results for this area indicated non-detection of VOCs. At each of the three boring locations, three (3) split spoon samples will be obtained. They will represent the shallow depth (approximately 1.0 - 3.0 ft); intermediate depth (approximately 15.0 - 17.0 ft); and a six inch interval above the groundwater table. Specific sample depths will be determined based upon soil screening with a PID and the intervals sampled during baseline sampling. Samples with the highest PID reading will be collected for analysis. A total of nine samples will be collected and analyzed for VOCs by EPA method 8010. Sampling will be performed according to the procedures

established in the QAPP dated 9 January 1995 and the Draft Final Workplan dated March 1994.

### **Groundwater Sampling Locations**

Post extraction groundwater samples will be collected from four wells: DCF94ES-1B, -2B, -3B, and DCF94-21. Samples will be analysed for VOCs by EPA Method 8010. Sampling will be performed according to the QAPP dated 9 January 1995 and the Draft Final Workplan dated March 1994.

### Schedule

The Post extraction subsurface soil sampling is scheduled for 24 through 27 April 1995 and the groundwater sampling will follow on 1 through 3 May.

Attachment