
FILE COPY

9/8/94

Submitted by:

OHM Remediation Services Corp. Midwest Region

Approved by:

Jerry Resnik Project Manager

September 8, 1994 Project 15747

This information is the exclusive property of the party to whom it is addressed. OHM Remediation Services Corp. assumes no responsibility or liability for the reliance hereon or use hereof by anyone other than the party to whom it is addressed. \bigcirc 1994 OHM Remediation Services Corp.

. . . .

FINAL REPORT FOR THE RAPID RESPONSE REPLACEMENT OF SANITARY SEWER LINE BUILDING 180-183 AT FORT RILEY, KANSAS S. CONTRACT NO. DACW45-94-D-005 DELIVERY ORDER NO. 3 15 <u>ch</u> Submitted by: +1OHM Remediation Services Corp. Midwest Region Approved by: Jerry Resnik Project Manager September 8, 1994 Project 15747 This information is the exclusive property of the party to whom it is addressed. OHM Remediation Services Corp. assumes no responsibility or liability for the reliance hereon or use hereof by anyone other than the party to whom it is addressed. ©1994 OHM Remediation Services Corp. 195 Sec. Sec. ages 1.13

TABLE OF CONTENTS

		EXECUTIVE SUMMARY	ES-1
	1.0	INTRODUCTION	1-1
		1.1 SITE HISTORY	1-1
		1.2 DOCUMENT ORGANIZATION	, 1-1
	2.0	SCOPE OF WORK	2-1
		2.1 FINAL REPORT DEVELOPMENT	2-1
		2.2 MOBILIZATION/DEMOBILIZATION	2-2
-		2.3 SITE PREPARATION AND TEARDOWN	2-2
		2.4 OLD SEWER LINE EXCAVATION	2-2
		2.5 SEWER LINE INSTALLATION	2-3
		2.6 EXCAVATION BACKFILL	2-3
		2.7 CONTRACT MODIFICATIONS	2-4
		2.8 TRANSPORTATION AND DISPOSAL	2-4
		2.9 DEMOBILIZATION	2-4
		FIGURE 2.1, SEWER SITE MAP	2-5
		FIGURE 2.2, AS-BUILT SANITARY SWER LINE	2-5
	·	FIGURE 2.3, GENERAL SEWER LINE LAYOUT	2-0 2-7
	3.0	TECHNICAL APPROACH	3-1
		3.1 SCHEDULE MONITORING AND CONTROL	3-1
		3.2 PRE-CONSTRUCTION ACTIVITIES	3-1 3-1
		3.3 CONSTRUCTION ACTIVITIES	3-3
ж. 		FIGURE 3.1, SCHEDULE	3-2
-		TABLE 3.1, ROLL-OFF ANALYTICAL RESULTS	3-2 3-4
() ·	4.0	PROJECT TEAM AND ORGANIZATION	4-1
	4.0		4-1
	5.0	SUMMARY	5-1
.• .•	APPE	NDIX A - CONTRACTORS SAMPLING AND ANALYSIS PLAN	
	APPE	NDIX B - SITE SAFETY AND HEALTH PLAN	
	APPE	NDIX C - AIR MONITORING LOGS	
	APPE	NDIX D - QUALITY CONTROL REPORT AND DAILY WORK ORDERS	
		NDIX E - ANALYTICAL DATA	
	÷.,		
-			

©1994 OHM Remediation Services Corp.

÷

APPENDIX F - WASTE SHIPPING PAPERS APPENDIX G - PHOTO DOCUMENTATION APPENDIX H - CORRESPONDENCE APPENDIX I - SIGN IN/OUT LOG APPENDIX J - HEALTH AND SAFETY INFORMATION APPENDIX K - RECORD OF COMMUNICATION - ROLL-OFF DISPOSAL APPENDIX L - CERTIFICATE OF DESTRUCTION APPENDIX M - ASSOCIATED ENVIRONMENTAL, INC. PAPERWORK APPENDIX N - CATEGORY III SUBMITTALS

©1994 OHM Remediation Services Corp.

n 200**8**00 - 100 - 100 - 100 - 100 - 100

EXECUTIVE SUMMARY .

OHM Remediation Services Corp. (OHM), a wholly owned subsidiary of OHM Corporation, was contracted under Contract DACW-94-D-005, Delivery Order No. 3, with the United States Army Corps of Engineers (USACE), Omaha District, to execute the removal and replacement of a sanitary sewer line between Buildings 180 and 183 at Fort Riley, Kansas.

The goal of this project was to remove a blocked sewer line and ancillary PCEcontaminated soils to prevent further potential migrations of contaminants and to replace the old sanitary sewer line. Air monitoring was performed, and three underground storage tanks (USTs) adjacent to the site were located. Two of the USTs were removed, and one was abandoned in place.

These goals were accomplished within the original time frames. The old sewer line and ancillary soils were removed and disposed. A new sanitary sewer line was installed, and the excavation was backfilled.

In summary, this Fort Riley project was performed in accordance with the USACE Final Scope of Work dated February 25, 1994, as modified by the direction of the USACE and field conditions.

Project 15747 Revision 1 September 8, 1994

1.0 INTRODUCTION

The Omaha District of the United States Army Corps of Engineers (USACE) awarded a contract for Rapid Response services for environmental source control and removal actions to OHM Remediation Services Corp. (OHM), a wholly owned subsidiary of OHM Corporation. Individual Delivery Orders are the mechanism for contracting specific work.

1.1 SITE HISTORY

The site is located on Fort Riley in Kansas. Fort Riley has been designated as an National Priorities List (NPL) site. The scope of work (SOW) revolved around the removal and replacement of a sanitary sewer line. The sewer line services the Fort Riley Dry Cleaning Plant and is used to transport wash water from the plant. Leakage from the line during past operations has resulted in the tetrachloroethane (PCE) contamination of soils adjacent to the line. The old sewer line was partially collapsed and blocked.

1.2 DOCUMENT ORGANIZATION

This draft final report details the methods which were employed to perform the work. This final report discusses the SOW in Section 2.0 and describes OHM's technical approach in Section 3.0. Section 4.0 discusses OHM's subcontractor management plan. OHM's project team organization is presented in Section 5.0. The Project Summary is contained in Section 6.0.

The Contractors Sampling and Analysis Plan (CSAP) and Site Safety and Health Plan (SSHP) are included as Appendix A and Appendix B, respectively. Appendix C contains the air monitoring and weather station logs. Appendix D contains the Rapid Response Quality Control Reports and Rapid Response Daily Work Orders. Appendix E contains the analytical data for two rolloffs, manhole debris, underground storage tank (UST) contents, and the soils in the area of the UST excavations. Appendix F contains the waste shipping papers, and Appendix G contains the photodocumentation logs. Appendix I is a letter from Janet Wade from Fort Riley regarding the performance of this project. Appendix I contains the sign in/out log, and Appendix J contains health and safety information. Appendix K is the record of communication regarding the disposal of the roll-off materials at the C/D landfill. Appendix L is the certificate of destruction for the two USTs that were removed. Appendix M is the paperwork from Associated Environmental, Inc., regarding the work concerning the three USTs. The Category III submittals are found in Appendix N.

USACE Fort Riley, KS ©1994 OHM Remediation Services Corp. Project 15747 Revision 1 September 8, 1994

1-1

2.0 SCOPE OF WORK

This section has been prepared based upon the SOW delineated by the document provided to OHM by the USACE entitled:

FINAL SCOPE OF WORK FOR **RAPID RESPONSE REPLACEMENT** OF SANITARY SEWER LINE **BUILDINGS 180-183, FORT RILEY, KANSAS** DACW45-94-0005 DELIVERY ORDER NO. 3

Variations and modifications, dictated by field conditions and directions by the USACE, to the aforementioned document are also addressed.

The SOW in general encompassed the following tasks:

- Work plan development
- Mobilization
- Administration and support
- Site preparation and teardown including the set up and teardown of decontamination facilities, support facilities, temporary utilities, temporary utilities, and the establishment of air and weather monitoring stations
- Excavation of the old sewer line
- Installation of a new sewer line
- UST cleaning, removal, and abandonment
- Transportation and disposal
- Demobilization

2.1 FINAL REPORT DEVELOPMENT

The project final report describes how the work was performed according to the SOW as delineated by the USACE, environmental industrial standards, construction industrial standards, health and safety requirements, and field conditions.

Project 15747 Revision 1 September 8, 1994

The final report also consists of an SSHP, a CSAP, and various appendices. Site-specific Advance Agreements (SSAA) are included in the cost proposal which has been submitted under a separate cover.

The USACE supplied SOW served as the basis for the preparation of this final report and associated documents.

2.2 MOBILIZATION/DEMOBILIZATION

This task involved the actual transportation of personnel, equipment, materials, and other resources to and from the project site. A majority of the personnel and equipment was already on site from a previous Fort Riley project. The personnel already on site included the site supervisor, project accountant, technician, and recovery technicians. A health and safety officer, equipment officer, and the project manager were mobilized from OHM's office in Findlay, Ohio, and an equipment operator was mobilized from OHM's office in Port Allen, Louisiana. The equipment that was rented included a Case 621 and JD-690, analytical equipment, and administrative equipment. The OHM decontamination trailer was from OHM's Illinois office. Subcontractor mobilization/demobilization was managed by the OHM project manager in close conjunction with site supervisory personnel.

2.3 SITE PREPARATION AND TEARDOWN

The USACE provided site access. Prior to the performance of on-site work, OHM procured subcontracts, coordinated with local hospitals, authorities, and utilities as was necessary. This process continued as needed throughout the performance of the project.

The on-site preparation task included the placement of office and decontamination trailers and the establishment of the exclusion zone, contamination reduction zones, and support/clean zones. Traffic on Custer Avenue was reduced to one lane with the use of barrels, temporary fencing, and caution tape. Temporary signal lights were installed by B&W Electrical Contractors to control the flow of traffic.

A portable decontamination station was placed at the outer perimeter of the exclusion zone. Heavy equipment was washed with a pressure washer at the decontamination station at the conclusion of the project. The portable decontamination station consisted of bermed reinforced polyethylene.

2.4 OLD SEWER LINE EXCAVATION

The location of the old sewer line was determined by visual inspection of the manholes coordinated with the use of the site maps provided. This location was marked. The areas covered by asphalt were cross cut and removed. The asphalt and concrete were placed in a 10 yard rental dump truck. No ancillary soils were included. It was subsequently disposed of as nonhazardous construction debris at the C/D Landfill. Approximately 20 cubic yards of asphalt were disposed.

Project 15747 Revision 1 September 8, 1994

5

Ż

The old sewer pipe was excavated. Upon exposure of the old sewer pipe, the excavation was shored using hydraulically jacked aluminum shoring provided by the Shoring and Supply Company, Inc. After receiving refresher shoring training from OHM's Director of Health and Safety and experts from the Shoring and Supply Company, the site superintendent served as the competent person relative to the shoring installation. Because it was determined that the shoring was being installed in Type C soils with a design selected in accordance with tabulated data, no soils testing was necessary. The USACE health and safety officer (Jim Woolcott) approved the shoring design. The sewer pipe, along with ancillary soils, was removed and placed in lined roll-off boxes. An apparent washout area, under the pavement, between the lower manhole and Building 180 was noted as the excavation proceeded in this area. The area undermined appeared to be approximately 4 feet wide, 1 foot deep, and 1 1/2 feet wide.

Excavated soils were screened for PCE contamination approximately every 7 cubic yards. The screening was performed with a PID. The readings never approached the action limits that had been previously established for this site (75 ppm).

During the excavation of the sewer line, an 18-inch sanitary storm sewer was damaged. This was repaired with materials provided by Fort Riley prior to the backfilling of the excavation. Also, during the excavation a 6-inch water line, an 8-inch gas line, and a 1-inch fiber optic line were successfully uncovered with the trackhoe. This precluded the need for the lengthy and laborious hand digging that was originally anticipated. During the excavation, an 8-inch clay pipe was damaged and DEH personnel informed OHM that the clay pipe was an abandoned line, so it was not repaired. Near the completion of the excavation, it was noted that there was no apparent connection between the sewer line pipe and the manhole; and, the inlet at the bottom of the manhole was not a drop inlet for the pipe being replaced. During the excavation, the lower manhole became plugged and caused the upper manhole to overflow. This water was temporarily diverted to the next manhole down the line of flow. The lower manhole was pumped down and cleaned out and this appeared to rectify the problem.

2.5 SEWER LINE INSTALLATION

Upon completion of the excavation, the sewer line was replaced. Installation was in accordance with Appendix J, Environmental Engineering Instructions. Figure 2.1 and Figure 2.2 show the actual placement of the new sewer line and its connections to the manholes. Figure 2.3, which was provided by Fort Riley, is a map of the general sewer line layout.

2.6 EXCAVATION BACKFILL

Upon completion of the sewer line installation and acceptance by the USACE field representative, the backfilling of the excavation was completed. Prior to the final backfill, after a strong evening rain, settling of backfill material (primarily excavated soils) was observed. More fill was added to these areas to restore them to grade, and minimal compaction was performed. Additional gravel was also added in the area of Custer Avenue. Compaction of the excavation was performed as directed by the USACE on-site representative (OSR).

Project 15747 Revision 1 September 8, 1994

X

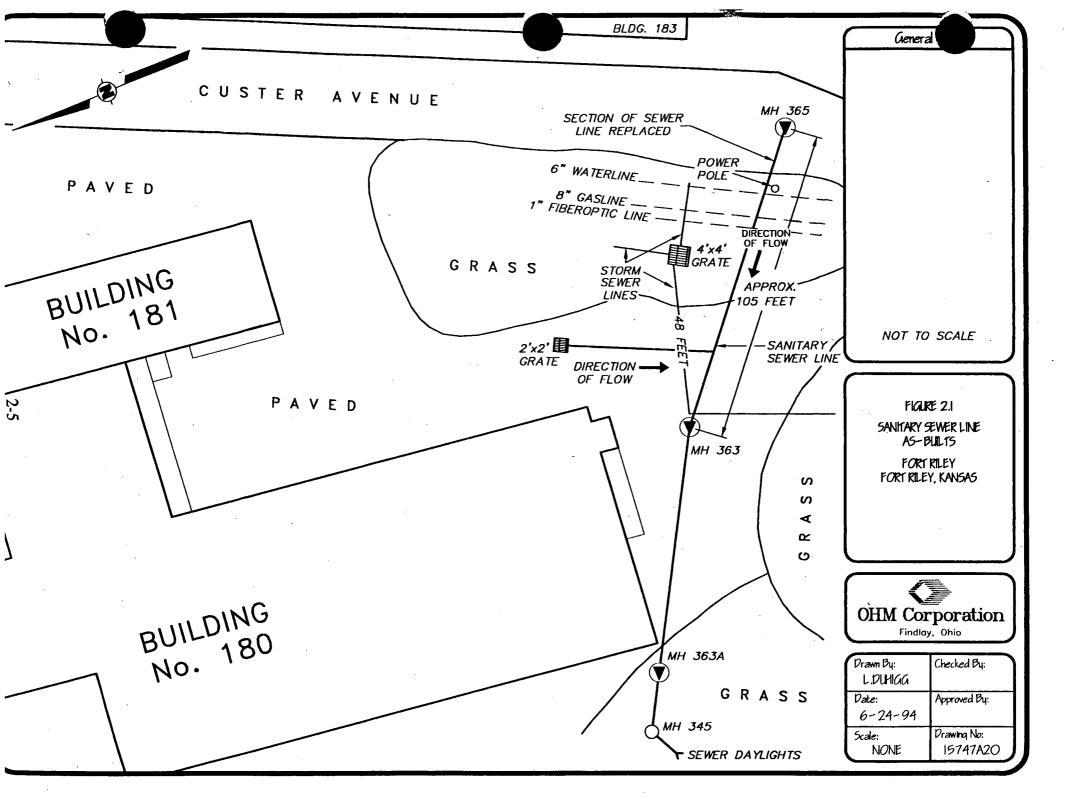
2.7 CONTRACT MODIFICATIONS

Contract Modification P00001 called for the construction of a meteorological weather station and the erection of three exclusion zone perimeter air monitoring stations to provide support to the U.S. Army Corps of Engineers, Kansas City District, in their site investigation and subsequent preparation of a Baseline Risk Assessment for the dry cleaning facility. This was accomplished in the early stages of the project.

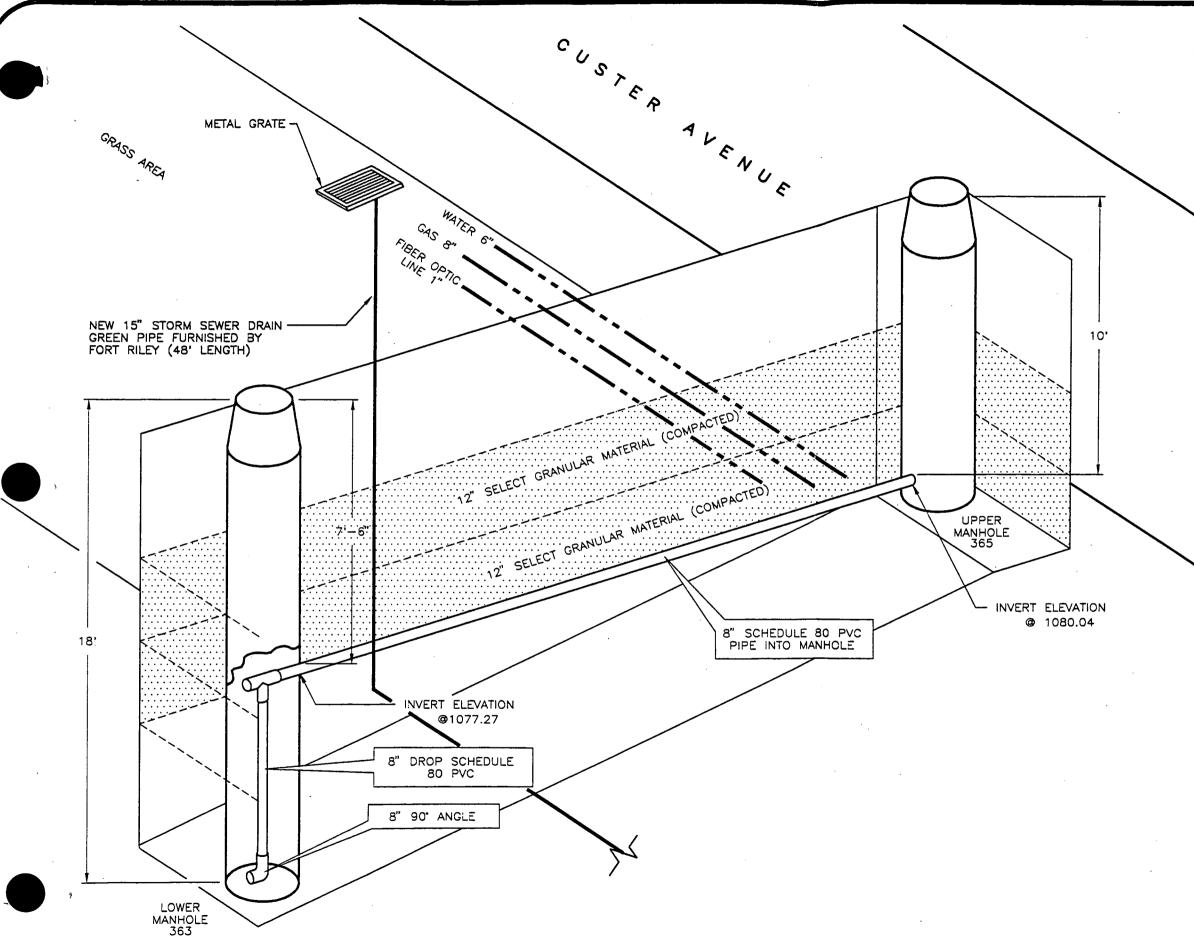
	Table 2.1					
	CONTRACT MODIFICATIONS					
No.	Modification					
P00002	Allowed for the location and sampling of three USTs located between Building 180 and Custer Avenue.					
P00003	Allowed for the cleaning and removal of two USTs and the cleaning and in-place abandonment of one UST.					

2.8 TRANSPORTATION AND DISPOSAL

All hazardous and nonhazardous materials generated during the course of the performance of the requirements of this Delivery Order were transported and disposed. Construction debris was disposed of at the C/D Landfill. The materials in the roll-off were disposed of at Fort Riley's active construction debris landfill and the small amount of hazardous waste generated was disposed of through Fort Riley's Defense Reutilization and Marketing Office (DRMO).

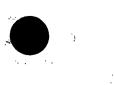

2.9 DEMOBILIZATION

Personnel and equipment were removed from the site back to their respective response centers.


Project 15747 Revision 1 September 8, 1994

and the second second

• • • • •

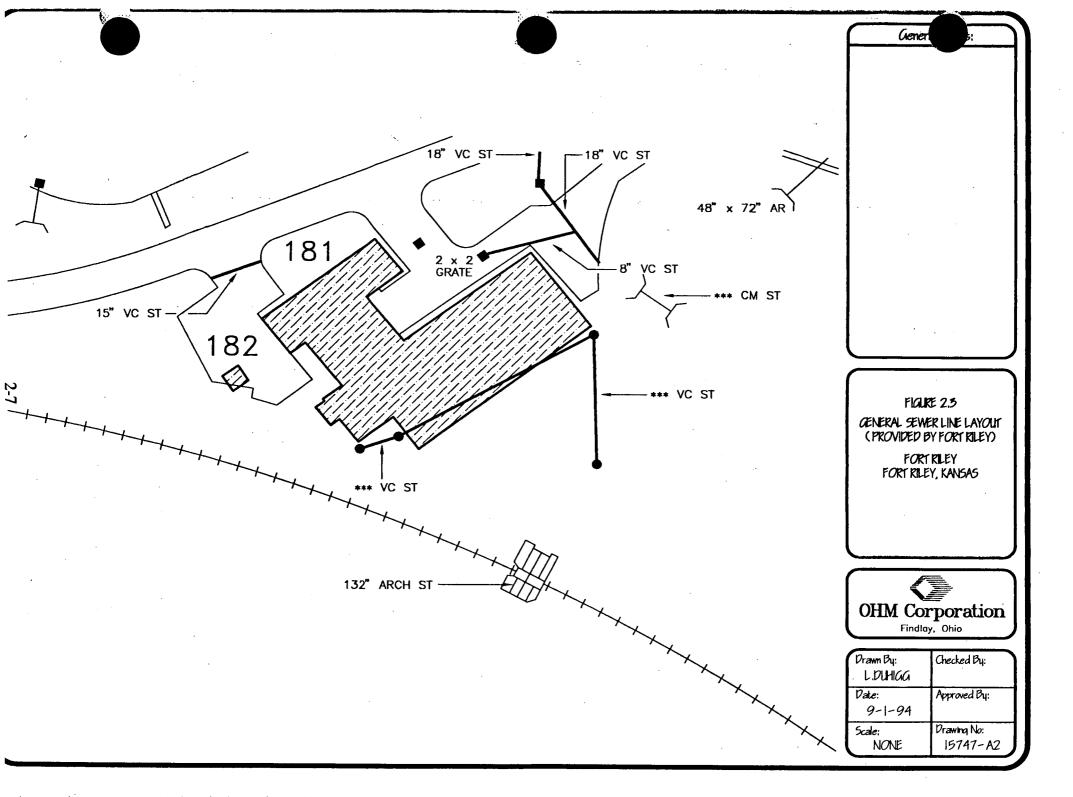


General Notes: THE NEW SEWER LINE WAS TIED INTO THE LOWER MANHOLE LIKE THE OLD SEWER LINE, i.e., THE ELEVATION DROP WAS ACCOMPLISHED WITH A VERTICAL SECTION OF PVC PIPE LOCATED IN THE INTERIOR OF THE MANHOLE. Revision/ Issue Date Flaure 2.2 AS-BUILT SANITARY SEWER LINE LISACE FORT RILEY, KANSAS OHM Corporation Findlay, Ohio Drawn By: L. DUHGG Checked By: Date: 5-16-94 Approved By: Scale: NONE Drawing No: 15747-N

FIGURE 3.1

SCHEDULES

20 1.4 APR94 <		EADLY	CA01 M	DEH			1994			•										
33 UPREMA IPREMA		EARLI START	EARLY	DUP	PCT -				JUN		EARLY	EARLY	REM		FFR	1448				
10 144784 1 0 20 144784 1 0 20 144784 1 0 20 144784 1 0 20 144784 1 0 20 124784 134784 0 20 124784 134784 0 20 124784 134784 0 20 124784 134784 0 20 124784 134784 0 20 124784 134784 0 20 124784 134784 0 20 124784 134784 0 20 124784 134784 0 20 124784 134784 0 20 124784 134784 0 20 124784 134784 0 20 134784 0 20 134784 0 20 134784 0 20 144784 0 20 144784 0 20 144784 0 20 144784 0 20 144784 0 20 144784 0 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>2 9 16 23 30</td><td><u>6 13 20 27</u></td><td></td><td>START</td><td>FINISH</td><td>DUR P</td><td>7 17</td><td>14 21 28 7</td><td>14 21 28</td><td><u>APR</u></td><td>MAY</td><td>I JUN</td><td>JUL</td></t<>								2 9 16 23 30	<u>6 13 20 27</u>		START	FINISH	DUR P	7 17	14 21 28 7	14 21 28	<u>APR</u>	MAY	I JUN	JUL
	100	0FCD94A	8FCB74	ı	•		is İ												0 13 20	27 4 11 18
No ILAPEN					1					100	IMAY94A	1MAY94A	0 1	- 00				MODILIZATION		
No ILAPEN								~												
No ILAPEN														1						
00 11APSH 1.0 0	200	28FEB94	28FEB94	1	0	DELIVERY ORDER AWAR	DED			!										
00 11APSH 1.0 0												· · · · · ·								
30 12APRM 13APRM										200	2MA Y94A	2MAY94A	0 1	00	1			SITE PREPARATION		i i
30 12APRM 13APRM				<u> </u>			Î								1					
00 IDAPENI 1 0 00 IDAPENI IBAPENI 1 0 00 IBAPENI 1 0 00 IBAPENI 1 0 00 IBAPENI IBAPENI IBAPENI IBAPENI IBAPENI 00 IBAPENI IBAPENI IBAPENI IBAPENI IBAPENI IBAPENI 00 IBAPENI <	300	LIAPR94	LIAPR94	1	0		MOBILIZATION/	SITE PREPARATION												
00 IDAPENI 1 0 00 IDAPENI IBAPENI 1 0 00 IBAPENI 1 0 00 IBAPENI 1 0 00 IBAPENI IBAPENI IBAPENI IBAPENI IBAPENI 00 IBAPENI IBAPENI IBAPENI IBAPENI IBAPENI IBAPENI 00 IBAPENI <							i												1	
00 IDAPENI 1 0 00 IDAPENI IBAPENI 1 0 00 IBAPENI 1 0 00 IBAPENI 1 0 00 IBAPENI IBAPENI IBAPENI IBAPENI IBAPENI 00 IBAPENI IBAPENI IBAPENI IBAPENI IBAPENI IBAPENI 00 IBAPENI <																		1		
				-						300	2MA Y94A	4MAY94A	0 1	m				EXCAVATE, SHORE	RAWEATHER MONT	TOR
30 19ARRM 21APRM 4 0 100 100 100 30 25APRM 25APRM 1 0 30 25APRM 1 0 100 30 25APRM 1 0 100 30 31UNM 1 0 100 30 31UNM 1 0 100 30 31UNM 1 0 100	400	12APR94	15APR94	4	0		EXCAVATE/	REMOVE EXISTING SEWER	ĻΝΕ	I			•	~			•			
30 19ARRM 21APRM 4 0 100 100 100 30 25APRM 25APRM 1 0 30 25APRM 1 0 100 30 25APRM 1 0 100 30 31UNM 1 0 100 30 31UNM 1 0 100 30 31UNM 1 0 100										;										
30 19ARRM 21APRM 4 0 100 100 100 30 25APRM 25APRM 1 0 30 25APRM 1 0 100 30 25APRM 1 0 100 30 31UNM 1 0 100 30 31UNM 1 0 100 30 31UNM 1 0 100																				
30 19ARRM 21APRM 4 0 100 100 100 30 25APRM 25APRM 1 0 30 25APRM 1 0 100 30 25APRM 1 0 100 30 31UNM 1 0 100 30 31UNM 1 0 100 30 31UNM 1 0 100	. 2																			
D 19APRM 22APRM 4 0 D0 19APRM 22APRM 4 0 D0 25APRM 1 0 D0 500 6400 25APRM 1 0 D0 500 6400 26APRM 1 0 D0 51UNMA 24UMMA D0 51UNMA 100 D0 100 D0 1	00 173 1	18APR94	18APR94	1	0		●INSTALL I	NEW SEWER LINE		400	SMA YOAA		۰. v	~				SEWER LINE INSTAL	LATION & BACKFIL	
30 25APR34 25APR34 1 0 30 25APR34 1 0 30 25APR34 25APR34 1 0 30 25APR34 25APR34 1 0 30 25APR34 1 0 100 30 25APR34 1 0 100 30 25APR34 1 0 100 30 25APR34 1 0 1000000000000000000000000000000000000												20001744	v 1	~						Ĩ I
30 25APR34 25APR34 1 0 30 25APR34 1 0 30 25APR34 25APR34 1 0 30 25APR34 25APR34 1 0 30 25APR34 1 0 100 30 25APR34 1 0 100 30 25APR34 1 0 100 30 25APR34 1 0 1000000000000000000000000000000000000					ł									f						
30 25APR34 25APR34 1 0 30 25APR34 1 0 30 25APR34 25APR34 1 0 30 25APR34 25APR34 1 0 30 25APR34 1 0 100 30 25APR34 1 0 100 30 25APR34 1 0 100 30 25APR34 1 0 1000000000000000000000000000000000000	(00													1						
	600	19APR94	22APR94	4	0		BACK	TLL AND COMPACT							·				1	
										son	614 A VO4 A	61 4 4 VO 4 4	•	_				TEARDOWN & DEM	OBILIZATION	
					1						UNIA 174A	000 1 794	U K				•	-	1	
	700	26 + 10004	26.0004																1	
25APR94 26APR94 1 0 25APR94 1 0 25A	/00	23APK94	DAPK94	1	0	1	+C0	PACTION TESTING AND SE												
25APR94 26APR94 1 0 25APR94 1 0 25A																				
25APR94 26APR94 1 0 25APR94 1 0 25A															1					
20 8JUN94 1 0 22JUN94 Surf BFEBM Surf SURF SURF SURF SURF SURF SURF SURF	800	76 4 8804	36 4 0004	<u> </u>			8.00			000	24JUN94A	24JUN94A	0 10	20		•		-		
	200	10APR94	2045694	1	0		#511	E TEARDOWN AND DEMOR	LIZATION											
								-												
	900	8111N04	811 IN/04																	
PROJECTED SCHEDULE		0000	8101174		v			CANSFORTATION AND DISP		700	11701.94	11JUL94	1 0				•		ANSPORTATION AN	DISPOSAL
PROJECTED SCHEDULE																				1
PROJECTED SCHEDULE		1211/11/04					1		<u>1</u>	4	•							1		1
PROJECTED SCHEDULE	a Date	SFEB94		Crimal A	APEany Dees.		Sheet (af)		PLACEMENT FORT RILEY											
PROJECTED SCHEDULE	ect Start ect Finash	NFEB94		4.0487 L	المعادية ومع		ACEMENT	Dale Revision	Checked Anten ed	Inter Office										
Avera System In:										The Date - Stations			1			USAC				RT RAET SEVER I DE DESTAILATE
	mmavera Systems	s. Inc.	<u></u>		!		- ⁴ -			The ILLE	• • • • •		'		PORT	OJECTED ACTU	NE KEPLACEMENT			


3-2

····

. .

. . .

- - -

This section discusses the operational methods, types of personnel, and equipment which were utilized to complete the SOW.

3.1 SCHEDULE MONITORING AND CONTROL

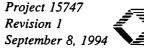
Figure 3.1 shows the original and actual schedules for this project. As the figure illustrates, field operations were accomplished significantly faster than originally anticipated. The schedule was monitored and controlled in conjunction with the tracking of costs through the use of computerized cost and resource tracking and project management techniques developed by OHM.

3.1.1 Submittal

The first submittal under this solicitation was the draft project work plans dated March 4, 1994. The draft project work plan contained a draft SSHP, draft CSAP, draft Work Plan, Cost Proposal, SSAA, and OHM Corporation Literature/Brochure. Upon the conclusion of negotiations, final project work plans were submitted.

The USACE received daily submittals at the close of business. The daily submittal included the Rapid Response Quality Control Daily Report and Work Order.

OHM prepared hazardous waste profiles and manifests for the USACE review, approval, and signature prior to the shipment of any hazardous wastes. There were no shipping papers for nonhazardous wastes that required transportation and disposal from this project. Mike Kinder, the Midwest's Region Contract Regulatory Specialist, reviewed all waste profiles, land disposal restriction notifications, certifications, and waste manifests prior to their submittal to the USACE.


OHM's Transportation and Disposal (T&D) Department submitted all relevant supporting documentation such as analytical reports and material safety data sheets (MSDSs) with the aforementioned documents. These were accompanied by a cover letter describing the logic by which OHM arrived at its recommended disposal strategy. OHM did not ship wastes without the prior approval and signature of waste manifests by the USACE.

3.2 PRE-CONSTRUCTION ACTIVITIES

Pre-construction activities for this project included the following items:

- Issuing subcontracts
- Sourcing OHM internal resources
- Identifying T&D alternatives

OHM understood that the USACE would arrange for any rights of entry necessary.

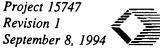
3.3 CONSTRUCTION ACTIVITIES

Construction activities included:

- Site preparation including the set up of support zones, decontamination ► stations, exclusion zones, traffic control, and the establishment of air and weather monitoring stations
- Removal of asphalt and concrete paving
- Excavation of the existing sewer line
- Installation of a new sewer line
- Backfill and compaction of excavation
- Location of three USTs.
- Removal of UST contents, cleaning and removal of two USTs, and the cleaning and in-place abandonment of one UST
- T&D of asphalt, concrete old sewer line, ancillary soils, and PPE ►

3.3.1 Site Preparation

Site preparation included the establishment of support zones, a decontamination area, an exclusion zones, traffic control, and the establishment of air and weather monitoring stations.


The exclusion zone was the area immediately adjacent to the excavation. This area was approximately 110 feet long, 40 feet wide at the base, tapering down to approximately 15 feet as it approached Custer Avenue. .

The decontamination area was located immediately adjacent to the exclusion zone. The decontamination area consisted of a bermed polyethylene area. The decontamination area was used to decontaminate any heavy equipment leaving the exclusion zone.

All personnel in the exclusion zone were required to pass through the decontamination station. Disposable protective clothing was placed in the roll-offs along with the old sewer line and ancillary soils. Specific details regarding personnel decontamination procedures are described in the SSHP.

The support trailer was placed adjacent to the decontamination area.

3.3.2 Excavation and Sewer Line Installation and Backfill

Asphalt and Concrete Removal

Prior to beginning the excavation, the existing asphalt and concrete over the area of anticipated excavation was cross cut using a walk behind saw, facilitating the removal of the asphalt. The asphalt was removed utilizing a John Deere 490 trackhoe. A Case 621 loader was used to facilitate the movement of excavated soils. The asphalt and concrete that was removed was directly loaded into a 10 yard dump truck and transported to the C/P Landfill. No ancillary soils were included. It is estimated that approximately 20 cubic yards of material was generated.

Old Sewer Line Excavation

Prior to the removal of the old sewer line, the flow of the discharge from the dry cleaning plant was redirected from the old sewer line by pumping the discharge directly from the upper manhole to the lower manhole.

Upon completion of the asphalt removal, the excavation of the old sewer line commenced. A John Deere 490 trackhoe was utilized for the excavation. As the excavation proceeded, the excavated soil was screened utilizing a Photoionization Detector (PID). Soils screened never approached the actions limits previously established for this site (75 ppm). Stockpiled soils were temporarily stored on 6 mill polyethylene bermed area. The stockpiles were covered with polyethylene.

Once the old sewer line was exposed it was removed utilizing a John Deere 490 trackhoe. It should be noted that there was no apparent connection between the pipe and the manhole, and the inlet at the bottom of the manhole was not a drop inlet for the pipe being replaced. The old sewer line and any ancillary soils removed with the old sewer line were placed in two lined roll-off box. A sample of this material was analyzed and characterized for disposal. Appendix E contains all analytical results, and Table 3.1 presents the results. This material was disposed of at Fort Riley's active construction debris landfill. It is estimated that approximately 26 cubic yards of material was generated and subsequently disposed of. During the excavation, an 8-inch clay pipe was damaged. OHM personnel were informed by DEH personnel that the pipe was abandoned, therefore it was not repaired. After OHM demobilized from the site, OHM learned that the line was active and had been repaired by DEH personnel who replaced the line and connected it to the 18-inch green PVC placed by OHM.

	TABLE 3.1 ROLL-OFF ANALYTICAL I	RESULTS
Sample #	Contaminant	Results
15747-001	Tetrachloroethane	.0022 mg/L
15747-002	Tetrachloroethane	25.1 ug/kg

At the direction of the USACE OSR and at the request of Fort Riley personnel, the upper manhole was cleaned of sludges and other materials. These materials were placed in a 10-gallon drum and then into a 55-gallon drum after the 10-gallon drum was damaged by another contractor. A sample of this material was taken and analyzed. This material was subsequently disposed of through Fort Riley's DRMO.

Shoring Operations

After the old sewer line was removed, the excavation was shored utilizing aluminum hydraulic shoring with 1.5 inch by 4 foot by 8 foot plywood reinforcement to allow safe personnel access to the excavation. The plywood was utilized because it was mutually determined by qualified USACE and OHM personnel that the soils were Class C.

New Sewer Line Installation

Upon completion of the shoring operation, the new sewer line was installed. The new sewer line was installed in accordance with Appendix J, Environmental Engineering Instructions in the work plan. A leakage test was not required per the direction of the USACE.

Upon successfully passing the USACE visual inspection the excavation was backfilled. Excavated soils were placed as final backfill, placed directly above the initial backfill and received minimal compaction using the bucket of the trackhoe. Minimal compaction was used because of the upcoming soil vapor extraction (SVE) remediation project. Staged uncontaminated soils were used as final backfill. The uncontaminated soils were compacted in accordance with the direction of the USACE OSR. No compaction testing was required by the USACE OSR.

At all times during field operations, open excavations were barricaded with caution tape and temporary fencing.

Real time air monitoring was performed using a photoionization detector during field construction activities. Weather monitoring was performed utilizing a R-Met Rainwise Weather Station during the performance of the project. The readings are contained in Appendix C.

Expended PPE was sampled and characterized for disposal. The expended PPE was placed in the roll-offs along with the old sewer line and ancillary soils.

Custer Avenue was patched with new asphalt.

USACE Fort Riley, KS ©1994 OHM Remediation Services Corp.

Project 15747 Revision 1 September 8, 1994

3.3.3 UST Location, Removal and Abandonment

During the replacement of the sanitary sewer line, the three USTs were located by exposing their tops. During the week of July 11, 1994 a small crew returned to remove the USTs. After commencement of the excavation to expose the tanks, it was quickly discovered that one tank was significantly larger than expected. The larger tank was vertically placed and was approximately 7 feet across and approximately 17 feet deep. Because of the larger tank's proximity to Building 180 and a power pole, Fort Riley personnel decided to abandon that tank in place.

The tank tops were fully exposed with a tracked excavator. The contents of each tank were transferred to a vac truck for disposal at Essex Waste Management Services, Inc. Waste shipping papers are contained in Appendix F. Each tank was then purged with nitrogen to inert the tanks' atmosphere. This was confirmed with an explosimeter. The tanks were then cleaned, and the rinsates were transferred to the vac truck. The two smaller tanks and associated piping were removed, and the tanks were rendered unusable. Samples were taken of the soils in the excavation, and six of these samples were sent to Environmental Control Corporation (ECC) to be analyzed for SVOCs, volatile organic compounds (VOCs), and hydrocarbons. This analysis is included in Appendix E. The larger tank was filled with approximately 25 cubic yards of washed sand. The tank manway was grouted, and all the lines into the building were cut off at the building and grouted. The excavated area was backfilled, seeded, and fertilized.

Brad Johnson, a State of Kansas Certified UST remover from Associated Environmental, oversaw the work efforts, and Howard Debauche, from the State of Kansas, was also present on the July 14, 1994. Abdul Al-Assi from Fort Riley was also present periodically.

USACE Fort Riley, KS ©1994 OHM Remediation Services Corp.

Project 15747 Revision 1 September 8, 1994

਼

The project team included:

- Program Manager: John Hitchings
- Project Manager: Jerry Resnik
- Site Supervisor: Bill Fenwick

OHM selected other individuals from its staff for the following positions: truck driver, sample technologist/safety officer, T&D coordinator, purchasing agent, PA, equipment operator and recovery technician.

Project 15747 Revision 1 September 8, 1994

5.0 SUMMARY.

An important fact during this project was that there was a small washout under the pavement near Manhole #363 (the lower manhole). It appeared that the old sewer line was not connected to the manhole. Also, the initial backfill settled in spots after a heavy rainfall. The excavation was again brought up to grade with additional fill material and gravel.

One could determine that the old sewer line simply experienced natural deterioration over time. The type of manhole uncovered was commonly used decades ago. It could be assumed that the old sewer line was this old. Using the new line for its intended purpose, i.e., transportation of rinsewaters, should optimize its life.

In summary, this project was performed safely, within the operational schedule, and slightly under budget. OHM strongly recommends the use of hydraulically jacked aluminum shoring for any future projects that contemplate trenching activities. This type of shoring is economical, easy to install, and very safe.

Project 15747 Revision 1 September 8, 1994 **APPENDIX E**

ANALYTICAL DATA

UST SOILS

١

Memo

16406 U.S. Route 224 East • Findlay, Ohio 45840							
TO:	Jerry Resnick						
FROM:	Chet Scheibel						
PC:							
DATE:	July 28, 1994						
SUBJECT:	Data Review for the Fort Riley Project 15747						

The Midwest Region Environmental Chemistry Group has performed a QA Audit of the data submitted by the ECC Laboratory for the six (6) soil samples collected on July 14, 1994. This data is for the analysis of volatiles, semivolatiles, diesel range organics (DRO), and gas range organics (GRO). The laboratory met the required 7 day turn-around-time. The sample numbers are 0001 through 0006.

The results of this audit are presented in the attached Data Evaluation Checklist. The data conforms to the requirements of USEPA Methods 8240, 8270 and mod-8015 with the following comment:

o GRO - Sample 001 and 002 surrogate was diluted out of analytical range due to the large amount of GRO in samples.

The minor data discrepancies identified above do not invalidate this data package. The data is deemed acceptable according to USEPA guidelines and should be used without reservation in this project's decision making process.

-Scheld

Chet Scheibel Project Chemist Environmental Chemistry Midwest Region

Ê

۰.

OHM MIDWEST REGION TECHNICAL SERVICES GROUP ANALYTICAL DATA VALIDATION

The attached Data Package has been reviewed by the Midwest Region Technical Services Group. Detailed comments concerning specific analyses (ie, GC/MS Semivolatiles) are provided in the attached review sheets. Any additional comments conerning the data package as a whole are listed below.

kal mit the 7 day TAT. COMMENTS:

Data Validated by: Chit Scheilel

Date: 7/28/94

DATA VALIDATION FORMS

HOLDING TIMES	REQUIREMENTS	YES	NO
METALLIC INO	RGANIC		
Metals	6 Months		
Cyanide	14 Days		
Mercury	28 Days		
Hexavalent Chromium	24 Hours		
SEMIVOLATILE - G	C OR GC/MS		
WATER	7 Days to Extraction		
Analyzed within 40 days of extraction			
SOIL	14 Days to Extraction		
Analyzed within 40 days of extraction		~	
VOLATILES - GC	OR GC/MS	<u>!</u> 1	
WATERS for AROMATICS	7 Days unpreserved		
· · · · · · · · · · · · · · · · · · ·	14 Days preserved		
SOILS, SLUDGES, SEDIMENTS	14 Days	$\overline{\mathcal{V}}$	
Other GRU	14 Days	U	
PESTICIDES/	PCBs	LL	
WATER	7 Days to extraction		<u> </u>
Analyzed within 40 days of extraction			
SOILS, SEDIMENTS, SLUDGES, SOLIDS	14 Days to extraction		
Analyzed within 40 days of extraction		·	
CONVENTIONALS/OTH	ER ORGANICS		
SOLIDS/SLUDGES Analyzed Within Holding Time	Per Method		
WATERS/LIQUIDS Analyzed Within Holding Time	Per Method		
PRESERVATI	ON		
Preserved at field site?			<u>. </u>
Lab preserved sample.			

LIST DEFICIENCIES IN DETAIL:

DATA VALIDATION AND QUALITY CONTROL

VOLAT	ILE ANALYSIS BY GC $GR($	2	
	REQUIREMENT	YES	NO
INITIAL CALIBRATION	RSD: < OR = 20% - OR LINEAR CORRELATION > OR = 0.995		
CONTINUING CALIBRATION CHECK COMPOUNDS	RSD: < OR = 15%		
METHOD BLANK	EVERY BATCH OR 20 SAMPLES		
	ALL COMPOUNDS < MDL		
ALL QC SAMPLES	ANALYZED ON SAME INSTRU- MENT AS SAMPLES		
METHOD SPIKE % RECOVERY	WITHIN THOSE SET BY LAB	\checkmark	
MATRIX SPIKE RECOVERY LIMITS	WITHIN THOSE SET BY LAB		
MATRIX SPIKE DUP. RECOVERY LIMITS	WITHIN THOSE SET BY LAB	·	
SURROGATE RECOVERY LIMITS	WITHIN THOSE SET BY LAB	i	ر دن ن بر

NOTE DEFICIENCIES BELOW IN DETAIL:

.

÷.

~

DATA VALIDATION AND QUALITY CONTROL

SEMIVOLATILE AN	ALYSIS BY GC OR MPLC - OTHER	DK	20
	. REQUIREMENT	YES	NO
INITIAL CALIBRATION	RSD: < OR = 20% - OR LINEAR CORRELATION > OR = 0.995	pR	
CONTINUING CALIBRATION CHECK COMPOUNDS	RSD: < OR = 15%	IR	
METHOD BLANK	EVERY BATCH OR 20 SAMPLES	/	
	ALL COMPOUNDS < MDL	~	
METHOD SPIKE % RECOVERY	WITHIN THOSE SET BY LAB	/	
MATRIX SPIKE RECOVERY LIMITS	WITHIN THOSE SET BY LAB	~	
MATRIX SPIKE DUP. RECOVERY LIMITS	WITHIN THOSE SET BY LAB	L-	
SURROGATE RECOVERY LIMITS	WITHIN THOSE SET BY LAB		

.

· · ·

.

Second:

NOTE DEFICIENCIES BELOW IN DETAIL:

DATA VALIDATION AND QUALITY CONTROL

	REQUIREMENT	YES	NO
TUNE CALIBRATION CHECK	BFB EVERY 12 HRS	2	
INITIAL CALIBRATION	%RSD: < OR = 30%	1 p. n.	
CONTINUING CALIBRATION CHECK	%SD: < OR = 25%	-	
SPCC COMPOUNDS	RF: > OR = 0.0300	~	
	Bromoform: $> OR = 0.250$	~	
RSD OF INITIAL CALIBRATION	<30% OF LINEAR CORRELA- TION OF 0.995 OR BETTER	in	
METHOD BLANK	EVERY BATCH OR 20 SAMPLES	/	
	ALL COMPOUNDS <mdl< td=""><td>4</td><td></td></mdl<>	4	
`	ANALYZED ON SAME INSTRUMENT AS SAMPLES	~	
ALL QC SAMPLES	ANALYZED ON SAME INSTRUMENT AS SAMPLES	/	
METHOD SPIKE % RECOVERY	WITHIN THOSE SET BY LAB	\mathcal{V}^{\cdot}	
MATRIX SPIKE RECOVERY LIMITS	WITHIN THOSE SET BY LAB	2	
MATRIX SPIKE DUP. RECOVERY LIMITS	WITHIN THOSE SET BY LAB		
SURROGATE RECOVERY LIMITS	WITHIN THOSE SET BY LAB		<u>.</u>

. .

.

2

NOTE DEFICIENCIES BELOW IN DETAIL:

SEMIVOLAT	TILE ANALYSIS BY GC/MS		
	REQUIREMENT	YES	NO
TUNE CALIBRATION CHECK	DFTPP EVERY 12 HRS	~	
INITIAL/CONTINUING CCC	%RSD: < OR = 30%	/	
INITIAL/CONTINUING SPCC	RF: > OR = 0.05		
METHOD BLANK	EVERY BATCH OR 20 SAMPLES	~	
	ALL COMPOUNDS <mdl< td=""><td><u> </u></td><td></td></mdl<>	<u> </u>	
METHOD SPIKE % RECOVERY	WITHIN THOSE SET BY LAB	~	
MATRIX SPIKE RECOVERY LIMIT	WITHIN THOSE SET BY LAB	~	
MATRIX SPIKE DUP. RECOVERY LIMITS	WITHIN THOSE SET BY LAB	C	
SURROGATE RECOVERY LIMITS	WITHIN THOSE SET BY LAB		

NOTE DEFICIENCIES BELOW IN DETAIL:

~

.

. \

ENVIRONMENTAL CHEMICAL CORPORATION

Tel (513) 752-2950 • Fax (513) 752-2261 3235 Omni Drive • Cincinnati OH 45245

July 22, 1994

MIDWEST TECHNICAL SERVICES O.H. MATERIALS CORPORATION ATTN: Chet Scheibel 16406 U.S. Route 224 East Findlay, Ohio 45840-0551

Dear Mr. Scheibel:

Please find enclosed the results of analysis for the 6 samples received on July 16, 1994.

If you have any further questions, please feel free to contact me at (513) 752-2950.

Sincerely,

peralline A Zem for Mona Risk, Ph.D. Director

MR:jw

Enclosures

Memo

OHM Corporation

16406 U.S. R	oute 224 East • Findlay, Ohio 45840	Midwest Region
TO:	Jerry Resnick	
FROM:	Chet Scheibel	
PC:		
DATE:	July 25, 1994	
SUBJECT:	Fort Riley Project 15747 - UST Tanks	

After review of the data from ECC, I noticed that the amount of GRO versus VOC compounds did not match in samples 001 and 002; ie, large amount of GRO and no BETX compounds in the VOC analysis. I discussed this situation with the lab manager and other personnel. They told me that upon review of the raw data for the gas, that no BETX compounds appeared in the chromatograms. The GC eluent passes through a PID (BETX) detector prior to an FID (GRO). BETX compounds did not appear in the PID detector chromatogram. Therefore, the VOC analysis would also not find the BETX compounds.

The lab is preparing a Case Narrative for the final report to explain lack of BETX in the VOC analysis.

Chet Scheibel Project Chemist Environmental Chemistry Midwest Region

ENVIRONMENTAL CHEMICAL CORPORATION

Tel (513) 752-2950 • Fax (513) 752-2261 3235 Omni Drive • Cincinnati OH 45245

July 25, 1994

O.H. MATERIALS CORPORATION ATTN: Mr. Chet Scheibel 16406 U.S. Route 224 East Findlay, OH 45840

Dear Mr. Scheibel,

There appears to be a couple of discrepancies in the analytical results reported for the samples from Ft. Riley analyzed by our laboratory. I would like to give some information that may help to explain this.

The first problem is the report of values for gasoline, in the absence of any values for VOA's, diesel and semivolatiles on sample 0001(tank bottom 1). We believe this is due to differences in the two sample containers received by our laboratory. One container consisted of a light brown sand only. This container was analyzed for VOA's then semivolatiles and diesel. When it was time to analyze the sample for gasoline the analyst used the second container because it had not been opened before. This container held a grayish clay material in addition to the light brown sand. The analysis of this container gave a value for gasoline. The grayish clay appears to be the same as the material in sample 002(tank bottom 2) which showed values on all the analyses. Our conclusion is that the sand is free of the contamination while the clay is not.

The second problem is the report of a gasoline value for sample 002(tank bottom 2) without reporting a value for BETX in the VOA analysis. We calibrated our gasoline analysis by the use of a gasoline standard. The range of hydrocarbon reported extends beyond the xylenes on the chromatogram. At the dilutions this sample was analyzed, there was very little evidence of aromatic compounds prior to and including the xylenes (this was determined by looking at the PID detector trace which was collected along with the FID signal), but a large hydrocarbon fraction was found. This is confirmed by the VOA analysis which reported TIC's of hydrocarbons, as well as the semivolatile analysis which reported a similar high concentration of hydrocarbons in the TIC report.

ENVIRONMENTAL CHEMICAL CORPORATION

CASE NARRATIVE

Customer Project No.: 19365
Customer Name: <u>OHM</u>
Sample Source: Fort Riley
1. QC Package belongs to Batch No. <u>C-ASSCD19</u>
2. QC Package for this Prep. Batch is from this Project? YES/NO If no, where can the QC package be found? Work Order Project
3. Describe any problems: dilution - special duplicate, surrogate low recoveries - QC recoveries, sediment problem, instrument problem, extraction problem, etc. If no problem, write NO in the blank space.
ample, 001 and 002 were nonhomogeneus reavily contaminated sils which required several dilutions before results were blained within the gasoline curve range,
sils which required several dilutions before results were
brained within the gasoline curve vange,
Sumple 005 was most contaminated d'uning 115 the series
his is probably due to exaporation of the analytes upon
Stained within the gasenine contaminated during its firstmn. Simple 005 was most contaminated during its firstmn. his is probably due to Evaporation of the analytes upon ening of the sample. REVIEW
Level 1. Initial <u>M</u> Date <u>7-</u> $\mathcal{L}/-9^{\prime}$
Level 2. Initial Date/2/(94)
Level 3. Initial <u>14</u> Date <u>7/21/94</u>

×.

ENVIRONMENTAL CHEMICAL CORPORATION

CASE NARRATIVE

Customer Project No.: 15747	- * - *	
Customer Name: <u>O. 1.1. Malerials Corp</u>	••• · · · · · · · · · · · · · · · · · ·	.••
Sample Source: 19365	·	
1. QC Package belongs to Batch No. <u>VS 0720-2</u>	-	
2. QC Package for this Prep. Batch is from this Project? YES If no, where can the QC package be found? Work Order	NO Project	
3. Describe any problems: dilution - special duplicate, surrogate recoveries, sediment problem, instrument problem, extraction problem, write NO in the blank space.	problem, etc. If no	0
Sample NO. & had no Targeta but had of hydro carbone. This saple was for	high levels	-
I but gave no maable data. Was	rerun at la	
and reported as such. Sample 3, 4 +. because of carry over of sample 2 on	s were rerun	~
Level 1. Initial Jand	Date <u>7/22/5</u> 4	
Level 2. Initial	• .	

Initial _____

Date 7/12/44

Level 3.

ENVIRUNIVIENTAL CHEMICAL CORPORATION CHECK LIST						
roject No: 17365				Lab Check: _	pe	(Initials)
Iarrative:				Cust. Check:	1	
one/Fax:						
AMPLES:	<u>BNA</u> (خ)	<u>VOA</u> (さ)	PEST/PCB	HERBICIDE	<u>TPH(P)</u> (s)	TPH(E)
ield Samples (+ TIC)	<u> </u>	V			(3)	
lethod Blank						
uplicate	_	~				
S/MSD						<u> </u>
CS		~	<u></u>			
ining Check	······································	$\overline{\checkmark}$				
libration Check	<u> </u>				- MA	<u></u>

MPLES:

<u>Metals</u>

MISCELLANEOUS

۰.,

Blank	
plicate	
/MSD	
2	
//CCV	
CCB	
A	

<u>SAMPLES</u> :	ANALYSES:
Samples	
Method Blank	
Duplicate	
MS/MSD	· · · ·
LCS	*

TODY DOCUMENT:

omer Chain-of-Custody	\mathcal{N}
ler Receipt Form	
ill Documents	5
ple Log-in Sheet	
Corrective Action	2

Source: <u>F</u>	D.H. MATERIALS CORPOR Fort Riley, KS (TANKS) Gasoline	ATION		Cust. Proj. No.: Project No.: Date Received:	<u>15747</u> <u>19365</u> 07/16/94	
l: <u>N</u>	Mod. EPA 8015					
an Hotebook:	415, Pg. 44			Date Analyzed:	07/19/9	94 - 07/20/94
Preparation Ba	atch: <u>GASS0719</u>		· · · · · · · · · · · · · · · · · · ·	Instrument Batch:	BG071	9
LAB I.D.	CUSTOMER SAMPLE NO.	MATRIX	TPH	D.L. (mg/kg)	RESULT (mg/kg)	Bromofluorobenzene (% Recovery)
19365-001 H	0001 From Bottom of Tank 1	SOIL Soil	Volatile (gasoline ran	0.050 nge)	1770	e
19365-002 S	0002 Soil From Bottom of Ta	SOIL nk 2	Volatile (gasoline ran	0.050 nge)	1260	e
19365-003 Soi	0003 I From West End of Ex	SOIL cavati	Volatile (gasoline rar	0.050 age)	ND	81
19365-004 Soi	0004 I From Bottom Side of	SOIL South	Volatile (gasoline ran	0.050 age)	ND	85
19365-005 So	0005 il Bottom Side North	SOIL Wall	Volatile (gasoline ran	0.050 Ige)	0.24	112
19365-006 So	0006 il Top Side of South	SOIL Wall	Volatile (gasoline ran	0.050 ge)	ND	75

٠

D - Not Detected J.L. - Detection Limit

ł

. .

Customer: <u>O.H.</u> Source: <u>N/A</u> Analysis: <u>Gaso</u>	MATERIALS CORPO	RATION		Cust. Proj. No.: Project No.: Date Received:	<u>15747</u> 19365 N/A	
d: <u>Mod.</u> otebook: Preparation Batch	EPA 8015 415, Pg. 44 : <u>GASS0719</u>			Date Analyzed: Instrument Batch:	07/19/94 BG0719	- 07/20/94
LAB I.D.	CUSTOMER SAMPLE NO.	MATRIX	TPH	D.L. (mg/kg)	RESULT) (mg/kg)	Bromofluorobenzene (% Recovery)
19365-005DUP	0005	SOIL	Volatile	0.050	0.15	89
Soil	Bottom Side North	Wall	(gasoline r	ange)		
Soil Blank	Bottom Side North N/A	Wall	(gasoline r Volatile (gasoline r	0.05	ND	96
с.			Volatile	0.05	ND RECOVER	96
×			Volatile (gasoline ra SPIKE	0.05 ange) RECOVERED		96
Blank	N/A	SOIL	Volatile (gasoline ra SPIKE mg/kg	0.05 ange) RECOVERED mg/kg	RECOVER	96 RY QC LIMITS

_____.

D - Not Detected .L. - Detection Limit .

- section -

.

Customer:	O.H. MATERIALS CORPORATION	Cust. Proj. No.:	15747
Source:	Fort Riley, KS (TANKS)	Project No.:	19365
Analysis:	Diesel	Date Received:	07/16/94
	EPA Mod. 8015	Date Extracted:	07/18/94
teboo	k: <u>377. Pg. 85</u>	Date Analyzed:	07/19/94
Preparation?	Batch: <u>DZS0718</u>	Instrument Batch:	DZ0719

LAB I.D.	CUSTOMER SAMPLE NO.	MATRIX	TPH	D.L. (mg/kg)	RESULT (mg/kg)	Pentacosane (% Recovery)
19365-001 From	0001 Bottom of Tank 1	SOIL Soil	NonVolatile (Diesel range) Range C15-C25	10.0	37.0	(#) 95
19365-002 Soil	0002 From Bottom of T	SOIL ank 2	NonVolatile (Diesel range) Range C15-C25	10.0	471	118
19365-003 Soil F	0003 rom West End of E	SOIL xcavati	NonVolatile (Diesel range) Range C15-C25	10.0	10.2	86
19365-004 Soil F	0004 rom Bottom Side o:	SOIL f South	NonVolatile (Diesel range) Range C15-C25	10.0	ND	86
19365-005 Soil 1	0005 Bottom Side North	SOIL Wall	NonVolatile (Diesel range) Range C15-C25	10.0	30.8	(#) 99
19365-006 Soil 1	0006 Fop Side of South	SOIL Wall	NonVolatile (Diesel range) Range C15-C25	10.0	ND	97

This sample contains a later eluting oil which was calculated as diesel.

QUALITY CONTROL

	ource: N/A nalysis: Diesel 1: EPA Mod. 8015 tebook: 377. Pg. 85			P D	ust. Proj. No.: roject No.: ate Received: ate Extracted: ate Analyzed:	<u>15747</u> <u>19365</u> <u>N/A</u> 07/18/94 07/19/94	
LAB I.D.		DZS0718 CUSTOMER SAMPLE NO.	MATRIX	Ir	D.L. (mg/kg)	DZ0719 RESULT (mg/kg)	Pentacosane (% Recovery)
19365-001		0001 Bottom of Tank	SOIL 1 Soil	NonVolatile (Diesel range Range C15-C2		37.9 (#)	94
Blank	-	N/A	SOIL	NonVolatile (Diesel range Range C15-C25		ND	85
				SPIKE mg/kg	RECOVERED mg/kg	ş RECOVERY	QC LIMITS
LCSS		N/A	SOIL	50.0	49.4	99	50-150
19365-001	MS	0001	SOIL	50.0	43.2	86	50-150
19365-001	MSD	0001	SOIL	50.0	32.5	65	50-150

This sample contains a later eluting oil which was calculated as diesel.

#)

SAMPLE NUMBER

Source: For River KS (TANKS) Cust Proj. No.: 15747 Counter For River KS (TANKS) Cust Proj. No.: 15747 Counter For River KS (TANKS) Cust Proj. No.: 15747 Cust Proj. No.: 15747
--

U: Below Detection Limit

SAMPLE NUMBER

TENTATIVELY IDENTIFIED COMPOUNDS

RT/SCAN #

1.83

EST.

CONC(µg/kg)

28

Customer: 0	он ма	TERIALS CORPORATION			0001	
		v. KS (TANKS)	-	Cust. Proj. N	No.: <u>15747</u>	
Location: <u>F</u>	rom Bo	tom of Tank 1 Soil				
Analysis: <u>V</u>	OLAT	LE EPA 8240				
Matrix:(soil/wa	nter)	SOIL	Lab Sample I.D.:	: 19365-0	01	
Sample Weight	t:	5.0 g	Date Sampled:	07/14/94	4	
Extract Volume	e:	5.0 mL	Date Received:	07/16/94	4	
Column:(packed	:d/cap)	Packed	Date Analyzed:	07/20/94	1	
Percent Solid:		100 %	Preparation Bat	ch: VS0720-	-2	
Dilution Factor:		1	Instrument Batc	h: <u>V0720-2</u>	2	
Lab Notebook N	No:	414, Pg. 86				

1.

CAS NO.

115-10-6

COMPOUND

ETHANOL

West Post

SAMPLE NUMBER

÷

	Customer: C	.H. MATERIALS CORPORATION		0002	
		ort Riley, KS (TANKS)	Cus	t. Proj. No.: <u>15747</u>	
		oil From Bottom of Tank 2			
		OLATILE EPA 8240			
	Matrix:(soil/wa	,	Lab Sample I.D.:	19365-002	
	Sample Weight			07/14/94	
	Extract Volume	: <u>5.0 mL</u>	Date Received:	07/16/94	
	Column:(packed	1/cap) <u>Packed</u>	Date Analyzed:	07/21/94	
	Percent Solid:	100 %	Preparation Batch:	VS0720-2	
	Dilution Factor:	1		V0721-2	
	Lab Notebook N	Io: 414, Pg. 88			
			SAMPL	E RESULTS	·
	CAS NO.	COMPOUND	DETECTION LIMITS (µg/kg) RESULTS	FLAG
1.	74-87-3	Chloromethane	40.5	U	
2.	74-83-9	Bromomethane	19.5	υ	
3.	75-01-4	Vinyl Chloride	21.0	U	
4.	75-00-3	Chloroethane	5.0	U	
5.	75-09-2	Methylene Chloride	17.0	U	j
6.	67-64-1	Acetone	35.5	υ	
7.	75-15-0	Carbon Disulfide	2.5	U	
8.	75-35-4	1,1-Dichloroethene	12.0	U	
9.	75-34-3	1,1-Dichloroethane	8.5	U	
10.	540-59-0	1,2-Dichloroethene	10.5	U	
11.	67-66-3	Chloroform	4.7	U	
12.	107-06-2	1,2-Dichloroethane	9.5	U	
13.	78-93-3	2-Butanone	29.5	υ	
14.	71-55-6	1,1,1-Trichloroethane	9.0	U	
	56-23-5	Carbon Tetrachloride	5.5	U	
	75-27-4	Bromodichloromethane	4.2	U	
	78-87-5	1,2-Dichloropropane	15.5	· U	
18.	10061-01-5	cis-1,3-Dichloropropene	17.0	U	
19.	79-01-6	Trichloroethene	10.0	U	
20.	124-48-1	Dibromochloromethane	37.0	U	
21.	79-00-5	1,1,2-Trichloroethane	2.4	υ	
22.	71-43-2	Benzene	9.5	<u> </u>	
23.	10061-02-6	trans-1,3-Dichloropropene	23.5	U	
24.	75-25-2	Bromoform	6.9	U	
25.	108-10-1	4-Methyl-2-Pentanone	19.0	U	
26.	591-78-6	2-Hexanone	25.5	U	
27.	127-18-4	Tetrachloroethene	9.5	υ	
28.	79-34-5	1,1,2,2-Tetrachloroethane	11.0	υ	
29.	108-88-3	Toluene	6.0	U	
30.	108-90-7	Chlorobenzene	7.5	σ	
31.	100-41-4	Ethylbenzene	2.1	υ	
32.	100-42-5	Styrene	10.0	U	
33.	1330-20-7	Xylene (total)	1.8	U	
a -	SURROGATE S		ERY (%) ACCEPTABLE	SPIKE (µg/kg)	
34.	1,2-Dichlor	coethane-d4	91 70-121	250	
35.	Toluene-d8		103 81-117	250	
36.	Bromofluoro	benzene	117 74-121	250	

SAMPLE NUMBER

이는 다.

A ANALA

Customer:	0.H. M.	ATERIALS CORPORATION		0002	
		v. KS (TANKS)	Cu	st. Proj. No.: 15747	_
		n Bottom of Tank 2			
Analysis:	VOLAT	ILE EPA 8240	· · · · · · · · · · · · · · · · · · ·		
Matrix:(soil/wasangle Weigh		SOIL	Lab Sample I.D.:	19365-002	
Extract Volum		<u>1.0 g</u> 5.0 mL	Date Sampled: Date Received:	07/14/94	
Excluse Volum	l Ģ .		Date Received.	07/16/94	
Column:(packe		Packed	Date Analyzed:	07/21/94	
Percent Solid:		100 %	Preparation Batch:	VS0720-2	
Dilution Factor		1	Instrument Batch:	V0721-2	
Lab Notebook	No:	414 Pg 88			-

TENTATIVELY IDENTIFIED COMPOUNDS

	CAS NO.	COMPOUND	RT/SCAN #	EST. CONC(µg/kg)
1.		С9н16	23.44	65
		C9H16	24.87	205
•		C9H16	25.08	420
•		Pentalene, octahydro-1-methyl-	25.38	405
:		C9H18	26.43	650
:		C5H6S	27.54	25
:		Cyclohexane, propyl-	29.11	1400
· I		C10H20	30.72	4950

SAMPLE NUMBER

-

	Customer:	D.H. MATERIALS CORPORATION			0003	
	د د					
		ort Riley, KS (TANKS)		Cust. FI	oj. No.: <u>15747</u>	
		oil From West End of Excavation	· · · · · · · · · · · · · · · · · · ·			
	Analysis: <u>V</u>	OLATILE EPA 8240				
	Matrix:(soil/wa	iter) SOIL	Lab Sample I	 D· 193	65-003	
	Sample Weight		Date Sample		4/94	
	Extract Volume		Date Receive		6/94	
		<u>5.0 III.</u>	Date Receive	u. <u>0771</u>	0/94	
	Column:(packe	d/cap) Packed	Date Analyze	d. 07/7	21/94	
	Percent Solid:	100 %	Preparation			
÷ ,	Dilution Factor		Instrument H		21-2	
	Lab Notebook N		Instrument i	Satcn: <u>v07</u>	21-2	
	Lao Notebook I	No: <u>414, Pg. 88</u>		SAMPLE R	PCTT.TC	
	CAS NO.	COMPOUND	DETECTION LIMITS			<u> </u>
1.	74-87-3	Chloromethane		(µg/kg)	RESULTS	FLAG
2.	74-83-9	Bromomethane	8.1		<u> </u>	
З.	75-01-4	Vinyl Chloride			<u> </u>	ļ
4.	75-00-3	Chloroethane	4.2	····	<u> </u>	ļ
5.	75-09-2	Methylene Chloride	1.0		U	
б.	67-64-1	Acetone	3.4		<u> </u>	ļ
7.	75-15-0	Carbon Disulfide			<u>U</u>	
8.	75-35-4	1,1-Dichloroethene	0.49		<u>U</u>	
9.	75-34-3	1,1-Dichloroethane	2.4		<u> </u>	ļ
10.	540-59-0	1,2-Dichloroethene	2.1		U	
11.	67-66-3	Chloroform	0.93		U	
12.	107-06-2	1,2-Dichloroethane	1.9		<u> </u>	
13.	78-93-3	2-Butanone	5.9		<u> </u>	
14.	71-55-6	1,1,1-Trichloroethane	1.8		<u> </u>	
15	56-23-5	Carbon Tetrachloride	1.1		<u> </u>	
	75-27-4	Bromodichloromethane	0.84		<u> </u>	
	78-87-5	1,2-Dichloropropane	3.1		U	
18.	10061-01-5	cis-1,3-Dichloropropene	3.4		<u> </u>	
19.	79-01-6	Trichloroethene	2.0		<u> </u>	
20.	124-48-1	Dibromochloromethane	7.4		U	
21.	79-00-5	1,1,2-Trichloroethane	0.47		U	
22.	71-43-2	Benzene	1.9		U	
23.	10061-02-6	trans-1,3-Dichloropropene	4.7		U	
24.	75-25-2	Bromoform	1.4		<u>U</u>	
25.	108-10-1	4-Methyl-2-Pentanone	3.8		U	
26.	591-78-6	2-Hexanone	5.1			
27.	127-18-4	Tetrachloroethene	1.9		<u>ប</u> ប	
28.	79-34-5	1,1,2,2-Tetrachloroethane	2.2		<u> </u>	·····
29.	108-88-3	Toluene	1.2		15.3	
30.	108-90-7	Chlorobenzene	1.5		U	
31.	100-41-4	Ethylbenzene	0.42		<u> </u>	
32.	100-42-5	Styrene	2.0		<u> </u>	
33.	1330-20-7	Xylene (total)	0.35		6.7	
	SURROGATE S	TANDARD RECOV	ERY (%) ACCEPTA	BLE	SPIKE (µg/kg)	
34.	1,2-Dichlor	coethane-d4	91 70-12			
35.	Toluene-d8		108 81-11		50.0	
36,	Bromofluoro	benzene	,		50.0	
			94 74-12	- -	50.0	

U: Below Detection Limit

SAMPLE NUMBER

÷

	Customer: C	.H. MATERIALS CORPORATION			0004	
	<u> </u>	ALL MATERIALS CORPORATION			100.0	d
		ort Riley, KS (TANKS)		Just. Proj	j. No.: <u>15747</u>	
		oil From Bottom Side of South Wall				
	Analysis: <u>V</u>	OLATILE EPA 8240	· · · · · ·			
	Matrix:(soil/wa	ter) SOIL	Lab Sample I.D.:	19365	5 004	
	Sample Weight		Date Sampled:			
	Extract Volume		Date Sampled: Date Received:	07/14		
	Extract volume	. <u>5.0 mL</u>	Date Received:	<u>07/16</u>	/94	· · · ·
	Column:(packed	l/cap) Packed	Date Analyzed:	07/21/	/0.4	
	Percent Solid:	100 %	Preparation Batch			
	Dilution Factor:					
	Lab Notebook N		Instrument Batch	: <u>V0721</u>	1-2	
		<u>414, Pg. 88</u>	SAM	PLE RES	כווו.ייכ	
	CAS NO.	COMPOUND				
1.	74-87-3	Chloromethane	DETECTION LIMITS (µg/	kg)	RESULTS	FLAG
2.	74-83-9	Bromomethane	8.1		<u> </u>	
з.	75-01-4	Vinyl Chloride	3.9		<u> </u>	_
4.	75-00-3	Chloroethane	4.2		U	
5.	75-09-2	Methylene Chloride	1.0		U	
6.	67-64-1	Acetone	3.4		<u> </u>	
7.	75-15-0	Carbon Disulfide	7.1		U	
8.	75-35-4	1,1-Dichloroethene	0.49		U	
9.	75-34-3	1,1-Dichloroethane	2.4		<u>U</u>	
10.	540-59-0	1,2-Dichloroethene	1.7		U	
11.	67-66-3	Chloroform	2.1		<u> </u>	
12.	107-06-2	1,2-Dichloroethane	0.93	· ·	U	
13.	78-93-3	2-Butanone	1.9		Ū	<u> </u>
14	71-55-6	1,1,1-Trichloroethane	5.9		U	<u> </u>
	56-23-5	Carbon Tetrachloride	1.8		U	
	75-27-4	Bromodichloromethane	1.1		Ŭ	
17.	78-87-5	1,2-Dichloropropane	0.84		<u> </u>	
18.	10061-01-5	cis-1,3-Dichloropropene	3.1		Ū	
19.	79-01-6	Trichloroethene	3.4		<u> </u>	<u> </u>
20.	124-48-1	Dibromochloromethane	2.0		<u> </u>	
21.	79-00-5	1,1,2-Trichloroethane	7.4		<u> </u>	
22.	71-43-2	Benzene	0.47		<u> </u>	
23.	10061-02-6	trans-1,3-Dichloropropene	1.9		<u> </u>	ļ
24.	75-25-2	Bromoform			<u> </u>	ļ
25.	108-10-1	4-Methyl-2-Pentanone	1.4		<u> </u>	
26.	591-78-6	2-Hexanone	3.8		<u> </u>	
27.	127-18-4	Tetrachloroethene	<u> </u>		U	
28.	79-34-5	1,1,2,2-Tetrachloroethane	2.2		U	
29.	108-88-3	Toluene	1.2		U	
30.	108-90-7	Chlorobenzene	1.5		<u> </u>	
31.	100-41-4	Ethylbenzene	0.42		<u> </u>	<u> </u>
32.	100-42-5	Styrene	2.0	 	<u> </u>	<u>├</u>
33.	1330-20-7	Xylene (total)	0.35		<u> </u>	
-	SURROGATE S				<u> </u>	L
34.	1,2-Dichlor		•	SP	PIKE (µg/kg)	
35.	Toluene-d8				50.0	
36.	Bromofluoro	benzene			50.0	
			102 74-121		50.0	

U: Below Detection Limit

SAMPLE NUMBER

	Customer: 0	H. MATERIALS CORPORATION		0005	
		ort Riley, KS (TANKS)	C	Proj. No : 15717	
				Proj. No.: <u>15747</u>	
		oil Bottom Side North Wall			
	Analysis: <u>V</u>	OLATILE EPA 8240			
	Matrix:(soil/wat	ter) SOIL	Lab Sample I.D.: 1	9365-005	
	Sample Weight:			07/14/94	
	Extract Volume	: <u>5.0 mL</u>		07/16/94	
		<u>. <u>.</u></u>		//10/94	
	Column:(packed	l/cap) Packed	Data Applymedia	7/01/04	
	Percent Solid:	100 %		7/21/94	
	Dilution Factor:		Preparation Batch: V		
	Lab Notebook N	<u> </u>	Instrument Batch: <u>V</u>	/0/21-2	
	Lau Nolebook IN	0: <u>414, Pg. 88</u>	SIMOT	RESULTS	
	CAS NO.	COMPOUND			
1.	74-87-3		DETECTION LIMITS (µg/kg)		FLAG
2.	74-83-9	Chloromethane Bromomethane	8.1	υ	
3.	75-01-4	Vinyl Chloride	3.9	U	
4.	75-00-3	Chloroethane	4.2	U	
5.	75-09-2	Methylene Chloride	1.0	U	<u> </u>
б.	67-64-1	Acetone	3.4	U	
7.	75-15-0	Carbon Disulfide	7.1	U	<u> </u>
8.	75-35-4	1,1-Dichloroethene	0.49	<u> </u>	<u> </u>
9.	75-34-3	1,1-Dichloroethane	2.4	U	
10.	540-59-0	1,2-Dichloroethene	1.7	U	
11.	67-66-3	Chloroform	2.1	U	<u> </u>
12.	107-06-2	1,2-Dichloroethane	0.93	U	
13.	78-93-3	2-Butanone	1.9	U	
14.	71-55-6	1,1,1-Trichloroethane	1.8	<u> </u>	
	56-23-5	Carbon Tetrachloride	1.1	U	
	75-27-4	Bromodichloromethane	0.84	U	
17.	78-87-5	1,2-Dichloropropane	3.1	U U	
18.	10061-01-5	cis-1,3-Dichloropropene	3.4	U U	
19.	79-01-6	Trichloroethene	2.0	U U	
20.	124-48-1	Dibromochloromethane	7.4	U U	
21.	79-00-5	1,1,2-Trichloroethane	0.47	U U	
22.	71-43-2	Benzene	1.9	U U	
23.	10061-02-6	trans-1,3-Dichloropropene	4.7	U	
24.	75-25-2	Bromoform	1.4	<u> </u>	
25.	108-10-1	4-Methyl-2-Pentanone	3.8	U	
26.	591-78-6	2-Hexanone	5.1	U	
27.	127-18-4	Tetrachloroethene	1.9	U	
28. 29.	79-34-5	1,1,2,2-Tetrachloroethane	2.2	Ŭ	
30.	108-88-3	Toluene	1.2	U .	
31.	108-90-7	Chlorobenzene	1.5	U	
32.	100-41-4 100-42-5	Ethylbenzene	0.42	U	
33.	<u>1330</u> -20-7	Styrene	2.0	U	
		Xylene (total)	0.35	υ	
- <i>•</i>	SURROGATE ST		IRY (%) ACCEPTABLE	SPIKE (µg/kg)	
34.	1,2-Dichlor	oethane-d4	95 70-121	50.0	
35.	Toluene-d8		.00 81-117	50.0	
36.	Bromofluoro	benzene	.03 74-121	50.0	

SAMPLE NUMBER

ŝ

	Customer:	.H. MATERIALS CORPORATION			0006	1
		ort Rilev, KS (TANKS)		Cust	Proj. No.: 15747	
			<u> </u>	Cusi.	110j.100. 15747	
	-	oil Top Side of South Wall				
		OLATILE EPA 8240		·		
	Matrix:(soil/wa	ter) SOIL		Lab Sample I.D.: 1	9365-006	
	Sample Weight	5.0 g			7/14/94	
	Extract Volume				7/16/94	
		<u></u>		<u></u>		
	Column:(packed	l/cap) Packed		Date Analyzed: 0	7/20/94	
	Percent Solid:	100 %				
	Dilution Factor:			Preparation Batch: V		
	Lab Notebook N	and the second se		Instrument Batch: \underline{V}	0720-2	
	Lao Holebook I	0: <u>414, Pg. 86</u>		SAMDIR	RESULTS	
	CAS NO.	COMPOUND	00000			
1.	74-87-3	Chloromethane	DETECT.	ION LIMITS (µg/kg)	RESULTS	FLAG
2.	74-83-9	Bromomethane		8.1	<u> </u>	
3.	75-01-4	Vinyl Chloride		3.9	U	
4.	75-00-3	Chloroethane	<u> </u>	4.2	U	
5.	75-09-2	Methylene Chloride	<u> </u>	1.0	U	
6.	67-64-1	Acetone		3.4	U	
7.	75-15-0	Carbon Disulfide		7.1	U	
8.	75-35-4	1,1-Dichloroethene		0.49	U	
9.	75-34-3	1,1-Dichloroethane		2.4	U	
10.	540-59-0	1,2-Dichloroethene		1.7	U	
11.	67-66-3	Chloroform		2.1	U	<u> </u>
12.	107-06-2	1,2-Dichloroethane		0.93	U	
13.	78-93-3	2-Butanone		1.9	<u> </u>	1
14.	71-55-6	1,1,1-Trichloroethane		5.9	<u> </u>	<u> </u>
	56-23-5	Carbon Tetrachloride		1.8	<u> </u>	
	75-27-4	Bromodichloromethane		1.1	<u> </u>	Ļ
17.	78-87-5	1,2-Dichloropropane		0.84	U	<u> </u>
18.	10061-01-5	cis-1,3-Dichloropropene		3.1	υ	ļ
19.	79-01-6	Trichloroethene		3.4	U	<u> </u>
20.	124-48-1	Dibromochloromethane		2.0	U	ļ
21.	79-00-5	1,1,2-Trichloroethane		7.4	U	ļ
22.	71-43-2	Benzene		0.47	U	
23.	10061-02-6	trans-1, 3-Dichloropropene		<u>1.9</u> 4.7	<u>U</u>	<u> </u>
24.	75-25-2	Bromoform		1.4	<u> </u>	<u> </u>
25.	108-10-1	4-Methyl-2-Pentanone		3.8	U	
26.	591-78-6	2-Hexanone		5.1	<u> </u>	ļ
27.	127-18-4	Tetrachloroethene		1.9	<u> </u>	
28.	79-34-5	1,1,2,2-Tetrachloroethane		2.2	<u> </u>	
29.	108-88-3	Toluene		1.2	U U	
30.	108-90-7	Chlorobenzene		1.5	U U	
31.	100-41-4	Ethylbenzene		0.42	U U	
32.	100-42-5	Styrene		2.0	U U	
33.	1330-20-7	Xylene (total)		0.35	<u> </u>	
	SURROGATE S		VERY (%)	ACCEPTABLE		
34.	1,2-Dichlor		102	70-121	SPIKE (µg/kg)	
35.	Toluene-d8		102	81-117	50.0	
36.	Bromofluoro	benzene	94		50.0	
			22	74-121	50.0	

QUALITY CONTROL

A Adderson

								SAMPLE NUM	BER
Customer:	0.н	MATERIALS CORPORA	TION					N/A	
ce:		Rilev, KS (TANKS)			<u> </u>		Lust. Proj	No: 15747	
tion:	N/A		· · · · ·			(usi. Fioj	. No.: <u>15747</u>	
Analysis:	<u>voi</u>	ATILE EPA 8240		······································	· · · · · · · · · · · · · · · · · · ·	······································			<u> </u>
Matrix:(soil/wat	ter)	Soil							
Sample Weigh	-	<u>5.0 g</u>				mple I.D.:	BLAN	<u>1K</u>	
Extract Volume		5.0 mL				ampled: eceived:	<u>N/A</u>		
	•				Date R	eceived:	<u>N/A</u>		
Column:(packed	i/cap)	Packed			Date A	nalyzed:	07/20/	/94	
Percent Solid:		100 %				ation Batch:	<u>VS072</u>		
Dilution Factor:		1			-	nent Batch:	V0720		
Lab Notebook N	lo:	<u>414, Pg. 86</u>			E	LANK			
CAS NO	.	COMPOUND		DETE	CTION I	LIMITS (µg/	'kg)	RESULTS	FLAG
				· .					
Toluer	ne-da	proethane-d4 3 cobenzene		20VERY 96 100 102		ACCEPTABL 70-121 81-117 74-121		SPIKE (µg/kg) 50.0 50.0 50.0	
							,		
					<u> </u>				
								,	
					·				

QUALITY CONTROL

and Washington

						SAME	PLE NI	UMBER	
Customer:	<u>Q.</u>	H. MATERIALS	CORPORATION			0006			
Source:	Fo	rt Rilev, KS (TAN	KS)		—– Cu	st. Proj. No.:	15747		
cation:	<u>Soi</u>	il Top Side of Sout	h Wall				15/4/		
alysis:	<u>VC</u>	LATILE EPA 8	240						
Matrix:(soil/wa	ater)	SOIL		Lab Sample I.	יים	<u>9365-006 Dup</u>	alicate		
Sample Weight	:	5.0 g		Date Sampled	-	7/14/94	meate_		-
Extract Volume	:	5.0 mL		Date Received		7/16/94			-
					· <u>·</u>	<u></u>			
Column:(packed	d/cap)	Packed		Date Analyzed	L: 0	7/20/94			
Percent Solid:		100 %	·	Preparation E	_	/S0720-2		· ·	-
Dilution Factor:		1		Instrument B		0720-2		,	
Lab Notebook N	lo:	<u>414, Pg. 86</u>		DUPLICAT	E				
COVEORE			DETECTION LIMIT	SAMPLE RESULT	DUPI	ICATE RESU	OLT		1
COMPOUND			(µg/kg)	(µg/kg)		(µg/kg)		FLAG	
								· · · · · · · · · · · · · · · · · · ·	1
		ALL	COMPOUNDS ARE H	BELOW DETECTION L	IMIT.				-
			SAMPLE	DUPLICATE					
SURROGATE S			RECOVERY ((%) RECOVERY (%) AC	CEPTABLE	SPIR	CE (μg/kg	r)
1,2-Dichlor	oetha	ane-d4	102	105		70-121		50.0	
Toluene-d8			103	102	ŧ	31-117		50.0	
Bromofluoro	benze	ene	94	96	•	74-121		50.0	

U: Below Detection Limit

QUALITY CONTROL

SAMPLE NUMBER

Lustomer:	O.H. MATERIALS CORPORATION		N/A	1
Source :	Fort Riley, KS (TANKS)	Cust	Proj. No.: 15747	1
n:	<u>N/A</u>			
Anarysis:	VOLATILE EPA 8240			
Aatrix: (soil/water)	Soil	Lab Sample I.D.:	19365-LCSS	
'reparation Batch	<u>VS0720-2</u>	Instrument Batch:	<u>V0720-2</u>	<u> </u>

LABORATORY CONTROL SAMPLE

COMPOUND	TRUE VALUE	FOUND	%	QC LIMITS
	(µg/kg)	(µg/kg)	REC #	% REC.
1,1-Dichloroethene Trichloroethene Benzene Toluene Chlorobenzene	50.0 50.0 50.0 50.0 50.0 50.0	60.7 48.7 49.1 50.6 48.6	121 97 98 101 97	59-172 62-137 66-142 59-139 60-133

Column to be used to flag recovery values with an asterisk Values outside of QC limits

Spike Recovery: 0 out of 5 outside limits

50.0

50.0

50.0

SPIKE ADDED

 $(\mu g/kg)$

50.0

50.0

50.0

50.0

50.0

QUALITY CONTROL

.

62-137

66-142

59-139

60-133

REC.

59-172

62-137

66-142

59-139

60-133

QC LIMITS

RPD

22

24

21

21

21

SAMPLE NUMBER

C-momer:	O.H. MATERIALS CO	RPORATION			0006	
Fort Riley, KS (TANKS)					Proj. No.:	15747
Location: Soil Top Side of South Wall						
Analysis:	VOLATILE EPA 8240					
Matrix: (soil/water)	SOIL		Lab Sample	LD.: 19	365-006	
Preparation Batch: VS0720-2			Instrument		720-2	
		MATI	RIX SPIKE/MATRI	X SPIKE DUP	LICATE	· ·
COMPOUND		SPIKE ADDED (µg/kg)	SAMPLE CONC. (µg/kg)	MS CONC. (µg/kg)	۶ REC #	QC LIMITS % REC.
1,1-Dichloroe Trichloroethe	thene ne	50.0 50.0	0.0 0.0	78.4 60.7	157 121	59-172

0.0

0.0

0.0

MSD CONC.

72.2

58.0

59.7

62.2

60.4

 $(\mu g/kg)$

62.5

64.7

62.2

MSD %

144

116

119

124

121

REC

125

129

124

#

8

9

4

5

4

2

RPD

Column to be used to flag recovery and RPD values with an asterisk

as outside of QC limits

RPD: 0 out of 5 outside limits Spike Recovery: 0 out of 10 outside limits

MMENTS :

Benzene

Toluene

COMPOUND

3enzene

Coluene

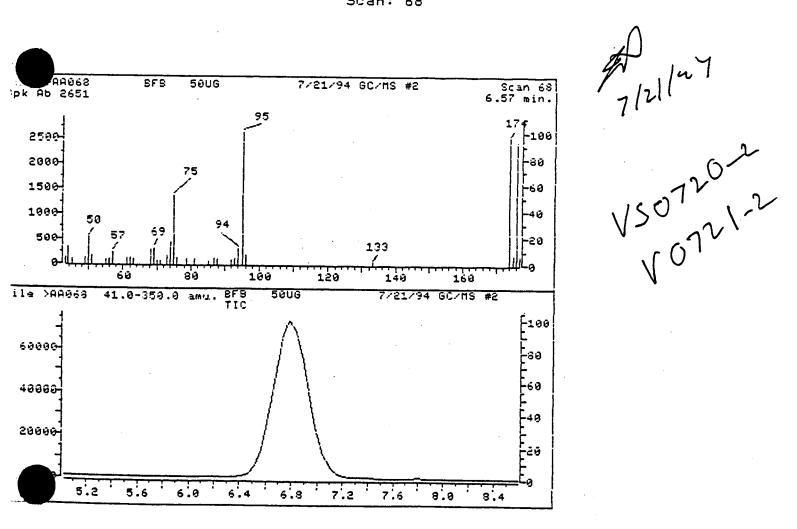
Chlorobenzene

1,1-Dichloroethene

Trichloroethene

lhlerobenzene

:


GC/MS PERFORMANCE STANDARD

Bromofluorobenzene (BFB)

m∕z	Ion Abundance Criteria	% Relative Base Peak	Abundance Appropriate Peak	Ch
				Status
50	15-40% of mass 95	20.07	20.07	Ük
75	30-60% of mass 95	51.64	51.64	Ūk
95	Base peak, 100% relative abundance	100.00	100.00	Ok
96	5-9% of mass 95	6.87	6.87	Ûk
173	Less than 1% of mass 95	0.00	0.00	0k
174	Greater than 50% of mass 95	96.04	96.04	0k
175	5-9% of mass 174	6.79	7.07	Ok
176	95-101% of mass 174	93.36	97.21	0k
177	5-9% of mass 176	6.22	6.67	Ok

ġ

Injection Date: 07/21/94 Injection Time: 08:44 Data File: >AA068 Scan: 68

Continuing Calibration Check HSL Compounds

No: Calibration Date: 07/21/94 Contractor: ECC GC/MS #2 8240 Time: 09:12 Contract No: Laboratory ID: >JUL21 Instrument ID: 2716A10254 Initial Calibration Date: 05/27/94 Minimum RF for SPCC is 0.300 Maximum % Diff for CCC is 25%% Compound RF RF *Diff CCC SPCC Chloromethane .51376 .31419 38.85 ** Dichlorodifluoromethane 1.61475 .28591 82.29 Bromomethane .65576 .50504 22.98 18.40 Vinyl Chloride .56230 .45887 Chloroethane .37407 .39621 5.92 Methylene Chloride 1.15125 1.67830 45.78 Acrylonitrile .11643 .19179 64.73 Acetone .25509 .29719 16.51 Carbon Disulfide 3.13453 2.77890 11.35 Trichlorofluoromethane 3.12079 2.41212 22.71 1,1-Dichloroethene 1.71316 1.86797 9.04 4 lichloroethane 1.96214 2.25325 14.84 ** chloroethene 1.68183 1.80819 7.51 Lineroform 3.03477 3.20779 5.70 /* 1,2-Dichloroethane-d4 1.96996 1.72346 12.51 1,2-Dichloroethane 1.94169 1.94743 .30 Dibromomethane .54366 .56475 3.88 2-Butanone .08958 .08580 4.23 1,1,1-Trichloroethane .93219 .80469 13.68 Carbon Tetrachloride .90401 .76458 15.42 Vinyl Acetate .11185 .17664 57.92 Bromodichloromethane .95024 .90033 5.25 1,2-Dichloropropane .30997 .35652 15.02 -+ cis-1,3-Dichloropropene .50554 .44262 12.45 (Conc=53.00) Trichloroethene .50969 .49842 2.21 Dibromochloromethane .55530 .62206 12.02 1,1,2-Trichloroethane .30081 .37403 24.34 Benzene .73344 .78292 6.75 trans-1,3-Dichloropropene .38186 .42284 10.73 (Conc=47.00) 2-Chloroethylvinylether .11143 .15135 35.82 1,2-dibromoethane -(Conc=50.00) Bromoform .42546 .45131 6.08 **

RF

RF

- Response Factor from daily standard file at 50.00 ug/L

Average Response Factor from Initial Calibration Form VI

% Difference from original average or curve

222 Calibration Check Compounds (*) SPCC - System Performance Check Compounds (**)

> Form VII Page 1 of 2'

Continuing Calibration Check

HSL Compounds

ła :		Calibr	ation Date	: 07/21/94
Contractor: ECC GC/MS #2 82	40	Time:	09:12	*****************
Contract No:		Labora	itory ID: >.	JUL21
Instrument ID: 2716A10254		Initia	l Calibrat:	ion Date: 05/27/94
Minimum RF for SPCC is	s 0.300	Maxim	um % Diff (or CCC is 25%%
Compound	RF	RF	%Diff CCC	: SPCC
4-Methyl-2-Pentanone	.27445	.29223	 6.48	
1,2,3 Trichloropropane	.51593	.74589	44.57	
2-Hexanone	.18068	.19589	8.42	
Tetrachloroethene	.63846	.54054	15.34	
1,1,2,2-Tetrachloroethane	.65122	.85810-	31.77	**
Toluene	1.07761	1.05592	2.01 *	
Toluene-d8	1.20410	1.05839	12.10	
Chlorobenzene	.95221	1.00976-	6.04 /	**
Ethylbenzene	1.31707 1	1.32547	.64	
Bromofluorobenzene	.92379	.95332	3.20	(Conc=50.00)
Styrene	.91649	.89719	2.11	
(total)	1.28397 1		1.81	(Conc=150.00)
hlorobenzene	1.14532 1			
1,5-Jichlorobenzene	1.16624 1			
1,4-Dichlorobenzene	1.05814 1	.34905	27.49	

.....

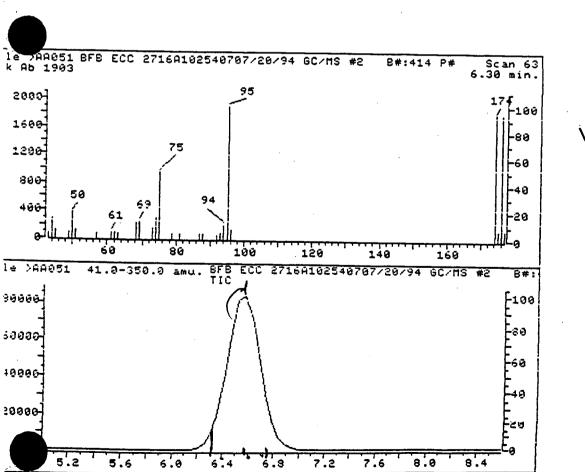
- Response Factor from daily standard file at 50.00 ug/L Average Response Factor from Initial Calibration Form VI

% Difference from original average or curve

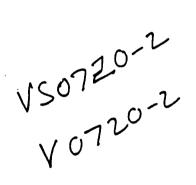
F

F

CC - Calibration Check Compounds (*) SPCC - System Performance Check Compounds (**)


Form VII Page 2 of 2

GC/MS PERFORMANCE STANDARD


Bromofluorobenzene (BFB)

m/z	Ion Abundance Criteria	_	Abundance Appropriate Peak	Status -
50 75 95 173 174 175 176 177	15-40% of mass 95 30-60% of mass 95 Base peak, 100% relative abundance 5-9% of mass 95 Less than 1% of mass 95 Greater than 50% of mass 95 5-9% of mass 174 95-101% of mass 176	19.29 49.92 100.00 7.41 0.00 94.48 7.04 93.96 7.15	$ 19.29 \\ 49.92 \\ 100.00 \\ 7.41 \\ 0.00 \\ 94.48 \\ 7.45 \\ 99.44 \\ 7.61 $	Ok Ok Ok Ok Ok Ok Ok Ok Ok

Injection Date: 07/20/94 Injection Time: 10:57 Data File: >AA051 Scan: 63

Jan 4

Continuing Calibration Check HSL Compounds

Case No:		Calib	ration	Date:	07/	/20/94
Contractor: ECC GC/MS #2 824	10	Time:	11:22			
Contract No:		Labora	atory [[):)]	UC20	
nstrument ID: 2716A10254		Initia	al Calib	rati	on D	ate: 05/27/94
Minimum RF for SPCC is	0.300	Maxin	num % Di	ff fi	or C	CC is 25%%
Compound	RF	RF	*Diff	222	SPC	C
hloromethane	.51376	.59319	15.46		**	•
ichlorodifluoromethane		1.56497				
romomethane	.65576	.57232	12.72			
inyl Chloride	.56230	.65775	16.97	*		
aloroethane	.37407	.44422	18.75			
sthylene Chloride	1.15125	1.42578	23.85			
prylonitrile	.11643	.16266	39.71		.*	
setone	.25509	.25422	.34			
arbon Disulfide	3.13453	2.26578	27.72			
<pre>ichlorofluoromethane</pre>	3.12079	2.39773	23.17			
loroethene	1.71316	1.46085	14.73	•		
loroethane	1.96214	1.84002	6.22		**	
2-orchloroethene	1.68183	1.48747	11.56			
loroform	3.03477	2.65053	12.66	¥		
2-Dichloroethane-d4	1.96996	1.55727	20.95			
2-Dichloroethane	1.94169	1.66065	14.47			
bromomethane	.54366					
Butanone		.06646				
1,1-Trichloroethane	.93219	.75243	19.28			
rbon Tetrachloride		.72546				
nyl Acetate		.16947	51.51			
omodichloromethane	.95024					•
2-Dichloropropane	.30997	.32695	5.48	+		
s-1,3-Dichloropropene	.50554	.39647	21.57			(Conc=53.00)
ichloroethene	.50969	. 45985	9.78			
bromochloromethane	.55530	.55780	. 45			
1,2-Trichloroethane	.30081	.33547	11.52			
nzene	.73344	.72117	1.67			
ans-1,3-Dichloropropene	.38186	.39695	3.95			(Conc=47.00)
Chloroethylvinylether	.11143	.13664	22.62			
2-dibromoethane	-	-	-			(Conc=50.00)
omoform	. 42546	.43665	2.63		**	

Fr 120/4 1

Were Co

- Response Factor from daily standard file at 50.00 ug/L

Average Response Factor from Initial Calibration Form VI

iff - % Difference from original average or curve

- Calibration Check Compounds (*) SPCC - System Performance Check Compounds (**)

Form UTE Page 1 of 2

Continuing Calibration Check HSL Compounds

	-	Calib	ration [)ate: (17/20/94
Contractor: ECC GC/MS ‡2 824	40 40	Time:	11:22	-	,
Contract No:		Labora	atory ID): >JUC	20
Instrument ID: 2716A10254		Initia	al Calib	ration	Date: 05/27/94
Minimum RF for SPCC is	0.300	Maxim	num % Di	ff for	CCC is 25%%
Compound	RF	RF	%Diff	CCC S	PCC
4-Methyl-2-Pentanone	.27445	.26295	4.19		
1,2,3 Trichloropropane	.51593				
2-Hexanone	.18068	.17245	4.55		
Tetrachloroethene	.63846	.49197	22.94		
1,1,2,2-Tetrachloroethane	.65122	.81133	24.59	4	•
Toluene	1.07761	.94970	11.87	ŧ	
Toluene-d8	1.20410	1.03359	14.16		
Chlorobenzene	.95221	.91766	3.63	-	+*
Ethylbenzene	1.31707	1.21169	8.00	÷.	
Bromofluorobenzene	.92379	.96749	4.73		(Conc=50.00)
Styrene	.91649	.85228	7.01		
(total)		1.17296			(Conc=150.00)
hlorobenzene		1.25693			
2-Dichlorobenzene		1.40734			
L,4-Dichlorobenzene	1.05814	1.12541	6.36		

92) 20/21 7/20/21

- Response Factor from daily standard file at 50.00 ug/L F Average Response Factor from Initial Calibration Form VI

% Difference from original average or curve

Calibration Check Compounds (*) X • SPCC - System Performance Check Compounds (**)

> Form UIT Page 2 nf 7

SAMPLE NUMBER

:

.

	Customer:	O.H. MATERIALS CORPORATION		0001	
	Source:	Fort Riley, KS (TANKS)	Cus	t. Proj. No.: <u>15747</u>	
		From Bottom of Tank 1 Soil	Cas	L. PIOJ. NO.: $15/4/$	
		SEMIVOLATILE EPA 8270			
	Matrix:(soil/w				
	Sample Weigh			19365-001	
	Extract Volum		Date Sampled:	07/14/94	
	Injection Volu			07/16/94	
	Injection volu	me: <u>1 uL</u>		07/18/94	
	Percent Solid:	100.04		07/19/94	
	Dilution Facto	100 %	Preparation Batch:		
	Lab Notebook	·	Instrument Batch:	B0719-1	
		No: <u>402. Pg. 97</u>	SAMOT	E RESULTS	
	CAS NO.	COMPOUND			
1.	108-95-2	Phenol	DETECTION LIMITS (µg/kg		FLAG
2.	111-44-4	bis(2-Chloroethyl)Ether	<u> </u>	Ŭ	
3.	95-57-8	2-Chlorophenol	73.6	U	<u> </u>
4.	541-73-1	1,3-Dichlorobenzene	98.0	<u> </u>	
5.	106-46-7	1,4-Dichlorobenzene	107	U U	
6. 7.	100-51-6 95-50-1	Benzyl Alcohol	205	U	+
8	95-50-1	1,2-Dichlorobenzene	111	U U	+
9.	108-60-1	2-Methylphenol	213	U U	+
.0.	106-44-5	bis (2-chloroisopropyl) ether	189	U	†
.1.	621-64-7	4-Methylphenol	212	υ	
.2.	67-72-1	N-Nitroso-Di-n-propylamine Hexachloroethane	192	U	†
з.	98-95-3	Nitrobenzene	88.4	U	1
	78-59-1	Isophorone	126	U	
	88-75-5	2-Nitrophenol	161	U	
	105-67-9	2,4-Dimethylphenol	<u>139</u> 71.6	<u> </u>	
7.	111-91-1	bis (2-Chloroethoxy) methane	138	<u> </u>	
8. 9.	120-83-2	2,4-Dichlorophenol	94.5	U U	
o.	120-82-1 91-20-3	1,2,4-Trichlorobenzene	138	U U	
1.	106-47-8	Naphthalene	108	U	
2.	87-68-3	4-Chloroaniline	173	U	
3.	59-50-7	Hexachlorobutadiene	129	U	
4.	91-57-6	4-Chloro-3-methylphenol 2-Methylnaphthalene	183	U	<u></u>
5.	77-47-4	Hexachlorocyclopentadiene	154	U	
5.	88-06-2	2,4,6-Trichlorophenol	127	U	
7.	95-95-4	2,4,5-Trichlorophenol	91.8	U	
3.	91-58-7	2-Chloronaphthalene	<u>95.0</u> 105	U	
) .	88-74-4	2-Nitroaniline	243	<u> </u>	
). L.	131-11-3	Dimethylphthalate	126	<u> </u>	
2	208-96-8 606-20-2	Acenaphthylene	108	U U	
	99-09-2	2,6-Dinitrotoluene	96.9	<u> </u>	
	83-32-9	3-Nitroaniline	368	<u> </u>	
1	51-28-5	Acenaphthene	58.0	<u> </u>	
	100-02-7	2,4-Dinitrophenol 4-Nitrophenol	263	U	
	132-64-9	Dibenzofuran	240	U	
.	121-14-2	2,4-Dinitrotoluene	131	U	
••	84-66-2	Diethylphthalate	98.8	υ	
•	7005-72-3	4-Chlorophenyl-phenylether	132	U	
·	86-73-7	Fluorene	134	U	
	100-01-6	4-Nitroaniline	89.5	U	
	534-52-1	4,6-Dinitro-2-methylphenol	405	U	
	86-30-6	N-Nitrosodiphenylamine (1)	102	U	
.	101-55-3 118-74-1	4-Bromophenyl-phenylether	75.8 62.1	<u>U</u>	
.		Hexachlorobenzene			1

(1) - Cannot be separated from Diphenylamine

.

ŝ

		<u>IIORATION</u>	SAMPLE NUM	BER
Customer:			0001	
	O.H. MATERIALS CORPORATION		· >	
	ort Rilev, KS (TANKS)	Cust. P	roj. No.: <u>15747</u>	
	From Bottom of Tank 1 Soil		· · · · ·	
Analysis:	SEMIVOLATILE EPA 8270		· · · · · · · · · · · · · · · · · · ·	
Matrix:(soil/wa	ater) SOIL	Lab Sample I.D.: 193	65-001	
Sample Weigh			14/94	
Extract Volum		•	16/94	
Injection Volu			18/94	
mjeedon vonm			19/94	
Percent Solid:	100 %			
Dilution Factor		Preparation Batch: BN		
Lab Notebook		Instrument Batch: <u>B0</u>	719-1	
	No: <u>402, Pg. 97</u>	SAMPLE I	RESULTS	
CAS NO.	COMPOUND	DETECTION LIMITS (µg/kg)	RESULTS	FLA
87-86-5	Pentachlorophenol	429	U	
85-01-8	Phenanthrene	68.2	U	1
120-12-7	Anthracene	88.3	U	1
86-74-8	Carbazole	89.1	U	
84-74-2	Di-n-butylphthalate	149	U	<u> </u>
206-44-0	Fluoranthene	94.2	υ	
129-00-0	Pyrene	201	U	
85-68-7	Butylbenzylphthalate	147	U	
91-94-1	3,3 - Dichlorobenzidine	552	U	
56-55-3	Benzo (a) anthracene	122	υ	
218-01-9	Chrysene	134	Ŭ	
117-81-7	bis(2-Ethylhexyl)phthalate	306	428	
117-84-0	Di-n-octylphthalate	204	υ	
205-99-2	Benzo(b)fluoranthene	403	Ŭ	
207-08-9	Benzo(k) fluoranthene	506	υ	
50-32-8	Benzo(a)pyrene	426	U	
193-39-5	Indeno(1,2,3-c,d)pyrene	466	U	ć
53-70-3	Dibenzo(a,h) anthracene	417	υ	
191-24-2	Benzo(g,h,i)pervlene	463	UU	
SURROGATE		ERY (%) ACCEPTABLE	SPIKE (µg/kg)	
2-Fluoroph	enol	75 25-121	20000	
Phenol-d5		92 24-113	20000	
Nitrobenze		67 23-120	10000	
2-Fluorobi		76 30-115	10000	
Terphenyl- 2,4,6-Trib		85 18-137	10000	
	romonhanal	88 19-122	20000	

U: Below Detection Limit

÷

				SAMPLE NU	MBER
•	Customer:	O.H. MATERIALS CORPORATION		0002	
	Source:	Fort Riley, KS (TANKS)	Cust	Proj. No.: <u>15747</u>	
		Soil From Bottom of Tank 2		110j. 110. <u>15747</u>	
		SEMIVOLATILE EPA 8270			
	Matrix:(soil/w				
	Sample Weigh			9365-002	
	Extract Volum			7/14/94	
			-	7/16/94	
	Injection Volu	me: <u>1 μL</u>		7/18/94	
	Percent Solid:	100.07		7/19/94	
	Dilution Factor	100 %	Preparation Batch: B		
	Lab Notebook		Instrument Batch: B	0719-1	
	220 HOLEDOOK	No: <u>402, Pg. 97</u>	SAMPLE	RESULTS	
	CAS NO.	COMPOUND			
1.	108-95-2	Phenol	DETECTION LIMITS (µg/kg) 122		FLAG
2.	111-44-4	bis(2-Chloroethyl)Ether	122	<u>U</u>	
З.	95-57-8	2-Chlorophenol	73.6	<u>U</u>	
4.	541-73-1	1,3-Dichlorobenzene	98.0	บ บ	
5.	106-46-7	1,4-Dichlorobenzene	107	U U	
6.	100-51-6	Benzyl Alcohol	205	U U	
7. 8.	95-50-1	1,2-Dichlorobenzene	111	U	
8. 9.	95-48-7 108-60-1	2-Methylphenol	213	U	
10.	108-60-1	bis(2-chloroisopropyl)ether	189	U	
11.	621-64-7	4-Methylphenol	212	U	- <u> </u>
12.	67-72-1	N-Nitroso-Di-n-propylamine Hexachloroethane	192	U	
13.	98-95-3	Nitrobenzene	88.4	υ	
	78-59-1	Isophorone	126	υ	
	88-75-5	2-Nitrophenol	161	U	
	105-67-9	2,4-Dimethylphenol	139	<u>U</u>	
17.	111-91-1	bis (2-Chloroethoxy) methane	<u> </u>	U	
18.	120-83-2	2,4-Dichlorophenol	94.5	<u> </u>	
19.	120-82-1	1,2,4-Trichlorobenzene	138	U	
20.	91-20-3	Naphthalene	108	<u> </u>	
21. 22.	106-47-8	4-Chloroaniline	173	U U	+
22.	87-68-3 59-50-7	Hexachlorobutadiene	129	U	
24.	91-57-6	4-Chloro-3-methylphenol	183	U U	
25.	77-47-4	2-Methylnaphthalene	154	U	
26.	88-06-2	Hexachlorocyclopentadiene 2,4,6-Trichlorophenol	127	υ	1
27.	95-95-4	2,4,5-Trichlorophenol	91.8	U	
28.	91-58-7	2-Chloronaphthalene	95.0	υ	
29.	88-74-4	2-Nitroaniline	105	U	
30.	131-11-3	Dimethylphthalate	<u>243</u> 126	U	<u> </u>]
31.	208-96-8	Acenaphthylene	108	<u> </u>	
32.	606-20-2	2,6-Dinitrotoluene	96.9	<u>ប</u> ប	+
33.	99-09-2	3-Nitroaniline	368	U	
34. 35.	83-32-9	Acenaphthene	58.0	<u> </u>	+
36.	51-28-5 100-02-7	2,4-Dinitrophenol	263	<u> </u>	
37.	132-64-9	4-Nitrophenol	240	U	+
38.	121-14-2	Dibenzofuran	131	U	
39.	84-66-2	2,4-Dinitrotoluene	98.8	Ū	1
40.	7005-72-3	Diethylphthalate	132	υ	
41	86-73-7	4-Chlorophenyl-phenylether	134	Ū.	
	100-01-6	Fluorene	89.5	U	
	534-52-1	4-Nitroaniline	405	U	
44.	86-30-6	4,6-Dinitro-2-methylphenol N-Nitrosodiphenylamine (1)	102	U	
45.	101-55-3	4-Bromophenyl-phenylether	75.8	UU	
46.	118-74-1	Hexachlorobenzene	62.1	<u> </u>	
•			133	<u> </u>	1 .

(1) - Cannot be separated from Diphenylamine

SAMPLE NUMBER

	Customer:	O.H. MATERIALS CORPORATION		0002	
		Fort Rilev, KS (TANKS)	Cust	. Proj. No.: <u>15747</u>	
		Soil From Bottom of Tank 2		<u>15747</u>	
		SEMIVOLATILE EPA 8270			
	-				
	Matrix:(soil/w		Lab Sample I.D.: <u>1</u>	9365-002	
	Sample Weigh)7/14/94	
	Extract Volum		Date Received: 0	07/16/94	
	Injection Volu	me: <u>1 µL</u>	Date Extracted: 0	7/18/94	
			Date Analyzed: 0	7/19/94	_
	Percent Solid:	100 %	Preparation Batch: E	NAS0718	
	Dilution Facto		Instrument Batch: E		
	Lab Notebook	No: 402, Pg. 97			
			SAMPLE	RESULTS	
	CAS NO.	COMPOUND	DETECTION LIMITS (µg/kg)	RESULTS	FLAG
17. 18.	87-86-5	Pentachlorophenol	429	Ū	
	85-01-8 120-12-7	Phenanthrene	68.2	υ.	
9. 0.	86-74-8	Anthracene	88.3	U	
1.	84-74-8	Carbazole		U	
1. 2.	206-44-0	Di-n-butylphthalate	149	U	1
3.	129-00-0	Fluoranthene	94.2	U	1
4.	85-68-7	Pyrene	201	U	
5.	91-94-1	Butylbenzylphthalate	147	Ū	
6.	56-55-3	3,3'-Dichlorobenzidine	552	U	
7.	218-01-9	Benzo(a)anthracene Chrysene	122	σ	
8.	117-81-7		134	U	
9.	117-84-0	bis(2-Ethylhexyl)phthalate Di-n-octylphthalate	306	1160	
	205-99-2	Benzo (b) fluoranthene	204	υ	
	207-08-9	Benzo (k) fluoranthene	403	UU	
	50-32-8	Benzo (a) pyrene	506	υ	
3.	193-39-5	Indeno (1,2,3-c,d) pyrene	425	<u> </u>	
1.	53-70-3	Dibenzo (a, h) anthracene	466	U	
5.	191-24-2	Benzo (g, h, i) pervlene	417	U	
-	SURROGATE		463	<u> </u>	
5.	2-Fluoroph		ERY (%) ACCEPTABLE	SPIKE (μ g/kg)	
7.	Phenol-d5		92 25-121	20000	
3.	Nitrobenze	ne-d5	94 24-113	20000	
Э.	2-Fluorobi		50 23-120	10000	
5.	Terphenyl-	d14	61 30-115	10000	
1.	2,4,6-Trib	romophenol	72 18-137	10000	
			76 19-122	20000	

U: Below Detection Limit

SAMPLE NUMBER

ł

Sec.

0002	
0002	

Customer:	<u>О.Н. М</u>	ATERIALS CORPORATIO	N	0	002	
Source:	Fort Rile	Y, KS (TANKS)		Cust. Proj. No.:	15747	· ·
Location:		m Bottom of Tank 2	· · · · · · · · · · · · · · · · · · ·	-		-
Analysis:		OLATILE EPA 8270				-
Matrix:(soil/v		SOIL	Lab Sample I.D.:	19365-002		
Sample Weig		10.0 g	Date Sampled:	07/14/94		-
Extract Volur		<u>1.0 mL</u>	Date Received:	07/16/94		-
Injection Volu	ume:	<u>l µL</u>	Date Extracted:	07/18/94		-
Demonst Call 1			Date Analyzed:	07/19/94		•
Percent Solid: Dilution Facto		100 %	Preparation Bate			-
Lab Notebook		<u>1</u> 402, Pg. 97	Instrument Batcl	h: <u>B0719-1</u>		-
Lab Notebook	: No:	402, Pg. 97		u. <u>Dovij-i</u>		

TENTATIVELY IDENTIFIED COMPOUNDS

	CAS NO.	COMPOUND	DE CONT #	
1.	7667552	Cyclohexane, 1,2,3-trimethyl-,	RI/SCAN #	EST. $CONC(\mu g/kg)$
		(1.alpha.,2.alpha.,3.beta.)-	8.09	1300
2.	4926903	Cyclohexane, 1-ethyl-1-methyl-		
3.	4926787	Cyclohexane, 1-ethyl-1-methyl-	8.21	1100
4.		Cyclohexane, 1-ethyl-4-methyl-, cis- C7H14	8.32	1500
5.			8.54	1100
		DIMETHYL-3,5 HEPTENE-3	8.82	3100
6.		C9H16	9.26	2800
7.	2051301	Octane, 2,6-dimethyl-	9.70	8100
8.	52896874	Heptane, 4-(1-methylethyl)-	9.87	
9.	15869860	Octane, 4-ethyl-		6100
10.		C10H20	10.25	3700
11.	2847725	Decane, 4-methyl-	10.41	6100
12		C8H16O	11.87	7300
		C9H16O	11.93	1400
	Ĩ		12.10	2600
15.	1074427	C9H11C1	12.33	2100
16.	1074437	Benzene, 1-methyl-3-propyl-	12.41	1900
		C11H24	12.49	2200
17.	2847725	Decane, 4-methyl-	12.56	1600
18.		С10Н18	12.61	the second se
19.		C11H16		2800
20.	934747	Benzene, 1-ethyl-3,5-dimethyl-	13.26	1800
•			14.04	3100

SAMPLE NUMBER

					······································
	Customer:	O.H. MATERIALS CORPORATION		0003	
	-	Fort Riley, KS (TANKS)	Cust D	Toi No : 15717	
	-		Cust. P	roj. No.: <u>15747</u>	
-		Soil From West End of Excavation			
		SEMIVOLATILE EPA 8270			
	Matrix:(soil/wa		Lab Sample I.D.: 193	365-003	
	Sample Weigh	t: 10.0 g		14/94	
	Extract Volum		• •	16/94	
	Injection Volum			18/94	
				19/94	
	Percent Solid:	100 %	Preparation Batch: BN		······
	Dilution Factor				
	Lab Notebook 1		Instrument Batch: B07	/19-1	
		402, Fg. 97	SAMPLE I	RESULTS	
_	CAS NO.	COMPOUND	DETECTION LIMITS (µg/kg)	RESULTS	FLAG
1.	108-95-2	Phenol	122	U	
2.	111-44-4	bis(2-Chloroethyl)Ether	159	U U	
3.	95-57-8	2-Chlorophenol	73.6	<u> </u>	
4.	541-73-1	1,3-Dichlorobenzene	98.0	<u> </u>	
5.	106-46-7	1,4-Dichlorobenzene	107	<u> </u>	
6.	100-51-6	Benzyl Alcohol	205	<u> </u>	<u> </u>
7.	95-50-1	1,2-Dichlorobenzene	111 .	U U	
8.	95-48-7	2-Methylphenol	213	U U	
9.	108-60-1	bis (2-chloroisopropyl) ether	189	U	,
10.	106-44-5	4-Methylphenol	212	<u> </u>	
11.	621-64-7	N-Nitroso-Di-n-propylamine	192	U	
12.	67-72-1	Hexachloroethane	88.4	U	
	98-95-3	Nitrobenzene	126	U	-
	78-59-1	Isophorone	161	U	
16.	88-75-5	2-Nitrophenol	139	U	
17.	105-67-9	2,4-Dimethylphenol	71.6	U	
18.	111-91-1 120-83-2	bis (2-Chloroethoxy) methane	138	U	
19.	120-83-2	2,4-Dichlorophenol	94.5	υ	
20.	91-20-3	1,2,4-Trichlorobenzene	138	U	
21.	106-47-8	Naphthalene	108	U	
22.	87-68-3	4-Chloroaniline	173	U	
23.	59-50-7	Hexachlorobutadiene	129	U	
24.	91-57-6	4-Chloro-3-methylphenol	183	U	
25.	77-47-4	2-Methylnaphthalene	154	U	
26.	88-06-2	Hexachlorocyclopentadiene	127	U	
27.	95-95-4	2,4,6-Trichlorophenol 2,4,5-Trichlorophenol	91.8	<u>U</u>	
28.	91-58-7	2-Chloronaphthalene	95.0	<u> </u>	
29.	88-74-4	2-Nitroaniline	105	U	
30.	131-11-3	Dimethylphthalate	243	<u> </u>	<u> </u>]
31.	208-96-8	Acenaphthylene	126	U	<u> </u>
32.	606-20-2	2,6-Dinitrotoluene	108	<u>U</u>	<u></u>
33.	99-09-2	3-Nitroaniline	96.9	<u> </u>	<u> </u>]
34.	83-32-9	Acenaphthene	368	<u> </u>	ļ
35.	51-28-5	2,4-Dinitrophenol	58.0	<u> </u>	<u> </u>
36.	100-02-7	4-Nitrophenol	263	υ	ļ
37.	132-64-9	Dibenzofuran	240	<u> </u>	<u>+</u>
38.	121-14-2	2,4-Dinitrotoluene	131	U	ļ
39.	84-66-2	Diethylphthalate	98.8	U	
40.	7005-72-3	4-Chlorophenyl-phenylether	132	U	ļ]
	86-73-7	Fluorene	134	<u> </u>	
	100-01-6	4-Nitroaniline	89.5	U	<u> </u>
43.	534-52-1	4,6-Dinitro-2-methylphenol	405	U	
44.	86-30-6	N-Nitrosodiphenylamine (1)	102	<u> </u>	
45.	101-55-3	4-Bromophenyl-phenylether	75.8	<u> </u>	ļ
46.	118-74-1	Hexachlorobenzene	62.1	<u> </u>	ļ]
1	-		133	U	

(1) - Cannot be separated from Diphenylamine

<u>.</u>..

SAMPLE NUMBER

÷

	Customer:	O.H. MATERIALS CORPORATION		:	0003	
		Fort Riley, KS (TANKS)		Cust. P:	roj. No.: <u>15747</u>	·
		Soil From West End of Excavation				
		SEMIVOLATILE EPA 8270				
-	Matrix:(soil/wa		Lab Sample I	— D: 107	65-003	
	Sample Weigh	,	Date Sampled	193	the second statement of the	
	Extract Volum		Date Samplet Date Received		14/94	
				ين في الله الله الله الله الله الله الله الل	16/94	
	Injection Volu	ne: <u>1 uL</u>	Date Extracte		18/94	
	n		Date Analyze		19/94	
	Percent Solid:	100 %	Preparation 2			
	Dilution Factor	A	Instrument B	atch: <u>B07</u>	19-1	
	Lab Notebook 1	No: <u>402, Pg. 97</u>		SAMPLE R		
	CAS NO.	COMPOUND	DETECTION LIMITS		RESULTS	
47.	87-86-5	Pentachlorophenol	429	(#9/ 19/	U	FLAG
48.	85-01-8	Phenanthrene	68.2		<u> </u>	
49.	120-12-7	Anthracene	88.3		<u> </u>	· · · · · · · · · · · · · ·
50.	86-74-8	Carbazole	89.1		U	1
51.	84-74-2	Di-n-butylphthalate	149		<u> </u>	<u> </u>
52.	206-44-0	Fluoranthene	94.2		<u> </u>	
53.	129-00-0	Pyrene	201		<u> </u>	+
54.	85-68-7	Butylbenzylphthalate	147		U U	
55.	91-94-1	3,3'-Dichlorobenzidine	552		U U	
56.	56-55-3	Benzo(a) anthracene	122		U U	·····
57.	218-01-9	Chrysene	134		U U	
58.	117-81-7	bis(2-Ethylhexyl)phthalate	306		1080	
59.	117-84-0	Di-n-octylphthalate	204		U	
60	205-99-2	Benzo(b)fluoranthene	403		U	
	207-08-9	Benzo(k) fluoranthene	506		U	
	50-32-8	Benzo(a)pyrene	426		U	
63.	193-39-5	Indeno (1, 2, 3-c, d) pyrene	466		<u> </u>	
64.	53-70-3	Dibenzo (a, h) anthracene	417		<u>_</u>	
65.	191-24-2	Benzo(g,h,i)pervlene	463		<u>u</u>	
	SURROGATE		ERY (%) ACCEPT2	ABLE	SPIKE (µg/kg)	
66.	2-Fluoroph	enol	76 25-12	21	20000	
67.	Phenol-d5		92 24-11	L3	20000	
68.	Nitrobenze		62 23-12		10000	
69.	2-Fluorobi	phenyl	73 30-11		10000	
70.	Terphenyl-	d14	80 18-13		10000	
71.	2,4,6-Trib	romophenol	83 19-12		20000	

U: Below Detection Limit

ť

ŝ.

	Customer:	O.H. MATERIALS CORPORATION		0004	
		Fort Riley, KS (TANKS)		Dui M. Ista	
			Cust.	Proj. No.: <u>15747</u>	
	•	Soil From Bottom Side of South Wall			
		SEMIVOLATILE EPA 8270			
	Matrix:(soil/w	ater) SOIL	Lab Sample I.D.: 19	9365-004	
	Sample Weigh			7/14/94	
	Extract Volum				
	Injection Volu			7/16/94	
				7/18/94	
	Percent Solid:	100 %		7/19/94	
	Dilution Factor		Preparation Batch: B		
	Lab Notebook		Instrument Batch: <u>B(</u>	0719-1	
	LU HOLOUR	No: <u>402, Pg. 97</u>	(3)(D7 H		
	CAS NO.	COMPOUND		RESULTS	
1.	108-95-2		DETECTION LIMITS (µg/kg)	RESULTS	FLAG
2.	111-44-4	Phenol bis (2-Chlenesthel) Th	122	U	
3.	95-57-8	bis(2-Chloroethyl)Ether	159	υ	_
4.	541-73-1	2-Chlorophenol	73.6	U	-
5.	106-46-7	1,3-Dichlorobenzene	98.0	U	
6.	100-51-6	1,4-Dichlorobenzene	107	U U	
7.	95-50-1	Benzyl Alcohol	205	υ	
8.	95-48-7	1,2-Dichlorobenzene	111	U	
9.	108-60-1	2-Methylphenol	213	U	
10.	106-44-5	bis (2-chloroisopropyl) ether	189	U	
11.	621-64-7	4-Methylphenol	212	U	
12.	67-72-1	N-Nitroso-Di-n-propylamine	192	U	
13.	98-95-3	Hexachloroethane	88.4	U	
	78-59-1	Nitrobenzene	126	U	
	88-75-5	Isophorone	161	U	
	105-67-9	2-Nitrophenol	139	U	
17.	111-91-1	2,4-Dimethylphenol	71.6	U	1
18.	120-83-2	bis (2-Chloroethoxy) methane	138	U	
19.	120-82-1	2,4-Dichlorophenol	94.5	U	1
20.	91-20-3	1,2,4-Trichlorobenzene Naphthalene	138	U	1
21.	106-47-8	4-Chloroaniline	108	U	1
22.	87-68-3	Hexachlorobutadiene	173	U	
23.	59-50-7		129	U	
24.	91-57-6	4-Chloro-3-methylphenol 2-Methylnaphthalene	183	U	
25.	77-47-4	Z-Methyinaphthalene	154	U	
26.	88-06-2	Hexachlorocyclopentadiene 2,4,6-Trichlorophenol	127	U	
27.	95-95-4	2,4,5-Trichlorophenol	91.8	<u> </u>	
28.	91-58-7	2-Chloronaphthalene	95.0	U	
29.	88-74-4	2-Nitroaniline	105	U	
30.	131-11-3	Dimethylphthalate	243	UU	
31.	208-96-8	Acenaphthylene	126	U	
32.	606-20-2	2,6-Dinitrotoluene	108	UU	
33.	99-09-2	3-Nitroaniline	96.9	U	
34.	83-32-9	Acenaphthene	368	UU	
35.	51-28-5	2,4-Dinitrophenol	58.0	U	
36.	100-02-7	4-Nitrophenol	263	U	
37.	132-64-9	Dibenzofuran	240	<u> </u>	
38.	121-14-2	2,4-Dinitrotoluene	131	Ŭ	
39.	84-66-2	Diethylphthalate	98.8	<u> </u>	
40.	7005-72-3	4-Chlorophonul	132	U	
41.	86-73-7	4-Chlorophenyl-phenylether	134	UU	
	100-01-6	4-Nitroaniline	89.5	σ	
	534-52-1		405	U	
44.	86-30-6	4,6-Dinitro-2-methylphenol	102	<u> </u>	
45.	101-55-3	N-Nitrosodiphenylamine (1)	75.8	U	
46.	118-74-1	4-Bromophenyl-phenylether Hexachlorobenzene	62.1	U	
	·	Incracintoropenzene	133	U	

(1) - Cannot be separated from Diphenylamine

SAMPLE NUMBER

·.-.

	Customer:	D.H. MATERIALS CORPORATION		0004	
-		Fort Riley, KS (TANKS)	Cust	Proj. No.: 15747	
		Soil From Bottom Side of South Wall		<u>10/4/</u>	
		SEMIVOLATILE EPA 8270			
	Matrix:(soil/wa		Lab Sample I.D.: 1	9365-004	
	Sample Weigh			07/14/94	
	Extract Volum		• •	07/16/94	
	Injection Volur			7/18/94	
				7/19/94	
	Percent Solid:	<u>100 %</u>			
	Dilution Factor		Preparation Batch: E		
	Lab Notebook 1		Instrument Batch: E	0719-1	<u> </u>
		<u>402, Pg. 97</u>	SAMPLE	RESULTS	
	CAS NO.	COMPOUND	DETECTION LIMITS (µg/kg)		FLAG
47.	87-86-5	Pentachlorophenol	429	U	FUNG
48.	85-01-8	Phenanthrene	68.2	U	
49.	120-12-7	Anthracene	88.3	<u> </u>	<u> </u>
50.	86-74-8	Carbazole	89.1	<u> </u>	<u> </u>
51.	84-74-2	Di-n-butylphthalate	149	<u> </u>	<u> </u>
52.	206-44-0	Fluoranthene	94.2	U	
53.	129-00-0	Pyrene	201	U	<u> </u>
54. 55.	85-68-7	Butylbenzylphthalate	147	U	
55. 56.	91-94-1	3,3'-Dichlorobenzidine	552	U	<u></u>
57.	56-55-3	Benzo(a) anthracene	122	U	<u> </u>
57. 58.	218-01-9	Chrysene	134	U	
58. 59.	117-81-7	bis(2-Ethylhexyl)phthalate	306	440	
55. 60.	117-84-0	Di-n-octylphthalate	204	U	
	205-99-2 207-08-9	Benzo(b)fluoranthene	403	U	
	50-32-8	Benzo(k) fluoranthene	506	U	
53.	193-39-5	Benzo(a) pyrene	426	U	
64.	53-70-3	Indeno(1,2,3-c,d) pyrene	466	U	
65.	191-24-2	Dibenzo (a, h) anthracene	417	U	
		Benzo(q,h,i)perylene	463	U	
66.	SURROGATE		CRY (%) ACCEPTABLE	SPIKE (µg/kg)	
00. 67.	2-Fluoroph	enol	76 25-121	20000	
57. 58.	Phenol-d5	•	92 24-113	20000	
68. 69.	Nitrobenze		62 23-120	10000	
	2-Fluorobij		65 30-115	10000	
70.	Terphenyl-o	114	72 18-137	10000	
71.	2,4,6-Trib	romophenol	85 19-122	20000	

U: Below Detection Limit

SAMPLE NUMBER

24. 2 2

	Customer:	O.H. MATERIALS CORPORATION			0005	
	Source:	Fort Riley, KS (TANKS)	Cus	st. Proj. No	o.: 15747	
	Location:	Soil Bottom Side North Wall		-		
	Analysis:	SEMIVOLATILE EPA 8270				
	Matrix:(soil/v			10065.00	~	
	Sample Weig		Lab Sample I.D.:	19365-00	5	
	Extract Volur		Date Sampled:	07/14/94		
			Date Received:	07/16/94		
	Injection Volu	ume: <u>l µL</u>	Date Extracted:	07/18/94		
	D		•	07/19/94		
	Percent Solid: Dilution Facto		Preparation Batch:		.8	
	Lab Notebook		Instrument Batch:	<u>B0719-1</u>		
	Lab Nolebook	K NO: <u>402, Pg. 97</u>	SAMPL	E RESUL	TS	
	CAS NO.	COMPOUND	DETECTION LIMITS (µg/k		ESULTS	FLAG
1.	108-95-2	Phenol	122	3/	U	F LIAG
2.	111-44-4	bis(2-Chloroethyl)Ether	159		<u> </u>	
3.	95-57-8	2-Chlorophenol	73.6		U	
4.	541-73-1	1,3-Dichlorobenzene	98.0		<u></u>	
5.	106-46-7	1,4-Dichlorobenzene	107		<u> </u>	
6.	100-51-6	Benzyl Alcohol	205		U	
7.	95-50-1	1,2-Dichlorobenzene	111		<u> </u>	
8.	95-48-7	2-Methylphenol	213		U	
9.	108-60-1	bis (2-chloroisopropyl) ether	189		U	
10.	106-44-5	4-Methylphenol	212		υ	
11.	621-64-7	N-Nitroso-Di-n-propylamine	192		U	
12.	67-72-1	Hexachloroethane	88.4		U	
13	98-95-3	Nitrobenzene	126		U	
	78-59-1	Isophorone	161		υ	-
	88-75-5	2-Nitrophenol	139		U	
16.	105-67-9	2,4-Dimethylphenol	71.6		υ	
L7.	111-91-1	bis(2-Chloroethoxy)methane	138		U	
L8.	120-83-2	2,4-Dichlorophenol	94.5		U	
.9. 20.	120-82-1	1,2,4-Trichlorobenzene	138		υ	
21.	91-20-3 106-47-8	Naphthalene	108		U	
22.	87-68-3	4-Chloroaniline	173		U	
3.	59-50-7	Hexachlorobutadiene	129		U	
4.	91-57-6	4-Chloro-3-methylphenol	183		U	
5.	77-47-4	2-Methylnaphthalene	154		U	
6.	88-06-2	Hexachlorocyclopentadiene	127		υ	
7.	95-95-4	2,4,6-Trichlorophenol	91.8		U	
8.	91-58-7	2,4,5-Trichlorophenol 2-Chloronaphthalene	95.0		U	
9.	88-74-4	2-Chioronaphthalene 2-Nitroaniline	105		U	
0.	131-11-3	Dimethylphthalate	243		U	1]
1.	208-96-8	Acenaphthylene	126		U	
2.	606-20-2	2,6-Dinitrotoluene	108		<u>U</u>	
3.	99-09-2	3-Nitroaniline	96.9		<u>U</u>	
4.	83-32-9	Acenaphthene	368		U	
5.	51-28-5	2,4-Dinitrophenol	58.0		<u>U</u>	
6.	100-02-7	4-Nitrophenol	263		U	
7.	132-64-9	Dibenzofuran	240		<u>U</u>	
8.	121-14-2	2,4-Dinitrotoluene	131		<u>U</u>	+
9.	84-66-2	Diethylphthalate	98.8		U	+
0.	7005-72-3	4-Chlorophenyl-phenylether	132		<u>U</u>	
1	86-73-7	Fluorene	134		<u>U</u>	- <u> </u>
	00-01-6	4-Nitroaniline	89.5		<u>U</u>	
	534-52-1	4,6-Dinitro-2-methylphenol	405		U	<u> </u>
4.	86-30-6	N-Nitrosodiphenylamine (1)	102		<u>U</u>	l
5.	101-55-3	4-Bromophenyl-phenylether	75.8		U	<u></u>
6.	118-74-1	Hexachlorobenzene	62.1		U	+
	·	1	133	_ 1 1	U	1

(1) - Cannot be separated from Diphenylamine

Page 1

				SAMPLE NUM	BER
	Customer:	O.H. MATERIALS CORPORATION		0005	
	Source:	Fort Riley, KS (TANKS)	Cure 1		
	Location:		Cust. I	Proj. No.: <u>15747</u>	
	Analysis:	Soil Bottom Side North Wall			
	-	SEMIVOLATILE EPA 8270	·		
	Matrix:(soil/v	vater) SOIL	Lab Sample I.D.: 19	365-005	
	Sample Weig	ht: 10.0 g		/14/94	·
	Extract Volum	ne: 1.0 mL		/16/94	
	Injection Volu			/18/94	
	-			/19/94	
	Percent Solid:	100 %			
	Dilution Facto		Preparation Batch: BN		
	Lab Notebook		Instrument Batch: <u>B0</u>	719-1	
		402, Pg. 97	SAMPLE	RESULTS	
	CAS NO.	COMPOUND	DETECTION LIMITS (µg/kg)	RESULTS	FLAG
47.	87-86-5	Pentachlorophenol	429	U	FLAG
48.	85-01-8	Phenanthrene	68.2	<u> </u>	
49. 50	120-12-7	Anthracene	88.3	<u> </u>	
50. 51.	86-74-8	Carbazole	89.1	<u> </u>	
	84-74-2	Di-n-butylphthalate	149	<u> </u>	
52. 53.	206-44-0	Fluoranthene	94.2	<u> </u>	
53. 54.	129-00-0	Pyrene	201	U	
54. 55.	85-68-7	Butylbenzylphthalate	147	U U	
55. 56.	91-94-1	3,3'-Dichlorobenzidine	552	<u> </u>	
58. 57.	56-55-3	Benzo(a) anthracene	122	U	
57.	218-01-9 117-81-7	Chrysene	134	U	
59.	117-81-7	bis(2-Ethylhexyl)phthalate	306	4610	
	205-99-2	Di-n-octylphthalate	204	U	
	207-08-9	Benzo(b) fluoranthene	403	U	
62.	50-32-8	Benzo(k)fluoranthene	506	U	
63.	193-39-5	Benzo (a) pyrene	426	U	
64.	53-70-3	Indeno (1,2,3-c,d) pyrene Dibenzo (a,h) anthracene	466	U	<u>,</u>
		Dibenzo (a, n) anthracene	417	U	
65.	191-24-2	Benzo (g h i)			
65.	191-24-2 SURROGATE	Benzo(g,h,i)perylene	463	U	
1	SURROGATE	STANDARD RECOVE	CRY (%) ACCEPTABLE		
66.	SURROGATE 2-Fluoroph	STANDARD RECOVE	CRY (%) ACCEPTABLE 78 25-121	U SPIKE (µg/kg) 20000	<u> </u>
66. 67.	SURROGATE 2-Fluoroph Phenol-d5	STANDARD RECOVE	XRY (%) ACCEPTABLE 78 25-121 91 24-113	SPIKE (µg/kg)	
66. 67. 68.	SURROGATE 2-Fluoroph Phenol-d5 Nitrobenze	STANDARD RECOVE	XRY (%) ACCEPTABLE 78 25-121 91 24-113 67 23-120	SPIKE (µg/kg) 20000	
66. 67. 68. 69.	SURROGATE 2-Fluoroph Phenol-d5 Nitrobenze 2-Fluorobi	STANDARD RECOVE	RY (%) ACCEPTABLE 78 25-121 91 24-113 67 23-120 76 30-115	SPIKE (µg/kg) 20000 20000	
66. 67. 68.	SURROGATE 2-Fluoroph Phenol-d5 Nitrobenze 2-Fluorobi Terphenyl-	STANDARD RECOVE	CRY (%) ACCEPTABLE 78 25-121 91 24-113 67 23-120	SPIKE (µg/kg) 20000 20000 10000	

U: Below Detection Limit

SAMPLE NUMBER

÷

<u>...</u>

	Customer: 0			0006	
		.H. MATERIALS CORPORATION	Cu	ct Deni Nic 15717	
	-	ort Riley, KS (TANKS)	Cu	st. Proj. No.: <u>15747</u>	
		oil Top Side of South Wall			
	Analysis: <u>S</u>	EMIVOLATILE EPA 8270			
-	Matrix:(soil/wa	ter) SOIL	Lab Sample I.D.:	19365-006	
	Sample Weight		Date Sampled:	07/14/94	
	Extract Volume		Date Received:	07/16/94	
	Injection Volum		Date Extracted:	07/18/94	
	mjeeden vorun		Date Analyzed:	07/19/94	
	Percent Solid:	100 %	•	BNAS0718	
	Dilution Factor:		Instrument Batch:	B0719-1	
	Lab Notebook N		instrument batch:		
		402,12,17	SAMPI	E RESULTS	
	CAS NO.	COMPOUND	DETECTION LIMITS (µg/k	g) RESULTS	FLAG
1.	108-95-2	Phenol	122	U	2 DAG
2.	111-44-4	bis(2-Chloroethyl)Ether	159		
з.	95-57-8	2-Chlorophenol	73.6	<u> </u>	
4.	541-73-1	1,3-Dichlorobenzene	98.0	U	
5.	106-46-7	1,4-Dichlorobenzene	107	U	
6.	100-51-6	Benzyl Alcohol	205	U	<u> </u>
7.	95-50-1	1,2-Dichlorobenzene	111	U	·
8.	95-48-7	2-Methylphenol	213	U	
9.	108-60-1	bis(2-chloroisopropyl)ether	189	U	
10.	106-44-5	4-Methylphenol	212_	U	
11. 12.	621-64-7	N-Nitroso-Di-n-propylamine	192	<u> </u>	
13.	67-72-1	Hexachloroethane	88.4	Ŭ	
13.14.	98-95-3	Nitrobenzene	126	U	
14.	78-59-1 88-75-5	Isophorone	161	U U	
	105-67-9	2-Nitrophenol	139	U	
	111-91-1	2,4-Dimethylphenol	71.6	U U	
18.	120-83-2	bis (2-Chloroethoxy) methane	138	U	
19.	120-82-1	2,4-Dichlorophenol 1,2,4-Trichlorobenzene		U	
20.	91-20-3	Naphthalene	138	<u> </u>	
21.	106-47-8	4-Chloroaniline	108	U	
22.	87-68-3	Hexachlorobutadiene	173	U	
23.	59-50-7	4-Chloro-3-methylphenol	129	U	
24.	91-57-6	2-Methylnaphthalene	183	U	
25.	77-47-4	Hexachlorocyclopentadiene	<u> </u>	U	
26.	88-06-2	2,4,6-Trichlorophenol	91.8	U	
27.	95-95-4	2,4,5-Trichlorophenol	91.8	U	
28.	91-58-7	2-Chloronaphthalene	105	U U	
29.	88-74-4	2-Nitroaniline	243	<u> </u>	
30.	131-11-3	Dimethylphthalate	126	U	{
31.	208-96-8	Acenaphthylene	108	U	
32.	606-20-2	2,6-Dinitrotoluene	96.9	U	
33.	99-09-2	3-Nitroaniline	368	U	
34.	83-32-9	Acenaphthene	58.0	U	
35.	51-28-5	2,4-Dinitrophenol	263	U U	
36. 37.	100-02-7	4-Nitrophenol	240	Ū	
37. 38.	132-64-9	Dibenzofuran	131	Ū	
38. 39.	121-14-2	2,4-Dinitrotoluene	98.8	U	
39. 40.	84-66-2	Diethylphthalate	132	U	
40.	7005-72-3	4-Chlorophenyl-phenylether	134	U	
41.	86-73-7	Fluorene	89.5	U	
	100-01-6	4-Nitroaniline	405	U	
		14 F Diminute 2 F			
	534-52-1	4,6-Dinitro-2-methylphenol	102	U	
45-1	86-30-6	N-Nitrosodiphenylamine (1)	75.8	U U	
45. 46.		N-Nitrosodiphenylamine (1) 4-Bromophenyl-phenylether Hexachlorobenzene			

(1) - Cannot be separated from Diphenylamine

Page 1

		LI III CHLINCAL COP		SAMPLE NUM	BER
	Customer: O	.H. MATERIALS CORPORATION		0006	
	Source: F	ort Riley, KS (TANKS)	Cust I	Proj. No.: <u>15747</u>	
		oil Top Side of South Wall	Cust. 1	10j. 100. 15747	
		EMIVOLATILE EPA 8270			
	Matrix:(soil/wat		Lab Sample I.D.: 19	365-006	
	Sample Weight			/14/94	
	Extract Volume			/16/94	
	Injection Volum	e: <u>1 uL</u>		/18/94	
				/19/94	
	Percent Solid:	100 %	Preparation Batch: BN		
	Dilution Factor:			719-1	
	Lab Notebook N	0: <u>402, Pg. 97</u>	mon ducht Datch: DU	/ 1/-1	
			SAMPLE	RESULTS	
47.	CAS NO.	COMPOUND	DETECTION LIMITS (µg/kg)	RESULTS	FLAG
47.	87-86-5	Pentachlorophenol	429	U	- PURG
49.	85-01-8	Phenanthrene	68.2	<u> </u>	<u> </u>
49. 50.	120-12-7	Anthracene	88.3	U	
50.	86-74-8	Carbazole	89.1	U	<u> </u>
51. 52.	84-74-2	Di-n-butylphthalate	149	U	
52.	206-44-0 129-00-0	Fluoranthene	94.2	U	
55.	85-68-7	Pyrene	201	U	
55.	91-94-1	Butylbenzylphthalate	147	U	
56.	56-55-3	3,3'-Dichlorobenzidine	552	U	
57.	218-01-9	Benzo (a) anthracene	122	U	
58.	117-81-7	Chrysene bis (2. This is a second	134	U	
59.	117-84-0	bis (2-Ethylhexyl) phthalate	306	2270	
	205-99-2	Di-n-octylphthalate	204	UU	
	207-08-9	Benzo (b) fluoranthene Benzo (k) fluoranthene	403	UU	
62.	50-32-8	Benzo (a) pyrene	506	U	
63.	193-39-5	Indeno (1, 2, 2, e, d)	426	UU	
64.	53-70-3	Indeno (1, 2, 3-c, d) pyrene Dibenzo (a, h) anthracene	466	UU	
65.	191-24-2	Benzo(g, h, i) perylene	417	<u>U</u>	
•	SURROGATE S		463	U	
66.	2-Fluorophe		CRY (%) ACCEPTABLE	SPIKE (μ g/kg)	
67.	Phenol-d5		77 25-121	20000	
68.	Nitrobenzen	e-d5	93 24-113	20000	
69.	2-Fluorobip	henvl	62 23-120	10000	
70.	Terphenyl-di		74 30-115	10000	
71.	2,4,6-Tribro	menhan - 1	77 18-137	10000	
		a mobile interior	94 19-122	20000	

U: Below Detection Limit

÷

-	ENVIRC	ONME	NTAL CHEN	AICAL C O F	RPORATION	Q	SAMPLE NUME	
_							N/A	
			ATERIALS CORP v. KS (TANKS)	ORATION		Cust. Proj	. No.: <u>15747</u>	
An	alysis:	SEMIV	OLATILE EPA 82	70				
Ма	trix:(soil/wate	r) <u>So</u>	il	<u> </u>	Lab Sample I.D.:	BLA	NK	
Sar	nple Weight:	10	.0 g		Date Sampled:	<u>N/A</u>		
Ext	ract Volume:	<u>1.</u>	0 mL		Date Received:	<u>N/A</u>		
Inje	ection Volume	: 1	uL	<u> </u>	Date Extracted:	<u>07/18</u>	/94	
					Date Analyzed:	<u>07/19</u>	/94	
Per	cent Solid:	<u>10</u>	0 %		Preparation Batch	: <u>BNA</u>	S0718	·
Dil	ution Factor:	1			Instrument Batch:	<u>B071</u>	9-1	
Lat	Notebook No	: <u>40</u>	2, Pg. 97		BLANK			
	CAS NO	•	COMPOUND		DETECTION LIMITS (ug/kg)	RESULTS	FLAG

QUALITY CONTROL

ALL COMPOUNDS ARE BELOW DETECTION LIMIT.

SURROGATE STANDARD	RECOVERY (%)	ACCEPTABLE	SPIKE (µg/kg
2-Fluorophenol	70	25-121	20000
Phenol-d5	83	24-113	20000
Nitrobenzene-d5	62	23-120	10000
2-Fluorobiphenyl	65	30-115	10000
Terphenyl-d14	69	18-137	10000
2,4,6-Tribromophenol	71	19-122	20000

ENVIRONMENTAL CHEMICAL CORPORATION

QUALITY CONTROL

SAMPLE NUMBER

Customer:	O.H. MATERIALS	CORPORATION	0003		
Source:	Fort Rilev, KS (TAN			Cust. Proj. No.:	15747
cation:	Soil From West End	of Excavation		Cust. 110j. 110	15/4/
halysis:	SEMIVOLATILE	EPA 8270			
Matrix:(soil/wate	r) <u>SOIL</u>		Lab Sample I.D	.: <u>193</u> 65-003 Du	
Sample Weight:	<u>10.0 g</u>		Date Sampled:	<u> <u>17505-005 Du</u></u> <u>07/14/94</u>	
Extract Volume:	<u>1.0 mL</u>		Date Received:	07/16/94	
Injection Volume:	<u>l µL</u>		Date Extracted:	07/18/94	
			Date Analyzed:	07/19/94	
Percent Solid:	100 %		Preparation Ba		
Dilution Factor:	1		Instrument Bat		
Lab Notebook No:	<u>402. Pg. 97</u>		DUPLICATE	•	
COMPOUND		DETECTION LIMIT	SAMPLE RESULT	DUPLICATE RES	ULT
		(µg/kg)	(µg/kg)	(µg/kg)	FLAG
bis(2-Ethylhexy		306	1080	541	
	ALL OTH	HER COMPOUNDS ARE	BELOW DETECTION	LIMIT.	
		SAMPLE	DUPLICATE		
SURROGATE STI		RECOVERY (%) RECOVERY (%)	ACCEPTABLE	SPIKE (µg/kg)
2-Fluoropheno	pl	76	71	25-121	20000
Phenol-d5		92	85	24-113	20000
Nitrobenzene-		62	61	23-120	10000
2-Fluorobiphe	-	73	68	30-115	10000
cphenyl-d14		80	71	18-137	10000
4.5-Tribrow					
-/-/0 1110100	ophenol	83	81	19-122	20000

U: Below Detection Limit

ENVIRONMENTAL CHEMICAL CORPORATION

QUALITY CONTROL

SAMPLE NUMBER

	O THAT TERIALS CORPORATION		N/A	L	
	O.H. MATERIALS CORPORATION Fort Rilev, KS (TANKS)	Cust	. Proj. No.:	15747	
tion	N/A			<u> </u>	

lysi	s:
ix:	(soil/wa

Incide	SEMIVOLATILE EPA 8270		
		Lab Sample I.D.:	19365-LCSS
ix: (soil/water)	Soil	•	B0719-1
varation Batch:	BNAS0718	Instrument Batch:	<u>B0/19-1</u>

LABORATORY CONTROL SAMPLE

COMPOUND	TRUE VALUE	FOUND	%	QC LIMITS
	(µg/kg)	(µg/kg)	REC #	% REC.
<pre>henol ·Chlorophenol .4-Dichlorobenzene ·Nitroso-di-n-Propylamine .2,4-Trichlorobenzene ·Chloro-3-Methylphenol renaphthene ·Nitrophenol .4-Dinitrotoluene entachlorophenol yrene</pre>	20000 20000 10000 10000 20000 10000 20000 10000 20000 10000	15600 14500 4110 8760 6690 13500 6570 15700 7610 19800 8670	78 73 41 88 67 68 66 79 76 99 87	26-90 25-102 28-104 41-126 38-107 26-103 31-137 11-114 28-89 17-109 35-142

Column to be used to flag recovery values with an asterisk

Values outside of QC limits

0 out of 11 outside limits Spike Recovery:

DMMENTS:

ENVIRONMENTAL CHEMICAL CORPORATION QUALITY CONTROL

SÅ	Ŵ	(P)	LE	N	JN	B	ER
----	---	-----	----	---	----	---	----

	O.H. MATERIALS CORPORATION	·	0004
urce.	Fort Riley, KS (TANKS)		Cust. Proj. No.: <u>15747</u>
cation:	Soil From Bottom Side of South Wall		
alysis:	SEMIVOLATILE EPA 8270		
itrix: (soil/water)	SOIL	Lab Sample I.D.:	19365-004
eparation Batch:	BNAS0718	Instrument Batch:	B0719-1

MATRIX SPIKE/MATRIX SPIKE DUPLICATE

COMPOUND	SPIKE ADDED (µg/kg)	SAMPLE CONC. $(\mu g/kg)$	MS CONC. (µg/kg)	% REC #	QC LIMITS % REC.
henol	20000	0.0	16400	82	26-90
-Chlorophenol	20000	0.0	15300	76	25-102
,4-Dichlorobenzene	10000	0.0	3620	36	28-104
-Nitroso-di-n-Propylamine	10000	0.0	9310	93	41-126
,2,4-Trichlorobenzene	10000	0.0	5990	60	38-107
-Chloro-3-Methylphenol	20000	0.0	15500	78	26-103
cenaphthene	10000	0.0	7510	75	31-137
Nitrophenol	20000	0.0	18100	90	11-114
4-Dinitrotoluene	10000	0.0	8430	84	28-89
entachlorophenol	20000	0.0	20800	104	17-109
/rene	10000	0.0	7780	78	35-142

	SPIKE ADDED	MSD CONC.	MSD %	8	QC LIMITS		
	$(\mu g/kg)$	(µg/kg)	REC	RPD #	RPD	REC.	
lenol	20000	15000	75	9	35	26-90	
Chlorophenol	20000	14200	71	7	50	25-102	
4-Dichlorobenzene	10000	3440	34	6	27	28-104	
Nitroso-di-n-Propylamine	10000	8250	82	13	38	41-126	
2,4-Trichlorobenzene	10000	5260	53	12	23	38-107	
Chloro-3-Methylphenol	20000	12900	65	18	33	25-103	
enaphthene	10000	6500	65	14	19	31-137	
Nitrophenol	20000	15900	79	13	50	11-114	
4-Dinitrotoluene	10000	7720	77	9	47	28-89	
ntachlorophenol	20000	19900	99	5	47	17-109	
rene	10000	7660	77	1	36	35-142	

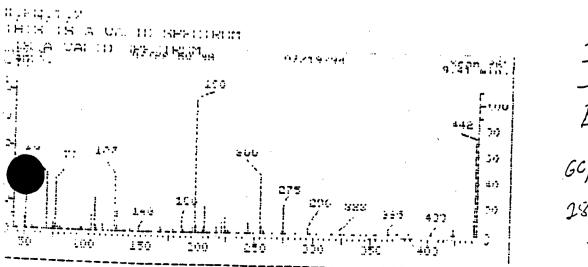
Column to be used to flag recovery and RPD values with an asterisk

s outside of QC limits

RPD: 0 out of 11 outside limits

Spike Recovery: 0 out of 22 outside limits

.


Pune -	4 pts 	51.46 4	ranga:	amular.t.	hase	File	LOG CADOA
• • • •	201 -1 	261	41.1111-	444.41	9579.1	 עידע אנוג	

HUZUS PERFORMANCE SCANDARD

DecaFluerofriphenylphoapies (DE(PE) /

		% Relati	ve Abundance	
/** 	lon Aburdanca Tritaria	Base Peak	Appropriata Paak	Statua
19 19 11 19	90-A0% of mass 198 Less Dian VX of mass 69 Creforence only) Less Dian VX of mass 69 AN-A0% of mass 198 Loss Dian 1% of mass 198 Dash peak, 100% relative abundance 9-9% of mass 198 DN-10% of mass 443	53.30 0.00 40.62 .51 41.02 0.00 100.00 6.88 20.85 20.85 20.85 20.85 20.85 2.15 10.60 27.62 16.19	33.30 0.00 40.67 1.76 41.07 0.00 700.00 700.00 6.88 70.85 7.15 65.44 77.67 27.78	

Detection Detet UD719794 Intection Time: 14:56 Data Eile: D0E719 Scent 261

+ 7 /21/94

8

I.Batch BO719-1 GC/MS#1 2824 A11156 7/19/94 Continuing Calibration Check HSL Compounds

Case No:		Calil	bration (Date:	07/19/94
Contractor:	Time: 15:19				
ct Na:	Labor	atory IC): >8	N719	
Instrument ID: 2824A11156	Initi	al Calib	rati	on Date: 06/30/94	
Minimum RF for SPCC is	5 0.050	Maxi	mum % Di	ff fo	or CCC is 30.00%
Compound	RF	RF	7Diff	000	SPCC
N-NITROSO-DIMETHYLAMINE	.57674	.53448	7.33		
Pyridine	. 26051	-	-		
Aniline	.46174	.55821	20.89		
2-Fluorophenol	.97427	.90569			(Conc=100.00)
Pheno 1-d5	.93920	92026			(Conc=100.00)
Pheno I	.86624	. 83815	3.24	*	(
Benzyl alcohol	.46350	. 38450	17.04		
bis(2-Chloroethyl)Ether	.74861	.92080	23.00		
2-Methylphenol	.62964	.74374	18.12		
3-Methylphenol	.79209	.81318	2.66		
-Methylphenol	. 63800	.67237	5.39		
l-Chlorophenal	.70763	.77865	10.04		
,3-Dichlorobenzene	.80796	.92119	14.01		
,4-Dichlorobenzene	.71365	.79490	11.39		
,2-Dichlarabenzene	.79203	.85279	7.67		
laraisopropyl)ether	.79662	.83518	4.84		
co-Di-n-propylamine	. 62245	. 65804	5.72		**
exachloroethane	. 37497	.31217	3.94		
itrobenzene-d5	.44667	. 47494	6.33		(Conc=50.00)
itrobenzene	.44437	.43213	2.75		(conc-20.00)
sopharane		.95086	7.31		
-Nitrophenol	. 27610	.24664	10.67		
,4-Dimethylphenol	.44782	.44157	1.40		
enzoic acid	.19795	19338	2.31		
s(2-Chloroethoxy)methane	_	.58571	19.57		
,4-Dichlorophenol		.32032		¥ .	
2,4-Trichlorobenzene		. 32325	.07		
phthalene	.93172 1		10.69		
Chloroaniline		53529	5.41		
xachlorobutadiene		16396			•
Chloro-3-methylphenol	'	38369			
Methylnaphthalene		66673	Z.87	-	
			2.07		

Response Factor from daily standard file at -50.00 ng/uL

Average Response Factor from Initial Calibration Form VI •

2 Difference from original average or curve iff -

> alibration Check Compounds (*) SPCC - System Performance Check Compounds (**)

> > Form VII Page 1 of 3

5 7/21/94

I. Batch B 0719-1 Gc/ms#1

÷

er antar R

2824 A11156 7 19 94

concinaing	cativi acivii	LIEUR
HSL	Campounds	

06/30/94 -----

.

Case No:	Ca	libration	Date: 07	/19/94
Contractor:	 Ti	me: 15:19		
t No:		boratory I	D: >BN71	9
Instrument ID: 2824A11156	In	itial Calil	bration	Date: 06/30/94
Minimum RF for SPCC i				
IIIIIAUM AF FOF SPLL 1	s 0.050 Ma	aximum Z Di	iff for I	CCC is 30.002
Compound	RF RF	ZDiff	CCC SPE	.c
iexachlorocyclopentadiene	.26658 .242	40 9.07		
2,4,6-Trichlorophenol	.44814 .432			
-Chloronaphthalene	1.14404 1.212			
:-Fluorobiphenyl	1.25495 1.295			(Conc=50.00)
imethy lphthalate	1.62381 1.628			(0000 30.00)
cenaphthylene	1.61554 1.902			
cenaphthene	.93979 1.038	27 10.48		
,4-Dinitrophenol	.13661 .096	42 29.42		
-Nitrophenol	.10079 .0914		**	
,4-Dinitrotoluene	.34957 .344		•	
,6-Dinitrotoluene	.33235 .3394			
-Nitroaniline -Nitroaniline	.52041 .5120			
-Nitroaniline	.28266 .3391			
ethylphthalate	.18321 .1775			
be <u>nzo</u> furan	1.39547 1.4184			
ich loropheno l	1.40343 1.4513	-		
phenyl-phenylether	.41185 .4269			
vorene	.35736 .4907			
obenzene	.83068 .9624			
4,6 Tribromophenol	1.29316 1.2565			
Nitrosodiphenylamine	.50733 .63116		_	(Conc=100.00)
6-Dinitro-2-methylphenol	.15184 .12030		* .	
Bromopheny I-pheny lether	.23590 .2344)			
xach lorobenzene	.24707 .22870			
atachlorophenol	.11189 .09495		ŧ	
manthrene	1.01867 1.10104			
thracene	.93739 1.05772			
bazole	.73786 .83291			
-n-Butylphthalate	1.30234 1.50440			
oranthene	.84859 .85274			
zidine	.03601 -	•		

Response Factor from daily standard file at 50.00 ng/uL -

10 7/21/84

3

- Average Response Factor from Initial Calibration Form VI

ff - % Difference from original average or curve

____Calibration Check Compounds (*) SPCC - System Performance Check Compounds (##)

Form VII Page 2 of 3

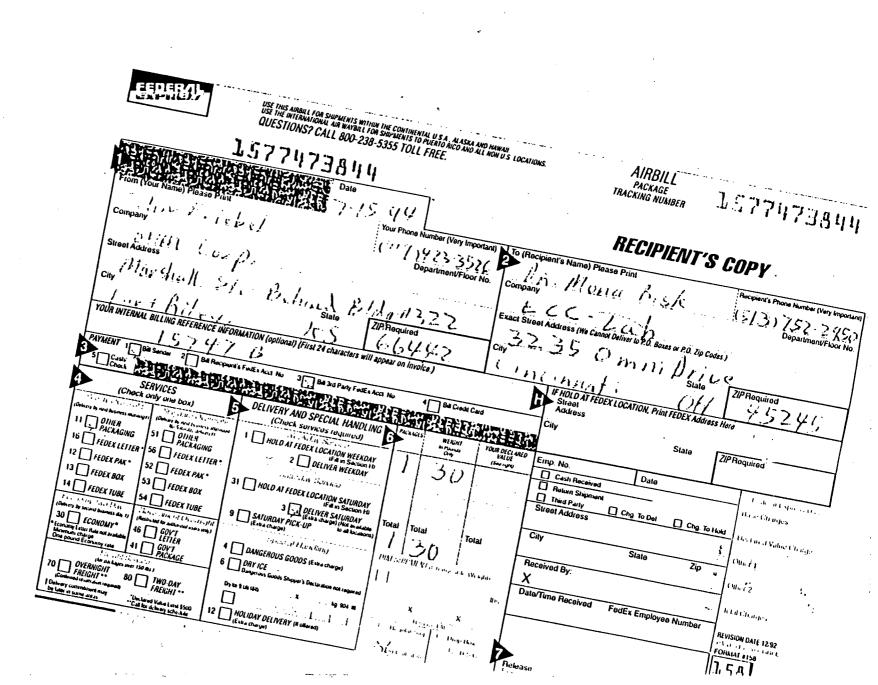
Continuing Calibration Check HSL Compounds

Case No:		Calibration Date: 07/19/94								
Contractor:		Time:	Time: 15:19							
t No:		Laboratory ID: >8N719								
Instrument ID: 2824A11156		Initi	al Calibrai	tion Date: 06/30/94						
Minimum RF for SPCC i	s 0.050	 Maximum 2.Diff for CCC is 30.002								
Compound	RF	RF	XOiff CC	C SPCC						
Pyrene Ferphenyl-d14 Sutylbenzylphthalate 5,3'-Dichlorobenzidine Senzo(a)Anthracene Sis(2-Ethylhexyl)phthalate Shrysene Si-n-octylphthalate enzo(b)Fluoranthene enzo(k)Fluoranthene enzo(a)pyrene ndeno(1,2,3-cd)Pyrene ibenz(a,h)Anthracene enzo(g,h,i)Perylene	1.33533 1.15938 .38523 1.30836 1.20961 1.01796 1.67049 1.85188 1.49172	1.36205 1.40726 .99566 2.10769 1.81291 1.46965 1.47597 1.41902 1.12625	. 47	 (Conc=50,00)						
2,3,5-Tetramethylbenzene	-	- - -		(Conc=50.00) (Conc=50.00) (Conc=50.00)						

- Response Factor from daily standard file at 50.00 ng/uL

- Average Response Factor from Initial Calibration Form VI

iff - 2 Difference from original average or curve


Calibration Check Compounds (*) SPCC - System Performance Check Compounds (**)

Form VII Page 3 of 3

4 7 trilay

 \geq

PROJECT: TA. Milly KS (TAMIKS)	Cooler #		
	Received:	7-16-	ોપ
USE OTHER SIDE OF THIS FORM TO NOTE FURTHER DETAILS CONCERNING CHECKIN SPECIFY AND DESCRIBE ANY ACTION(S) REGARDING THE RESOLUTION(S) OF PROBLEM SPECIFY AND IF REQUESTED, NOTE ON BACK THE ADDRESS WHERE THE EMPTY CON INED AND LIKEWISE IF THE SHIPMENT WAS REJECTED.	PROBLEMS	AND TO	
A. PRELIMINARY EXAMINATION PHASE: Date cooler was opened: <u>7-16-9</u> by (print) <u>Denise DeTellem</u> (sign) <u>1105</u>	4 Derell	un-	
Were custody seals on outside of cooler?			NO
. Were custody seals unbroken and intact at the date and time of arrival:		YES	NO
. Were custody papers sealed in a plastic bag & taped inside to the lid?	· · · · · · · · · · · · · · · · · · ·	YES	(NO)
Was project Identifiable from custody papers? If YES, enter project name at top of this form		YES	NO
Were custody papers filled out properly (ink, signed, etc.)?	*	YES YES	NO
Did you sign custody papers in the appropriate place?			NO
Did cooler come with a shinning dia (air bill are to		YES	NO
designated person initial here to acknowledge speciate of	<u>473244</u> ate) 7	-14-94	NO
LOG-IN PHASE: Date samples were logged-in: <u>1-169-1</u> (print) Deprise Details	Lm	-14-94	
Describe Packaging ICE ICE PACKS PEANUTS PACKING MATERIAL			<u> </u>
If required, was enough ice used?		YES	NO
Were all bottles sealed in separate plastic bags?			NO
Dkd all bottles arrive unbroken & In good condition?		YES	NO
Were all bottle labels complete (ID, date, time, signature, preservative, etc.)?		YES)	NO
Did all bottle labels agree with custody papers? If NO, Indicate discrepancies on back		YES	NO
Were correct containers used for the tests indicated?		\approx	NO
Were correct preservatives used when required?		\succ	NO
sufficient amount of sample sent for tests indicated?) (NO
Bubbles absent in VOA viats?		Ù	NO
	·····		

acahu	d by: iprint nar	no)				·	Par	le of
Deni	ise DeTeller	n.						I-In Date
ecelvo	d by: (signatur	e)						7-16-94
)ev	JY NC	IElle	m			
		1	Customer	Corr	esponding	7		Remarks:
30	•	•	Sample #	1	Stia	ECC #		Condition of Sample
	•		1000	H. h	iku :	19365-	pt.	
Custo	dy Seal(s)	Present/Abser		T T	iky Aniks)	501	[MA	t .
		Intact/Broke				673		
Custo	dy Seal Nos.:		[<u> </u>	068	++	
	F	N/A	6703			003		
			677674			· · · ·	1-1-	
Juain-conditional Conditional Conditionae	of Custody	Present Absen				004		
18COID	S		LADIS			505		
Althu		Althui/Sucker	5756	٩	/			· · · · · · · · · · · · · · · · · · ·
		Rresent/Absent				COU	N	K I
JULLIN N	10.	•						
		1577473844 Fed-Ex	·					
amele	0							
and a	Condition:	ntaci/Broken*/						
		Leaking			· ·			
	ormation on	Yes/No						
shorts.	records, traffic and sample tag							
]ree?	שיש סמוולאם ופן	12	ł					
-4 - 0	. ·	· . [
ate Red	ceived at Lab:	7-16-94						
me Red	celved:	10115						
	•	10:47						÷
			r -		1			
	Sample Trans	10-						
		lor l						
lan	Fraction							
 #	Area #							
-	ruca #							
	Ву							
					· .			
	On							
tantis	ACOE and att:	ach record of res						
			ouuon.					
ved By	: Denix	x I Vicile	m			Г		
1-	16AU	<u>n jener</u> u				1		
						<u>}</u>		

Problems & Corrective Action Sheet

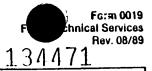
Customer Name: OHM COYP.	
Location: Ft. MIKU. KS (TANKS)	
Date Rec'd: 7-1694	

ability and

PROBLEMS 1. No custedy suits on autside of cooler. . CORRECTIVE ACTION Denibe Received By: llem Date: Time:

OHM REMEDIATION SERVICES CON MIDWEST DIVISION - TECHNICAL SERVICES LABORATORY SAMPLE RECEPTION CONF	VICES
Telephone #: 800/537-9540, Ex 4198 or 4266	FAX #: 419/425-6
Send to the Attention of: Chet Scheibe	1
TO BE COMPLETED BY THE LABORATORY NOTE: A Copy of the COCs <u>must</u> be Enclosed with this Form	
DATE: 7-16-94	
LABORATORY NAME: ECC	
LABORATORY LOCATION: <u>Cinci</u> . OH	
PREPARED BY: <u>DENIGE DETELLEN</u> (PRINT LEGIBLY)	<u> </u>
PROJECT NUMBER:15747	
DATE SAMPLES RECEIVED: 7-16-94	· · · · ·
NUMBER OF SAMPLES:	
SOIL: X	
WATERS:	
SOLIDS:	
TURN-AROUND-TIME REQ: 7 day THE	
0	
TO BE COMPLETED BY OHM TECH SERV LAB PROCUREMENT	I DEPARTMENT:
DATE RESULTS RECEIVED BY OHM: 7/22	
METHOD OF RECEPTION: E Fax F 1/27Fed	X Mail
ACTUAL TURN-AROUND-TIME:7	
VALUE OF SAMPLE ANALYSIS: \$	

· · ·


•

· · · ·

.

О.Н.	. MATERIALS	CORP.	•		P.C	. BOX 551 •	FINDLAY, OH	1 45839-0551	•	419-	-423	-3526						<u> </u>	
For PROJ N 157	ob Ho	rry	Res, mb	T AN	CRAB	PROJECT MANAA JErry R	TION FROJECT TELEPHONE NO 4/4-423-3 GER/SUPERVISOR 45.11/(,) 2 Mayer AMPLE DESCRIPTION NCLUDE MATRIX AND POINT OF SAMPLE)	526	NUMBER OF CONTAINERS	ANA (INDIC SEPAI CONT	CATE RATE	. /		200	2,0 2,0 2,0	378			
				ö	5 \		POINT OF SAMPLE) UHOMOETA OII	n1 .1	2	X	X	<u></u> x			Ĥ			REMARKS	· · · · · · · · · · · · · · · · · · ·
	. <u>Z. H.</u>	7·14 7·14	11:03		V	Soil	<u>EBUM BO</u> ANKZ	Horn	Z	Ż	×	Ý							
r— r	003		11:15		V	Soil F	Rom West	1	2	X	X	×						<u> </u>	
h	004		13:54		V	Soil FA	orn Bottom	side	2	X	X	X		_					
	005	7-14	1400		V	A.C	bottom sich vval		Z	X	X	X					······································		
6 D	006	7.14	11:16	 	V	Soil 3	Lop Side or h wall	<u>¢</u>	2	×	Х	×		_	$\left - \right $			· · · · · · · · · · · · · · · · · · ·	
7					-														
8						······································		······································											
9					–				<u> </u>					_					
10 TRANSFER NUMBER		R	 		RANS	FERS SHED BY	TRANSFE ACCEPTEI	D BY	DATE		REI	I_I MARKS Be	00	ΓA 	T Re	 - S (7-day lts ro eibel	15	
1	1-6			Ý	1/A	Helly-	Denise De	Fillem	01-14	0:45		C	40	.+	50	4	eibel	- (
2			/ /			1					-			2	500	<i>9-</i> :	\$37-95	ってび	
4															. 21	(CM	leoml-		
													Í	·					

·····

1 N.S

..

With L

4 . . X ? . I

.

REQUEST FOR ANALYTICAL SERVICES

-1-

PROJECT INFORMATION

Project Name:	Fort Riley	Project No:	15747
Client:	USACE	Project Manager:	Jerry Resnik
Project Location:	Fort Riley, KS	Technical Manag er:	
Date Submitted		QA Officer:	Chet Scheibel
ARF Date:	7/15/94	Sampling Date:	7/14/94

Laboratory Information

LABORATORY INFORMATION				
Laboratory Name	ECC			
Street Address	3235 Omni Drive			
City, State	Cincinnati, OH 45245			
Phone Number	513/752-2950			
Laboratory Contact	Mona Risk			

APPROVALS

	SIGNATURES
QUALITY ASSURANCE OFFICER	Chet Scheebel
PROJECT MANAGER	Resil
CLIENT REPRESENTATIVE	4

SAMPLE INFORMATION

6	Solid	Soil	 SVOC, VOCS, TPI	h gro, tph dro	7 Days

NOTE:(1) The results (including QA) may be "faxed" to the Technical QA Officer with a required TAT of seven (7) days or less. An ORIGINAL COPY of the complete data package <u>must</u> then be received within five (5) calendar days of the "fax" date.

(2) For a required TAT of greater than seven (7) days, an ORIGINAL COPY of the complete data package <u>must</u> be received within the requested TAT. The data (including QA) may be "faxed" at an earlier date but the hard copy must be received by the TAT due date.

(3) WITH THE EXCEPTION OF THE ASC LAB, please complete the LABORATORY SAMPLE RECEPTION CONFIRMATION FORM ATTACHED.

Sampling Quality Assurance Samples

Quantity Sample Matrix Efeld Quality Assurance Samples				
	Field Blanks (Matrix Blanks)			
	Equipment Blanks			
	Trip Blanks			
	Replicate Samples			

Laboratory Quality Assurance Quality Control

1 per batch	Soil	Method Blank		
1 per batch	Soil	Method Spike		
1 per batch	Soil	Marrix Spike		
1 per batch	Soil	Matrix Spike Duplicate		

-2-

.

Required Laboratory Certifications

Certification	Request	Cernification
EPA Contract Laboratory	XXX	Corp of Engineers
State:		MBE, WBE or SDB
Client:		Other

Deliverables

	Deliverable	Derverable
Request	Standard Analytical Report	QC raw data
A	Analytical Summary	Instrument raw data
×	QC Report	CLP package

			USTANALYSIS	GC and IR	
	Connert	Aleroz	CSI ANRE ISUS		
	6	Solid	DRO - Diesel Range Organics	SW-846 8015	
T	6	Solid	GRO - Gasoline Range Organics	SW-846 8015	0.5 mg/Kg

		VOLATILE ORGANIC ANA Parameter	Reference Meth	Od
		Total Volatile Organics	8240, 8240A	ug/Kg
6	Solid	Acetone X		50
		Acrolein X		50
		Acrylonitrile X		50
		Benzene X		5
		Bromodichloromethane X		5
<u></u>				5
		Bromonethane (Methyl Bromide) X		10
				50
		Carbon Disulfide X		5
		Carbon Tetrachloride X		

s.,

		Reconsidered and Parameters	ESTIBLICENS ME	
Shantaty	Mauix	Parameter	Reference Wethod	Deflection Linne
		Chlorodibromomethane X		5
		Chloroethane X		10
<u> </u>		2-Chloroethylvinyl Ether X		10
		Chloroform X		5
		1.1-Dichioroethane X		5
		1,2-Dichloroethane X		5
		1.1-Dichloroethene X		5
		1.2-Dichloroethene (total) X		5
	·····	1,2-Dichloropropane X		5
· ·		cis-1,3-Dichloropropens X		5
		trans-1,3-Dichloropropene X	1	5
		Ethyl Acetate X		10
		Ethyl Benzene X		5
		2-Hexanone X		50
		Methyl Chloride (Chloromethane) X		- 10
		Methylene Chloride X		5
		Methyl Ethly Ketone (2-Butanone) X		100
		4-Methyl-2-Pentanone X		50
		Styrene X		5
	<u></u>	1,1,2,2-Tetrachloroethans X		5
		1,1,1,2-Tetrachloroethane X		5
·		Tetrachloroethene X		5
		Taluene X		5
		1,1,1-Trichloroethane X		5
		1,1,2-Trichloroethane X		5
		Trichloroethene X		5
		Trichlorofluoromethane X		10
		Vinyl Chloride X		10
		Xylene (Total) X		5

-4-

JUL 15 '94 13:27 MW TECH SERVICES Addressee

	Marty		Reference Melhod	
6	Solid	Semivolatile Organics HSL	8270 or 8270A	
		Acenaphthene X		0.66 mg/Kg
		Acenaphthylene X		0.66 mg/Kg
		Anthracene X		0.66 mg/Kg
		Benzidine X		0.33 mg/Kg
	•	Benz(a)anthracene X		0.66 mg/Kg
		Benzo(b)fluoranthene X		0.66 mg/Kg
		Benzo(k)fluoranthene X		0.66 mg/Kg
	÷	Benzo(g.h,i)perylene X		0.66 mg/Kg
		Benzo(a)pyrene X		0.66 mg/Kg
		Bis(2-chloroethyl)ether X		0.66 mg/Kg
		Bis(2-chloroethoxy)methane X		0.66 mg/Kg
		Bis(2-chloroisopropyl)ether X		0.66 mg/Kg
		Bis-(2-cihylhexyl)phthalate X		0.66 mg/Kg
		4-Bromophenyl Phenyl Ether X		0.66 mg/Kg
		Butyl benzyl phthalate X		0.66 mg.Kg
	Carbazole X		0.66 mg/Kg	
		4-Chloraniline X		1.3 mg/Kg
	1	4-Chloro-3-methylphenol X		1.3 mg/Kg
		2-Chloronaphthalene X		0.66 mg/Kg
		2-Chlorophenol X		0.66 mg/Kg
		Chrysene X		0.66 mg/Kg
		Dibenz(a,h)anthracene X		0.66 mg/Kg
		Dibenzofuran X		0.66 mg/Kg
	1	Di-n-buryl Phthalats X		0.66 mg/Kg
		1,2-Dichlorobenzene X		0.66 mg/Kg
ļ	-	1,J-Dichlorobenzene X		0.66 mg/Kg
		1,4-Dichlorobenzene X	1	0.66 mg/kg
		3,3'-Dichlorobenzidine X		1.3 mg/Kg
		2,4-Dichlorophenol X	· ·	0.66 mg/Kg

-5-

Dans Construction		
		ic Mellod
Property of the local state of the second stat	2,4-Dimethylphenol X	0.66 mg/Kg
	Dimethylphthalate X	0.66 mg/Kg
	4,6-Dinitro-2-methylphenol X	3.3 mg/Kg
	2.4-Dinitrophenol X	3.3 mg/Kg
	2,4-Dinitrotoluene X	0.66 mg/Kg
	2,6-Dinitrotoluene X	0.66 mg/Kg
	Di-n-octyl phthalate X	0.66 mg/Kg
	Fluoranthene X	0.66 mg/Kg
	Fluorene X	0.66 mg/Kg
	Hexachlorobenzene X	0.66 mg/Kg
	Hexachlorobutadiene X	0.66 mg/Kg
	Hexachlorocyclopentadiene X	0.65 mg/Kg
	Hexachloroethane X	0.66 mg/Kg
	Indeno(1,2,3-cd)pyrene X	0.66 mg/Kg
	Isophorone X	0.66 mg/Kg
	2-Methylnaphthalene X	0.66 mg/Kg
	2-Methylphenol X	0.66 mg/Kg
	4-Methylphenol X	0.66 mg/Kg
	Naphthalens X	0.66 mg/Kg
	2-Nirroaniline X	3.3 mg/Kg
	3-Nitroaniline X	3.3 mg/Kg
	4-Nitroaniline X	1.3 mg/Kg
	Nitrobenzene X	0.66 mg/Kg
	2-Nitrophenol X	0.66 mg/Kg
	4-Nitrophenol X	3.3 mg/Kg
	N-Nitrosodimethylamine X	1.3 mg/Kg
	N-Nirrosodiphenylamine X	0.66 mg/Kg
	N-Nitroso-di-n-propylamine X	0.66 mg/Kg
	Pentachiorophenoi X	3.3 mg/Kg
	Phenanthrene X	0.66 mg/Kg
	Phenol X	0.66 mg/Kg
	Pyrene X	0.66 mg/Kg

-6-

P.8/9

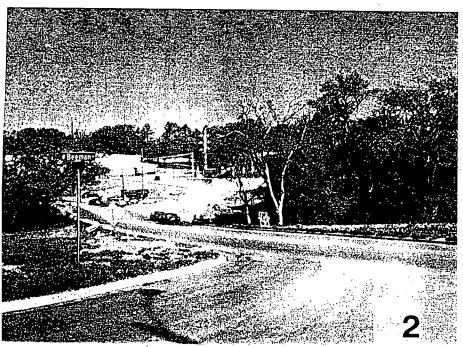
and the second second second

.

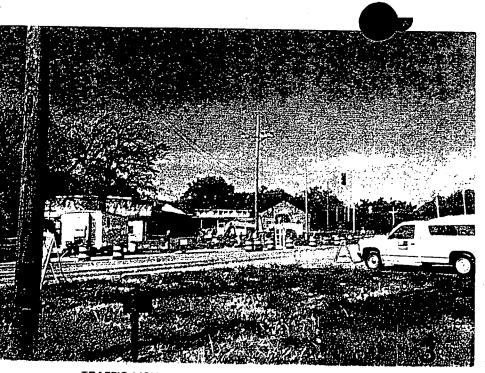
JUL 15 '94 13:29 MW TECH SERVICES Addressee

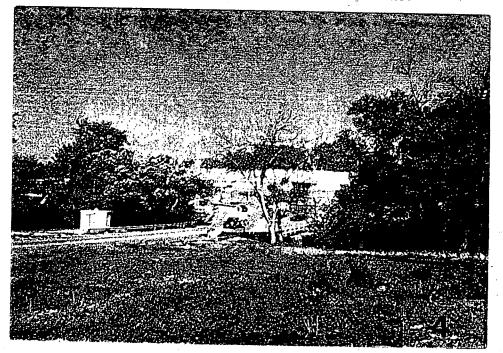
-7-

July 15, 1994


Addressee		CALL TRACTOR STATES	
AND THE OWNER OF THE OWNER	Deriving X	Common Mathod	0.66 mg/Kg
			0.66 mg/Kg
	1.2,4-Trichlorobenzene X		0.66 mg/Kg
	2,4,5-Trichlorophenol X		0.66 mg/Kg
	2,4,6-Trichlorophenol X		

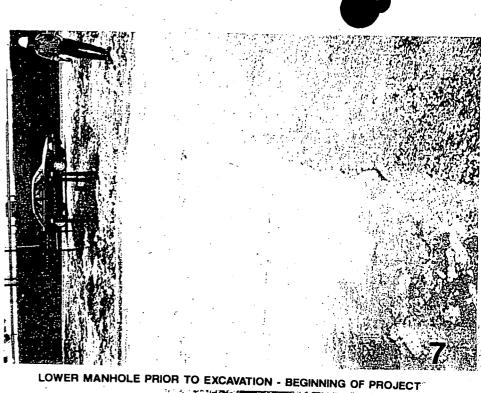
APPENDIX G

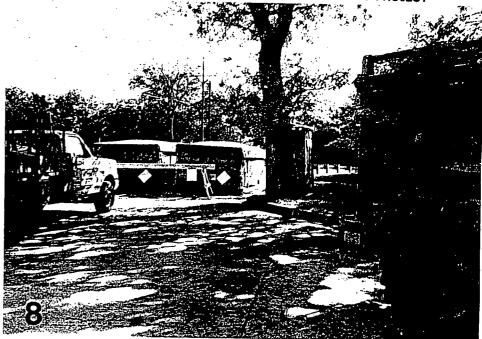

PHOTO DOCUMENTATION

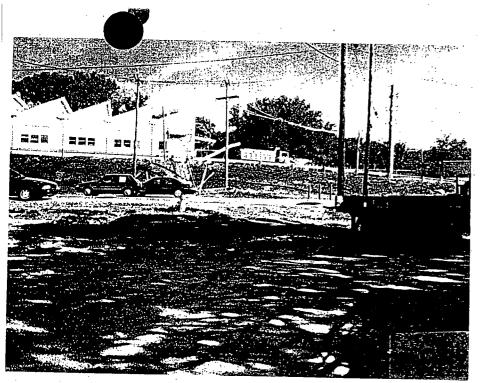

TRAFFIC CONTROL ON CUSTER AVENUE - MIDDLE OF PROJECT

TRAFFIC CONTROL ON CUSTER AVENUE - MIDDLE OF PROJECT

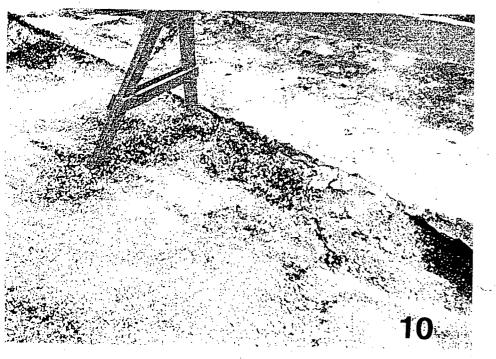
TRAFFIC LIGHT AT SEWER LINE - MIDDLE OF PROJECT




TRAFFIC CONTROL ON CUSTER AVENUE - MIDDLE OF PROJECT

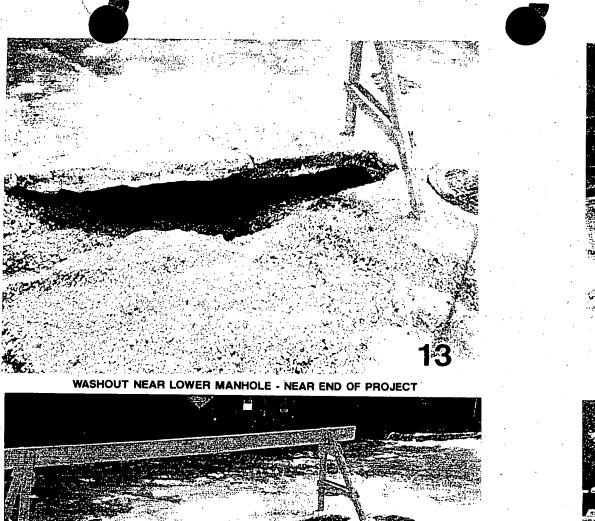

TRAFFIC CONTROL - BEGINNING OF PROJECT

지수 영화 가지 않는다.

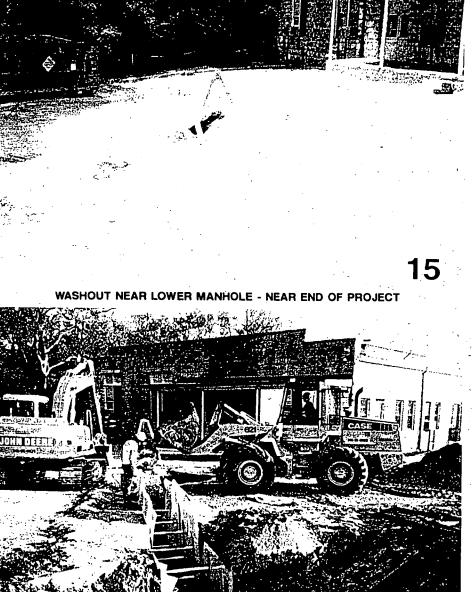


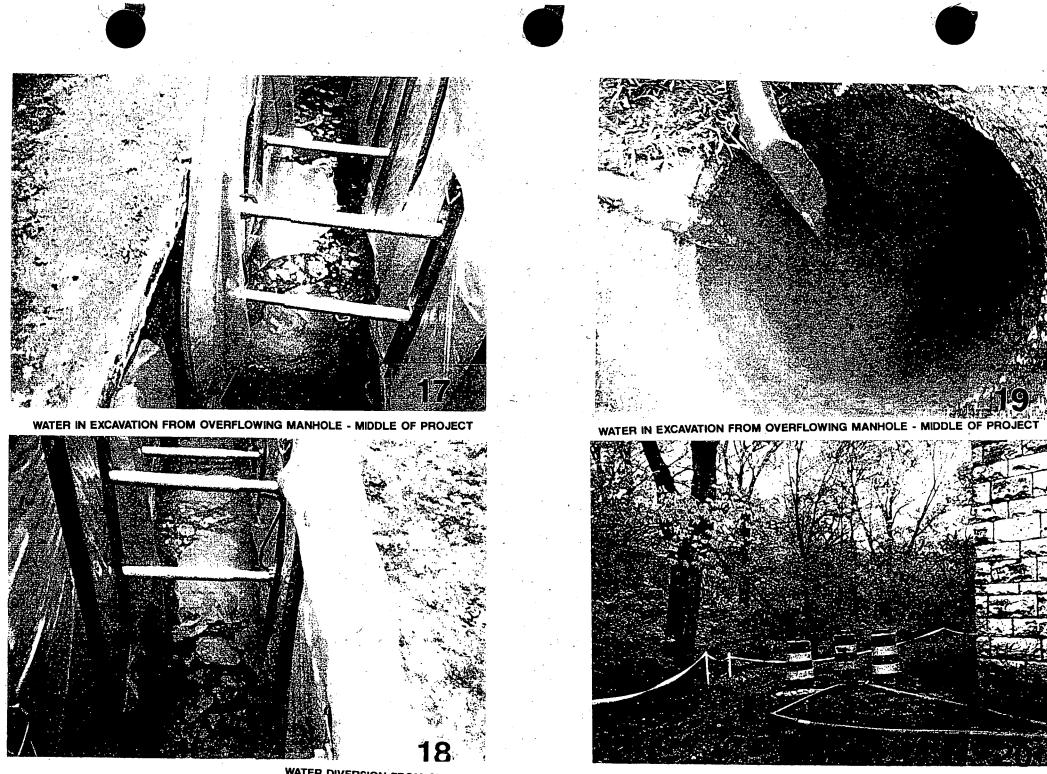
STAGED ROLL-OFFS - END OF PROJECT

FINAL BACKFILL - END OF PROJECT



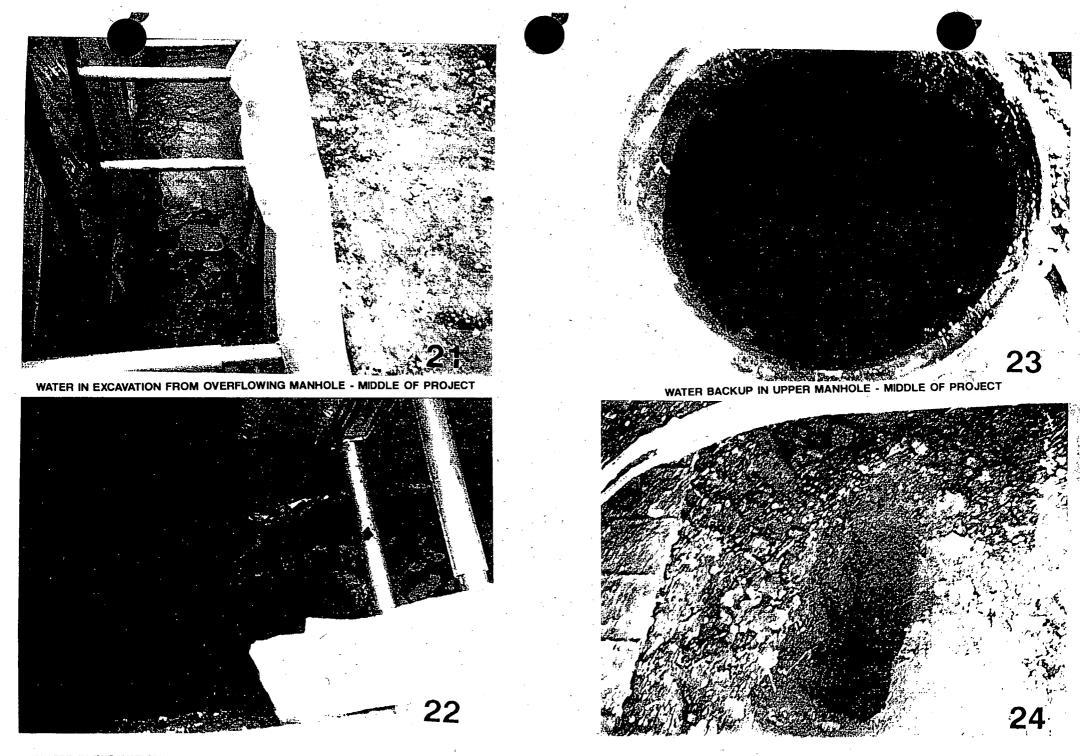
PARTIAL VIEW OF WASHOUT - NEAR END OF PROJECT


FINAL BACKFILL - END OF PROJECT

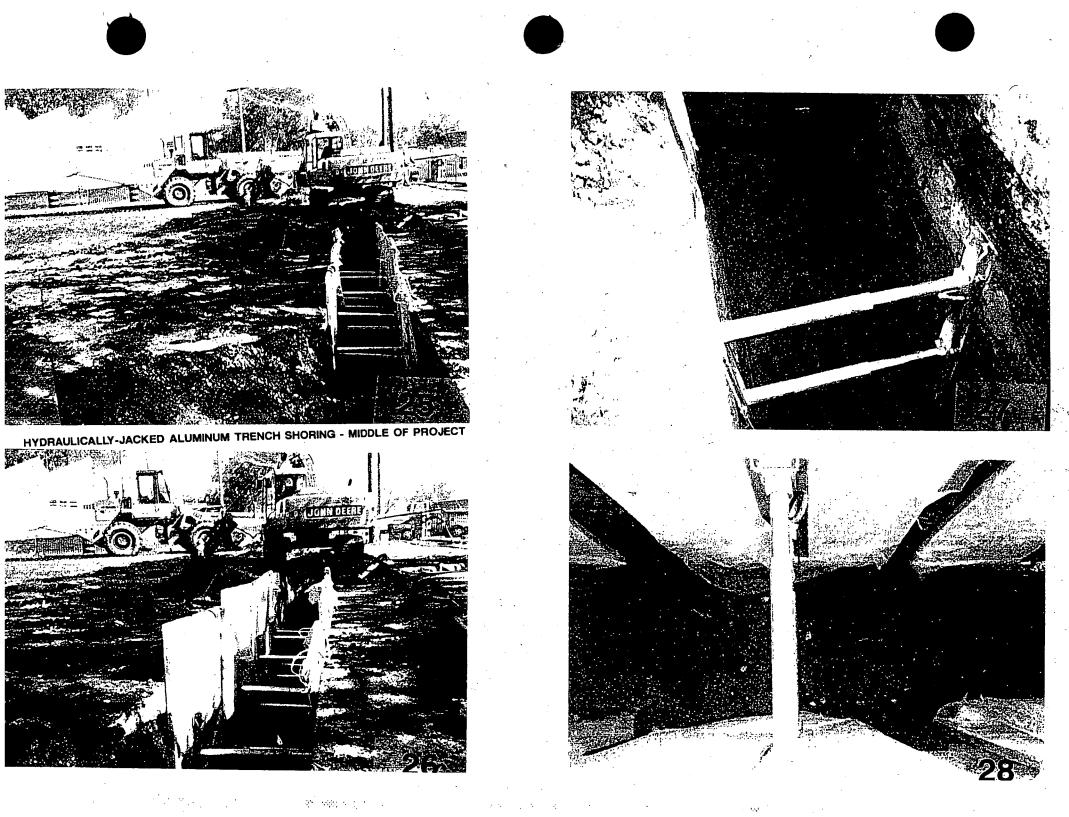


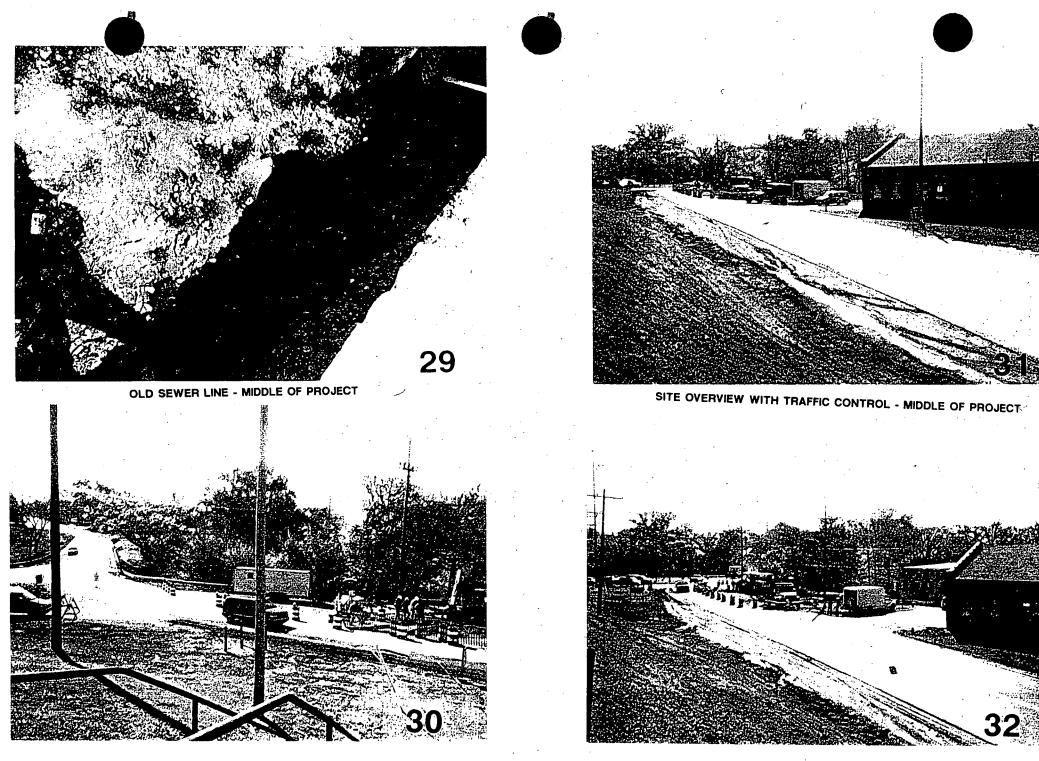
WASHOUT NEAR LOWER MANHOLE - NEAR END OF PROJECT

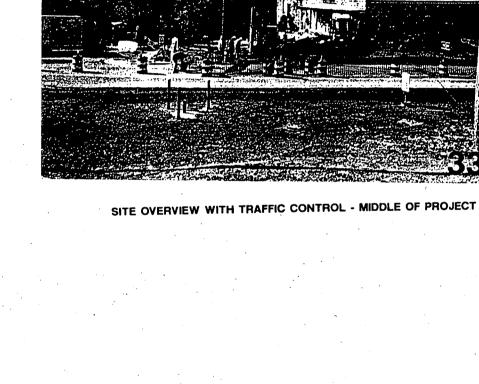
· · ·


COMMENCEMENT OF TRENCH BACKFILL - NEAR END OF PROJECT

WATER DIVERSION FROM OVERFLOWING MANHOLE TO NEXT MANHOLE - MIDDLE OF PROJECT

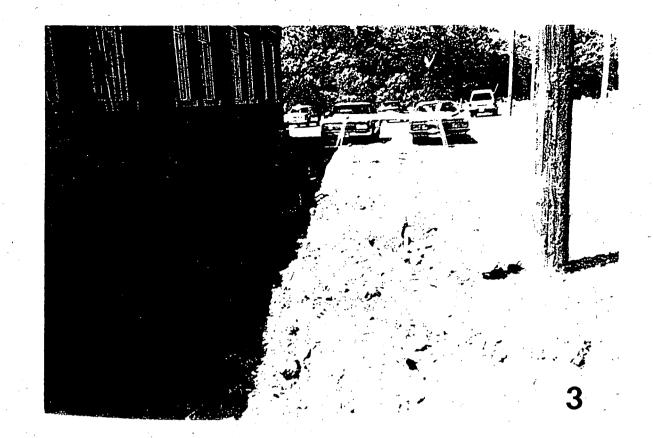

1.11


VYXQH (180


WATER IN EXCAVATION FROM OVERFLOWING MANHOLE - MIDDLE OF PROJECT

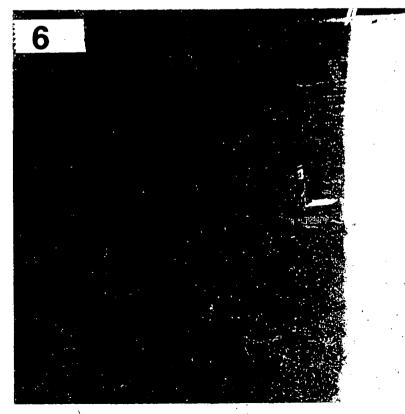
UNKNOWN

SITE OVERVIEW WITH TRAFFIC CONTROL - MIDDLE OF DOG ITOT

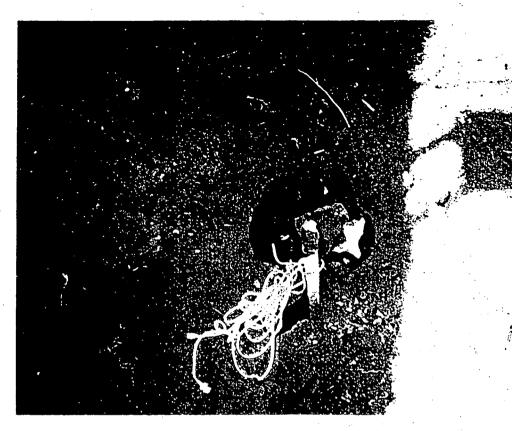


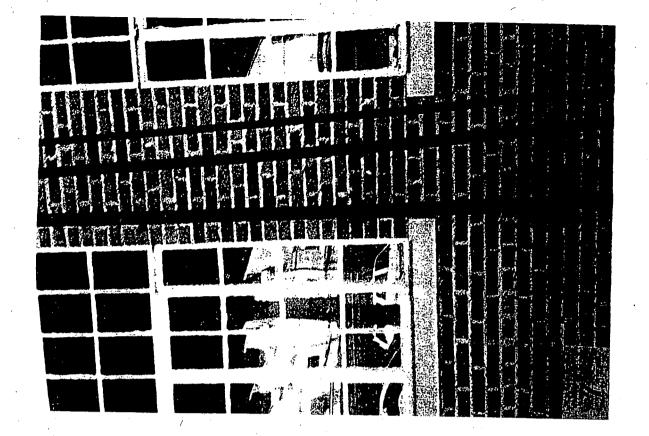
UST LOCATION .

TOP OF UST - END OF MODIFICATION P00002

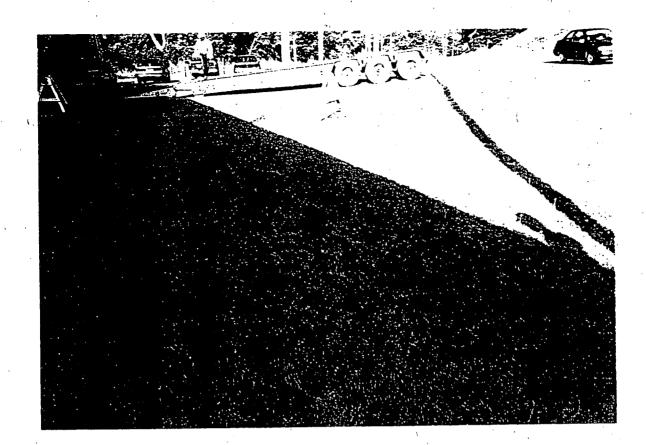


UST LOCATIONS - END OF MODIFICATION P00002


HET LOCATIONS END OF MODIFICATION PARA


UST LOCATION - END OF MODIFICATION P00002

5


. .

.

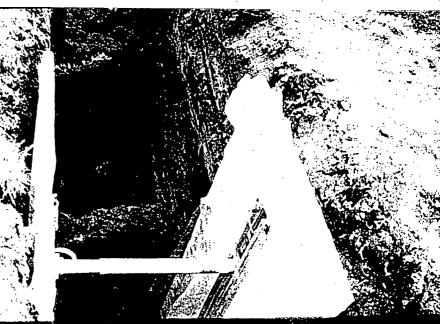


UST VENT PIPES - BEGINNING OF MODIFICATION P00002

GENERAL LOCATION OF USTs - BEGINNING OF MODIFICATION P00002

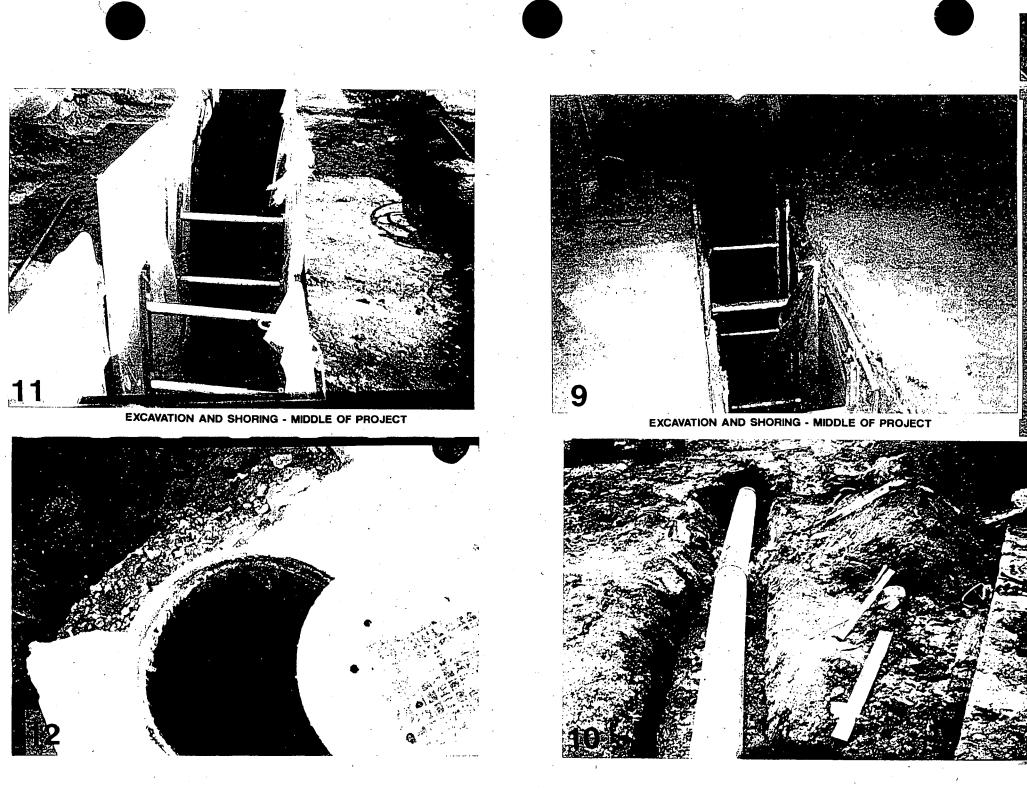
OFNEDAL LOCATION OF HETA DECININA OF MODIFICATION DOGOOD

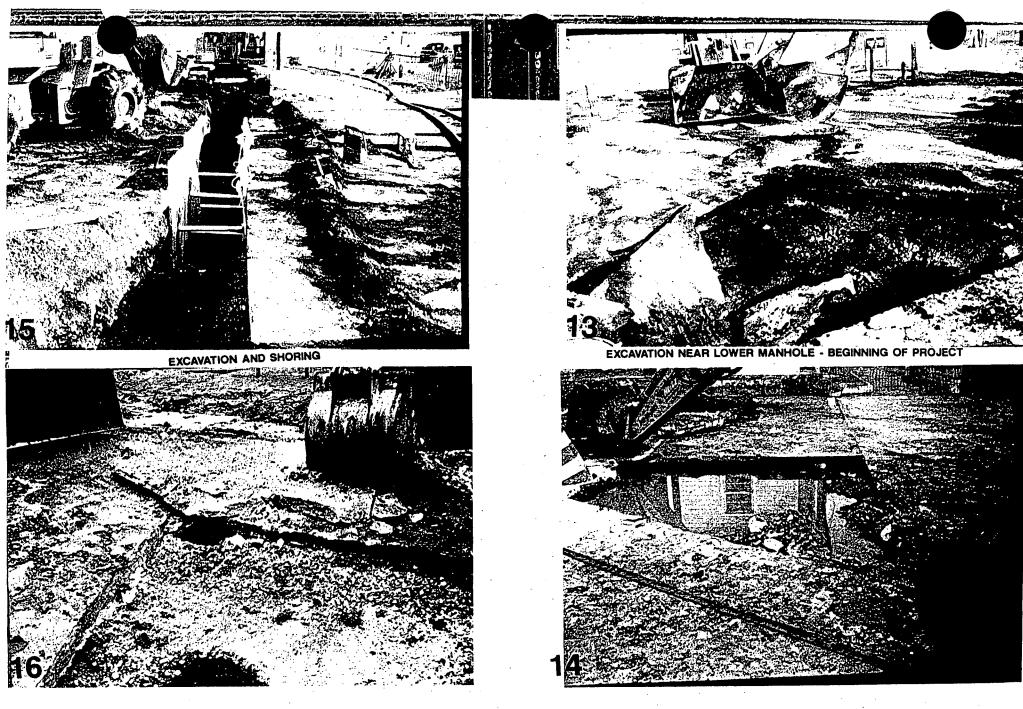
UST VENT PIPE - MIDDLE OF MODIFICATION P00002


LIGT I OCATION - DECINING OF MODIFICATION DAGAGE

NEW PHOTOS

SEWER LINE INSTALLATION - NEAR END OF PROJECT


EXCAVATION NEAR THE LOWER MANHOLE - NEAR END OF PROJECT



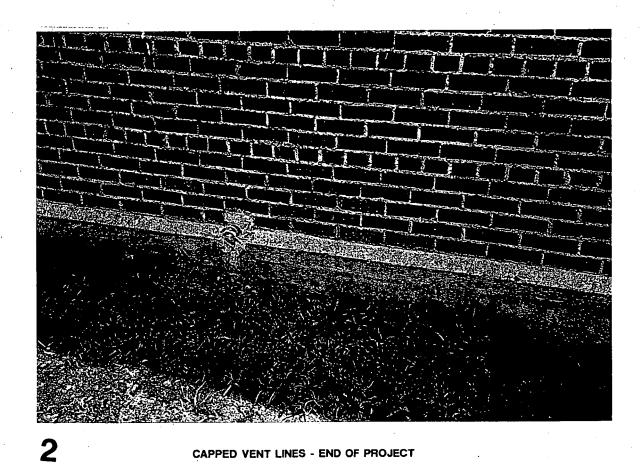
EXCAVATION NEAR THE LOWER MANHOLE - NEAR END OF PROJECT

EXCAVATION AFTER THE MANHOLE OVERFLOWED - MIDDLE OF PROJECT

EXCAVATION NEAR LOWER MANHOLE - BEGINNING OF PROJECT

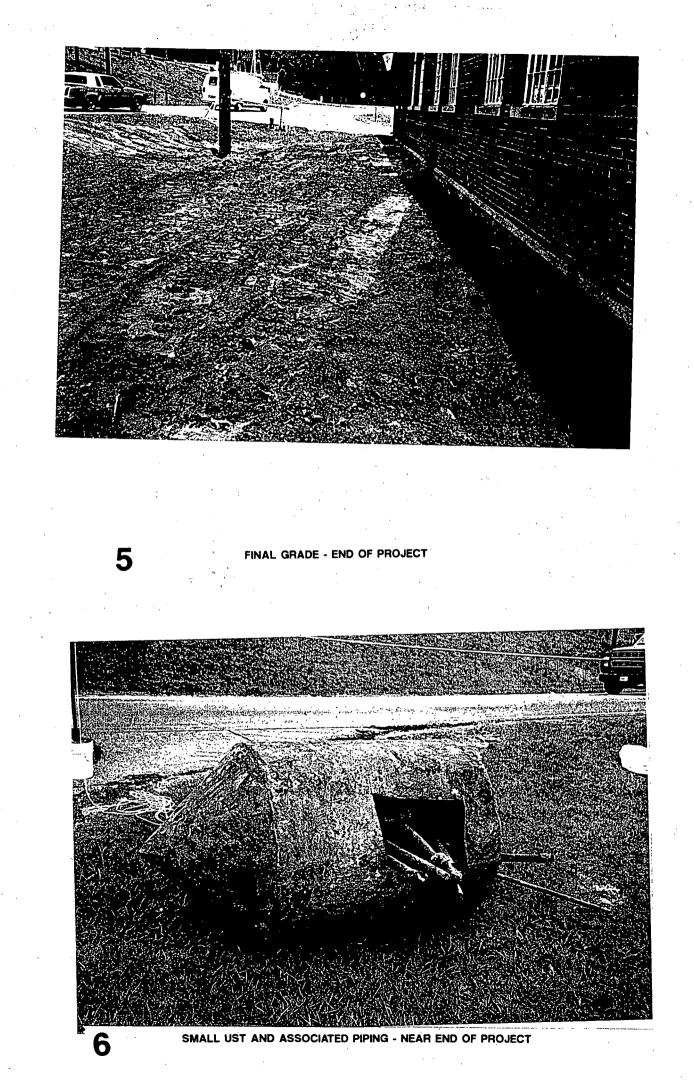
Mines?

WATER INTRUSION - BEGINNING OF PROJECT



OLD SEWER LINE - MIDDLE OF PROJECT

a na shini na ka ka shini na shini a ka shini a **ka shini a** ka ka shini a ka shini a ka shini a shini a shini a

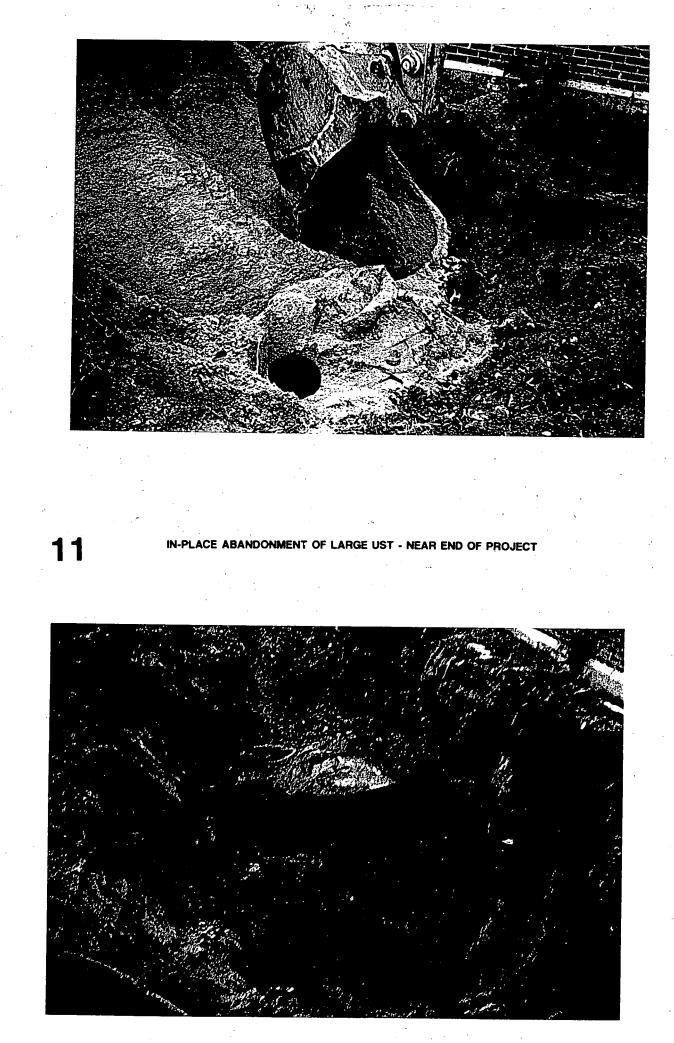

CAPPED VENT LINES - END OF PROJECT



CAPPED VENT LINES - END OF PROJECT

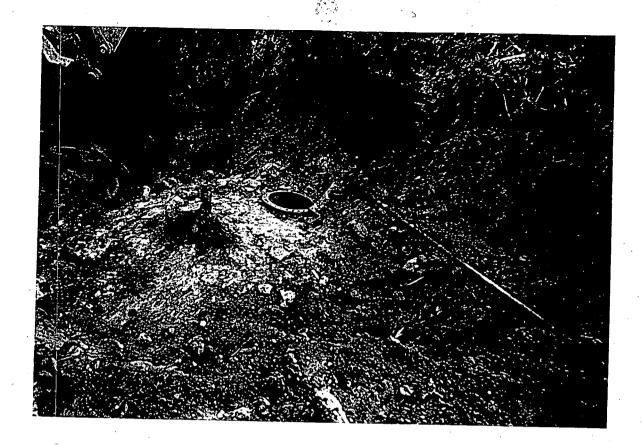
11 - 100 Martin (M. J.

LARGER UST - NEAR END OF PROJECT



IN-PLACE ABANDONMENT OF LARGE UST - NEAR END OF PROJECT

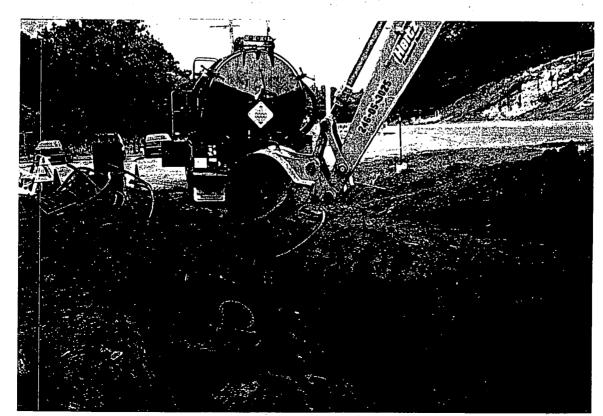
TWO USTS IN DECONTAMINATION AREA - NEAR END OF PROJECT



AND AND

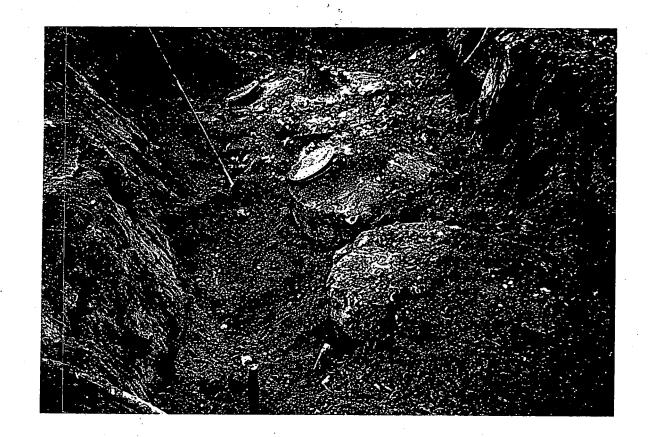
12

EXCAVATION NEAR LARGE UST - BEGINNING OF PROJECT

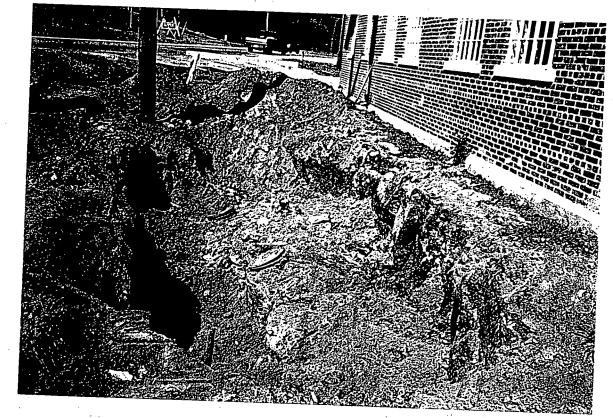

TOPS OF USTS AND PIPING - MIDDLE OF PROJECT

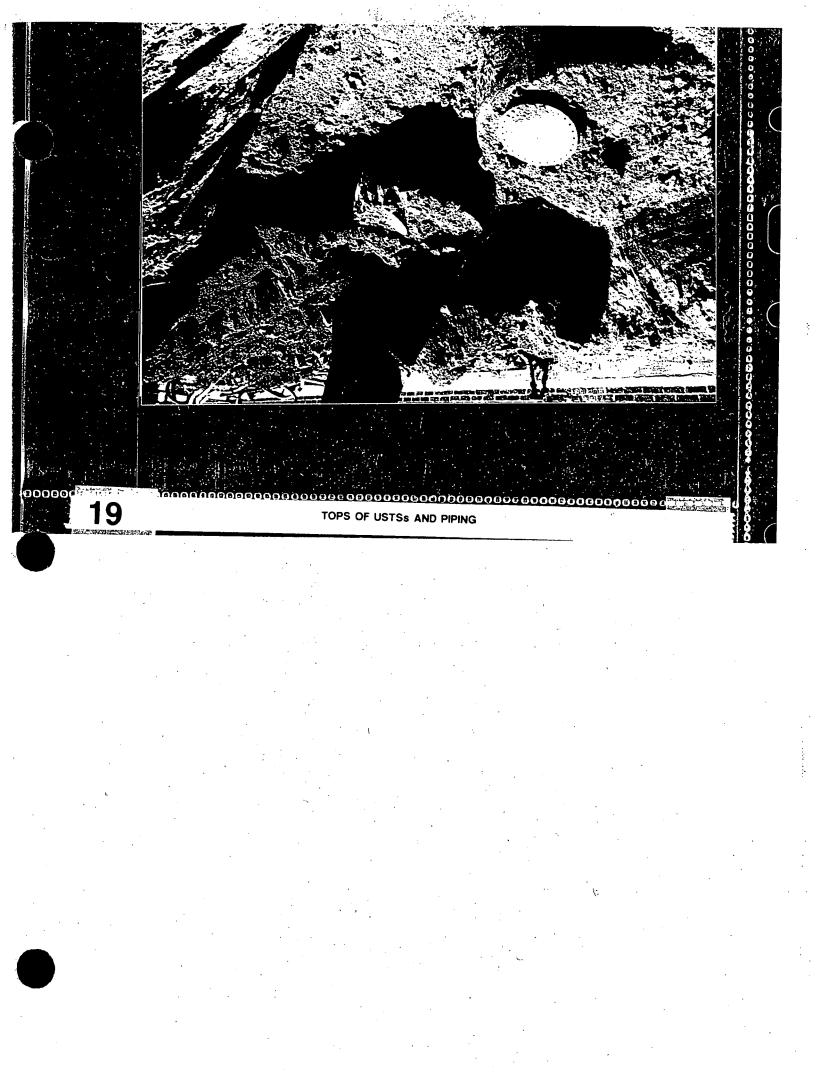
14

TOPS OF USTS AND PIPING - MIDDLE OF PROJECT



16


15


-

10.03 (

TOPS OF USTS AND PIPING - MIDDLE OF PROJECT

APPENDIX H

CORRESPONDENCE

4000 1

. Martine

AFZN-DE-ED

5 May 1994

MEMORANDUM FOR Army Corps of Engineers, Attn: Mr. Bob Garner

SUBJECT: Laundry Sewer Line Repair

Request that the concrete encapsulated and filled VCP line running through the downstream manhole be removed. If the manhole is damaged upon removal of the line, that the manhole be repaired at the same time. We would like a finished operational product when the project is complete.

LARRYM. MCGEE

Chief, EP&S Division, DEH

APPENDIX L

CERTIFICATE OF DESTRUCTION

١

HESS & SONS SALVAGE INC.

Custom Car Drushing We buy all types of scrap metal NATIONWIDE WATS 1-800 825-4377 of (913) 238-3382

NNY HESS RICK HESS

1209 N. Perry P.O. Box 1263 Junction City, KS 66441

July 21, 1994

Gearld Resnik OAM Corporation P.O. Box 551 Findlay, OH. 45839-0551

Re: Fr. Riley Project-Job #15747.

To Whom It May Concern:

On Friday, July 15, 1994, there was 1-300 gal tank, 1-500 gal, tank and some proving brought to the Hess & Sons Salvage.

then it was out up and wold as some toon.

Clease accept this letter as a letter of destruction of all material which you brought to Hess & Sons Salvage. If you have any questions, please feel free to contact me at 1-300-825-4377 at which time I will be happy to help you in anyway I can't

Cordially, Put Hers

Rick Hess dess & Sons Salvage

APPENDIX K

RECORD OF COMMUNICATION - ROLL-OFF DISPOSAL

}

.

dex740P001 COMMUNICATION RESULT REPORT 913 239 8535 FT. RILEY DEH ENVENR 07-11-94 09:52AM TIME FILE TYPE DELAYED DESTINATION/TO:/FROM: PAGE REMARKS SIZE 07-11 09:50AM MEMORY-S TO :CEMRO FT CROOK AREA 01 0022 PHONE / TTI NO. COMM MODE RESULT NO PHONE 1 TTI NO COMM MODE RESULT DE5: CEMRO FT CROOK A GOOD Note The 2- Rolloft's From ETS IS will BR disposed @ For Jim O'Neil Construction debris Ft Crook Area Office Landfill m Thursday 7 - 21-94 DFSult AFB 4 USACE Bob Garner Janet Wade will Be on Ft Riley Env & Nort Res. Div, DEH 5170 for This Theo re: arrangements to empty roll off's our Construction / Demolition Landfill (fill give to Bob Garner when he gets here) CID Londfill Warren Joesph Margret "Argel" Hoste Her 223-1997 mobile prone

DEPARTMENT OF THE ARMY HEADQUARTERS, IST INFANTRY DIVISION IMECHI AND FORT RILEY FORT RILEY, KANSAS 66442-8000

June 23, 1994

REPLY TO

Directorate of Engineering & Housing Environmental & Natural resources Division (AFZN-DE-V)

SENT VIN FACSIHILE (6/22/94)

Mr. Tom Gross Solid Waste Management Unit Kansas Department of Health & Environment Forbes Field, Building 740 Topeka, Kansas 66620-7500

Dear Mr. Gross:

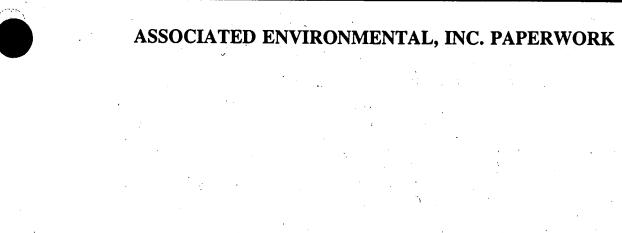
As we discussed on June 20, 1994, Fort Riley is seeking concurrence from your agency to dispose of two rolloff containers full of soil and construction debris from a sanitary sewer line repair job completed in May 1994 into the Construction/Debris Landfill at Fort Riley. The repaired line runs directly through a site referred to as Dry Cleaning Facilities (DCF) which is currently undergoing a Remedial Investigation/Feasibility Study (RI/FS) to address soils and groundwater contaminated with perchloroethylene (PCE). As requested, attached are the TCLP and lotal VOC analysis from a composite sample representing the content of the containers. Also enclosed is a figure indicating PCE contours in the area of concern. Please be aware that the sewer line lies 7 feet below grade.

Please, provide your decision on the request by June 30, 1994. If you have questions or comments, please contact Katie Watson or Debbie Hazelbeck at (913) 239-3962.

Larry/ D. Ness

Chief, Environmental Branch

Encl


Copies Furnished: KDHE (Victoria Silva) AFZN-DE-V (Janet Wade) AFZN-DE-V& (Debbie Hazelbeck) CEMRO-ED-ER (Joe Sheilds) CEMRO-CD-FC (Jim O'Neill)

Date 5 July 44 ROUTING AND TRANSMITTAL SLIP 2:30 PM TO: (Name, office symbol, room number, Initials Date building, Agency/Post) Un 3. Action File Note and Return Approval For Clearance Per Conversation As Requested For Correction Prepare Reply Circulate For Your Information See Me Comment Investigate Signature Coordination Justify REMARKS Bob Kinder, Environmental Jech with KDHE has given verbil approval to dispose of the soil and construction debris from a sanitary sewer line in the CID bandfill. No written approval will be forwarded. This approval will be forwarded. decision pertains to your letter dated DO NOT use this form as a RECORD of approvals, concurrences, disposals, clearances, and similar actions FROM: (Name, org. symbol, Agency/Post) Room No .- Bldg. Weblin Hylbech Phone No. 86 52 5041-102 OPTIONAL FORM 41 (Rev. 7-76) GPO : 1990 O - 276-978

Called Jim D'Neil, MRO 7/5/84 1600 left message

Prescribed by GSA FPMR (41 CFR) 101-11.206

APPENDIX M.

1712-1121-1121-112

11. 28 1994

ASSOCIATED ENVIRONMENTAL, INC.

701A Pecan Circle Manhattan, Kansas 66502 PHONE: (913) 776-7755 * FAX: (913) 776-9555

July 25, 1994

Jerry Resnik OHM Rémediation Services Corp. Midwest Region CS 2800 Findlay, OH 45839-2800

Re: Fort Riley, Kansas UST Removals

Dear Mr. Resnik:

Please find enclosed your copy of the Permeanent Tank Abandonment forms for the UST removal completed at Fort Riley, Kansas.

Also, please find enclosed our invoice #2005 for providing a State of Kansas UST certified person to oversee operations. Also, Associated Environmental, Inc. provided soil sample Jars which is included in the invoice.

If you have any questions, regarding either of these submittals, please contact us.

Associated Environmental, Inc. appreciates the opportunity to provide our services to you. If any other opportunities arise in which we may be of service to you in Kansas, please let us know.

Sincerely, Associated Environmental, Inc.

Dee Johnson Office Manager

		·
PERMANENT TANK A	BANDONMENT	
Submit to: Kansas Dept. of Health and Bureau of Environmental Re Underground Storage Tank S	emediation	
Forbes Field, Bldg. 740,	Popeka, Kansas 6662	20
ese Print Clearly or Type	•	
I. Tank Owner Name Fr Riley	Owner I	D.f
Address <u>Bldg</u> 1970 (street)		
(street)	(City)	(state) (Zip)
Contact Name Abdul Al-Assi	Telephone #	
II. Facility Name <u>R/da</u> 18/	Facility	
Facility Address Fort Riley		LD.#
(Street)	(city)	Geary (county)
III. Please provide information about the		(Coenty) ·
III. Please provide information about the Sec diagram on Back	tanks being taken	out of service:
A. Age of tanks (in years)		3
	- UNK UNK	UNK
B. Tank Capacity		
C. Tank Material		5000
	<u>steel</u> steel	Steel
D. Substance last stored	Unk Unk	
E. Tank Removal Date		UNK
	7/14/94 7/14/9	4 7 1 15- 194
F. Method of abandonment (please circle)	(Emcved) (Emcved	or <u>Cilled</u> or removed
G. If the tanks are filled in place, sand V cement gravel	please indicate the	material used:
If other, please specify	~	•
H. If tanks were removed, describe tank	c disposal. TANK #/	#2 cut up
for scrap - Disposal: Hess & Son's S	Sma Mdl - Trat	AL Kr
I. Who performed the site assessment as		UNY JR S.
I. Who performed the site assesment re If other, please specify	quired by law? KDHE	I_V Other
	·	
J. Were the tanks abandoned because o	of a release? yes_	по_/
K. Have these tank(s) been registered	i with KDHE? yes	no V
7. How many active tanks are there remain	ing at this facility	? Ø ct R/20 18/
. Abandonment Contractor Associated Envir	conmental, Inc /OHM	
Contact BRAD JOHNSON		913/
Certify that the tanks were abandoned	in accordence	
tate and local regulations.	m. accordance with	all federal,
- Bradlard Interson	17	holait
(signature)		10/79
/ ((cate)

÷

20

:---

. •

AUG - ? 1994

ASSOCIATED ENVIRONMENTAL, INC.

701A Pecan Circle Manhattan, Kansas 66502 PHONE: (913) 776-7755 * FAX: (913) 776-9555

August 1, 1994

Jerry Resnik OHM Remediation Services Corp. Midwest Region CS 2800 Findlay, OH 45839-2800

Re: Fort Riley, Kansas UST Removals

Dear Mr. Resnik:

Please find enclosed a copy of the sketch of the site for the Permeanent Tank Abondonment form for the UST removal completed at Fort Riley, Kansas. I sent you the original form last week but failed to copy the back side.

If you have any quesitons regarding this submittal, please contact me at 913-776-7755.

Sincerely, Associated Environmental, Inc.

har

Dee Johnson Office Manager

Custer Drive #3 Abud inplace Center: 43.5' From East end of Bldg, 9.0' North of Bldg, : Bldg, : power pole. #3. 43.5 Former Vent line locations **1100** R Several product lines About in-place BAg 181 NOT to SCALE

APPENDIX N

CATEGORY III SUBMITTALS

ŝ.

April 27, 1994

U.S. Army Corps of Engineers ATTN: Kevin Birkett P.O. Box 13287, Bldg. 527 Fairchild Hall, 3rd Floor Offutt AFB, NE 68113

RE: Sewer Line Material Specifications Contract # DACW45-89-D-0506 Delivery Order #3 OHM Job Number 15747

Dear Mr. Birkett:

Live moverial spece. Attached please find the proposed sewer $_{\Lambda}$ for the aforementioned project.

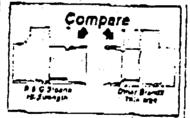

If you have any questions regarding this, feel free to call me at 419-424-4940.

Sincerely,

Resm

Gerald S. Resnik Project Manager

pc: Jim Darnall Project 15747



Benefits of GSR Hi-Strength Schedule 80 Fittings and Pipe • Available in PVC and CPVC.

- PVC handles temperatures to
 140°F
- CPVC handles temperatures
 to 210°F.
- Stronger performance
- High chemical and corresion resistance.
- · Lower installed cost.
- Meintenance free internal and external sylfaces.

Stronger Fittings

The GSR Hi-Strength Schedule 80 fitting design puts extra material at the points of greatest stress concentration. Duick burst and long term lesis show most tee and elbow fallres occur in the croten area to side waits. Conversely, little no stress occurs in the socket utils since these areas are reinforced by the pipe inside them. Thus, by thickening the croten

and alde walls (as shown in the diagram) the ability of the fixing to withstand pressure is substantially improved.

In fact, quick burst lests reveal GSR Hi-Strength Schadula 30 fittings are at least 10% stronger than conventionally designed tees, 6 8% stronger than conventionally designed ells and 5.7% atronger than conventionally designed oouplings

Outstanding Chemical Resistance

PVC and CPVC thermopiastics are highly resistant to acids, alkalls, alcohols and many other corrosive materials. Both materia als are ideal for process ploing installation and most service piping applications.

CPVC Offers Higher Temperature Rating

Engineers and contractors can now specify GSR Schedule 80 fittings and pipe made from CPVC high temperature thermoplastic. CPVC is capable of handling water supplies, hot water and process piping applications at any temperature up to 210°F.

Higher Flow Bating

Smooth Interior walls result in lower pressure loss and higher volume. (Hazan Wililams C Factor = 150)

Maintenance Free Service

CPVC and PVC thermoclastics will not rust, scale, pit or corrode, not are they subject to electrolysis. You are assured many years of leak-free maintenance-free service. For buried applications, CPVC and PVC are not affected by soil conditions. Painting is not required for Indoor non-exposed instaliations. For outdoor, sunlight exposed installations, painting with two coals of while colored water base latex paint provides added protection.

Lower installed Cost

Both PVC and CPVC have installed costs which are substantially lower than with stee alloys or lined steel and are competitive with carbon steel Solvent cemented connections contribute to lower installed costs. The much lighter weight (about one-sixth as much as steel) speeds and simplifies handling during installation.

Versatility and Dependability

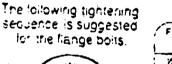
PVC and CPVC fittings and pipe have been found suitable for more than 50% of the corrosive and non-corrosive applications within the chemical process industry.

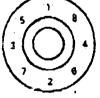
INSTALLATION INFORMATION

RECOMMENDATIONS FOR INSTALLERS AND USERS:

Plastic piping systems should be ENGINEERED, INSTALLED, and OPERATED in accordance with ESTAB-LISHED DESIGN AND ENGINEERING STANDARDS AND PROCEDURES for plastic piping systems Suitability for the intended service application should be determined prior to installation

SOLVENT WELD CONNECTIONS — Use a quality grade of primer and solvent cement formulated for the type of connection, with the CORRECT SIZE APPLICATOR. Read and follow all of the solvent cement MANUFACTURER'S APPLICATION INSTRUCTIONS.


THREADED CONNECTIONS — Spears Manufacturing Company recommends the use of a quality grade Tellon tape. Choice of either Tellon tape, paste, or other pipe joint compound is at the discretion of the installer. The manufacturer's literature for these products should be reviewed for proper selection and application procedures WARNING: SOME PIPE JOINT COMPOUNDS OR TEFLON PASTES MAY CONTAIN SUBSTANCES THAT COULD CAUSE STRESS CRACKING TO PLASTIC.


T to 2 turns beyond FINGER TIGHT is generally all that is required to make a sound plastic threaded connection Unnecessary OVERTIGHTENING will cause DAMAGE TO BOTH PIPE AND FITTING.

FLANGE MAKE-UP-Once a flange is joined to pipe, the method for joining two flanges is as follows

- A. Piping runs joined to the flanges must be installed in a straight line position to the flange to avoid stress at the flange due to misalignment. Piping must also be secured to prevent lateral movement which can create stress and damage the flange.
- B. Align the bolt holes of the mating flanges by rotating the ring into position.
- C. Insert all bolts.
- D. Make sure the faces of the mating surfaces are not separated by excessive distance prior to bolting down the flanges.
- E Tighten the bolts on the plastic flanges by pulling down the nuts d'ametrically opposite each other using a torque wrench. Tighten bolts according to sequence shown in diagram. Completed tightening should be accomplished in stages and the final torque values followed according to the size of the flange. See torque chart for recommended torque. Uniform pressure across the flange will eliminate leaky gaskets.

CAUTION: UNNECESSARY OVERTORQUING WILL DAMAGE THE FLANGE

FLANGE SIZE	RECOMMENDED TORQUE
8-1%	10-15 Ft. Lbs
2-4	20-30 Ft. Lbs.
-8 ** [33-50 Ft. Lbe.
0	53-75 Ft. Lba
2	80-110 Ft. Lbs.

Bolts and Gaskets are not furnished.

LANGE SIZE	BOLT HOLES	BOLT LENGT			
5	4	*	2'1		
1.	4	1 3	2.4		
1		7	25,		
1.2	4	~	2.0		
1/2		<u> </u>	3.0		
2		1 b ₁	3 9		
2%	4	5 4	371		
1		<u>h</u>	3/2		
		7	3%		
			40		
_		10	12		
	1	26	S.C		
10	- 2		5%		
12	12 /	. n	5%		

Based on use plaws has wesner \$ and in Thick Gesket

NORMALLY A NEOPRENE FULL FACE GASKET, 14" THICK, IS RECOMMENDED MORE RESISTANT GASKET MATERIALS SHOULD BE USED ON SYSTEMS HANDLING HIGHLY AGGRESSIVE CHEMICALS

IMPORTANT

WATER HAMMER - Spears Manufacturing Company, Inc., recommends that all PVC and CPVC plastic piping systems be designed and constructed to AVOID EXCESSIVE WATER HAMMER, Water hammer can cause damage, and failure to pipe, valves, and fittings within the piping system.

Spears Manufacturing Company DOES NOT RECOMMEND the use of thermoplastic piping products for systems to transport or store compressed air or gases, or the testing of thermoplastic piping systems with compressed air or gases in above and below ground locations. The use of our product in exposed, compressed air or gas systems automatically voids our warranty for such products and its use against our recommendation is entirely the responsibility and liability of the installer.

Spears Manufacturing Company will not accept responsibility for damage or impairment of its products, at other

P. 05

SCHEDULE 80 PVC & CPVC

DIMENSIONAL AND WEIGHT DATA (For CPVC weights multiply by 1.1

CC	DUPLIN	1 G FIG 82							
		SIS			FIG 8	30 T			
SIZE	SIZE	L	L	м	1 N		WEIGHT - LOS.		
1/6	1000		THREAD		1	FIG. 829	FIG. 833		
¥, ¥,	002	1%	715/16	27/12	14	0.022	0.023		
1/2 1/2	005	15%	115/22	7.0	1/	0.033	0.035		
'z 3/4	007	127/32	119/22	11/32	3/32	0.047	0.065		
1	010	2%	123/32	11/2	4/32	0.096	0.086		
14	012	21/4	-21/46	11-1/16	3/32	0.150	0.145		
1 1/2	015	21%32	21/32	24,	3/32	0.227	0.218		
2	020	2% 3%	21/2	21/2	3/15	0.303	0.261		
21/2	025	313/76	3.0	3.0	7/18	0.423	0.342		
	030	41/32	311/32	33/4	74	0.641	0.675		
L	040	5%1e	315/12	43/18	1/4	0.829	0.958		
5	060	6%	32152	423/32	1/4	1.416	1.468		
3	080	83%	_	721/32	1/4	3.412			
		<u> </u>	~	91/4	¥4	6.640	· 		

	DUCING UPLING	F1	- N G 829-1 S x S		
SIZE	SIZE CODE	M	N	6	WEIGHT
%x½ 1x¾ 1¼x1	101 131 168	1 5/32 1 1 3/22 1 4	1 ¥ 1 23/32 2 ¥/32	1 ³¹ / ₃₂ 2 ¹¹ / ₃₂ 2 ¹¹ / ₁₆	0.064 0.101 0.176

SIDENER SUPPLY CO (KC) HYK-21-94 WED 14:27 84/13/1994 16:82

FAX NO. 9134695825

Selection Data - Hi-Strength Schedule 80 - PVC & CPVC Fittings

Physical & Thermal Pr		
	PVC	CPVC
Specific Gravity	1.4	.1.54
Izod Impact Strength (IL beinch of notch)	0.8	1.7
Tenslia Modulus, psi	4.2 x 104	4.23 × 10
Ultimate Tensile Strength, psi	7200	8000
Working Stress @ 73°F, psi	2000	2000
Working Stress at Upper Temperature Limit	440	320
Upper Temperature Limit	140°F	210°F
Hazen Williams "C" Factor	150	150
Coefficient of Unear Expansion 10*IN/N*F	3.0	3.8
Thermal Conductivity BTU/http://mPF	1.10	.96
B		

Flammability - Burns only when in contact with ignition isource.

Compressed Air or Gases

R & G Sisane strongly recommends against testing assembled PVC or CPVC piping systems with compressed air or Ler compressed gases and against using FVC or CPVC ns for distribution of compressed air or gases.

Chemical Resistance of PVC and CPVC Weak acida Resistant Strong adda Resistant in most situations Weak bases Resident Strong bases Resistant Solvents Resiste electrole, allohiatic hydrocarbone and oils. Soluble or swells in ketones and eatars. Swells in aromatics. Halogens. Attacked by elemental halogans, Resists water solutions.

Sample Specification Schedule 80 Pressure Fittings and Pipe

Schedule 80 (PVC) (CPVC) pressure finings shall be manufactured by R & G Sloane, shall be made of (PVC 12454-B)(CPVC 23447-B) or better and shall contorm to the regulramants of (PVC - ASTM D 2484, threaded type and ASTM D 2487, solvent cemented type)[CPVC - ASTM F 441; ASTM F 437. threaded type; and ASTM-F 439, solvent coment type) except that the socket type fittings and the socket wat thickness over the threads of threaded type fittings shall be at least 100% of the wall of the equivalent size of Schodule 80 pipe and except that the body wall thickness shall be 125% of the wall of the equivalent Schedule 60 pipe. All Internal tapped threads shall be machined to the requirements of ANSI/ASME B1.201.

Dersting factor for service temperature

Dimension ratio (DA)

Praise Pressure rating at 73"F

Solvent Welded Pressure Rating vs. Service Temperature - CPVC and PVC

1				P														
					9	-	1004	1104	17	97	18		14	3₹	1104	1204	227	2127
	P		- 0	PVC	CPVC	PVC	FYC	PVC	PYS	CAVE	XC	CAAC	PYC	CPYS	CPYC	LPVC	CPVC	C'NC
Non.	0.taida Die	Web	DR L	laf ¢ mar	fe1	145,78	:+1.42	0£9=1	1=0.40	1=0.65	140.30.	1aC.57	(-6.2)	1-6.30	1=0.40	1.0 23	100.20	f#2 18 *
				\$-2000	1.7.00	F=1500	101240	1-1000	1160	1-1300	3-100	111125	5=44	1=1000	84400	8.500	9,400	9 - 320
i X	.840	.147	5.714	648	848	638	528	424	339	85Z	255	484	187	424	338	212	170	134
×	1.050	.154	6.818	688	. 684	518	428	344	275	447	208	382	151	344	275	172	138	110
•	1.315	.179	7.345	630	630	473	393	315	252	410	189	358	139	318	252	158	128	101
1.13.	1 660	.191	8 891	520	520	390	322	260	. 208	338	156	296	114	260	208	130	104	83
13	1,900	.200	9.500	471	471	353	292	235	188	308	141	258	104	235	185	118	94	75
2	2.378	2:8	10.894	404	4:74	303	251	202	162	263	121	230	89	202	162	101	81	85
24	2.875	.276	10,417	425	425	319	263	212	170	276	127	242	93	212	170	105	85	68
2	3 500	.300	11.667	378	375	281	293	158	150	244	113	214	83 1	188	150		75	60
	4.500	337	13.359	324	324	243	201	162	130	210	97	185	71	162	130	81	65	62
6	6.625	A32	15.356	279	279	209	173	140	132	181	84	159	5	140	112	70	50	
8	8.625	ഛ	17.250	248	248	185	153	123	58	160	74	-140	54	123	28	62	49	45
Pa	251	_25	_ eP,						<u> </u>	i	Pica w	all thick		l				

b.t DR-1

Pressure rating of pipe at astvice tompetatures (psi)

Hydroatatic design atracs (osl)

P Outside diameter of pipe (inches)

1.) Found for produce rating at 73"F are rounded of from actual calculated values. Preasure ratings for other temporatures are calculated from 73"F values Pressure rating values are for PVC(12454-B) and CPVC(23447-B) pipe and for mast size; are calculated from the experimentally determined iong term strangth of PVC1 and CPVC extinution compounds. Because molding compounds may differ in long term strength and elevated temperature proportion from pipe compounds, piping systems consisting of autouded pipe and molded fittings may have lower preasure ratings tian those shown here, particularly at the higher temperatures. Caution should be exercised when designing PVC systems operating above 100"F and CPVC systems operating above 180"F.

DR

3.) The pressure ratings phon are for earlying combined systems. When adding verses, figniges or other componiants, the system must be dorated and the rating of the rating of the transmission of the rating of the transmission of the ratio of score interview assertion. Received at the of score interview assertion, flags. are 150 pal: for valves, see manufacturars recommendation.) Frank States and States and States and

A & G SLOANE

Los Angeles - Factory, Customer MANUFACTURING CO., INC- Bury Comer and General Offices Cleveland - Fastory and Sales Office

FAX NO. 9134695825

P. 05

DIMENSIONAL AND WEIGHT DATA (For CPVC weights multiply by 1.1,

co	UPLIN	FIG 82 S x S	- M -		FiG. 8	30	
SIZE	SIZE	L	THREAD	M	N	WEIGH	T - L85.
$\frac{1}{4}$ $\frac{3}{4}$ $\frac{1}{2}$ $\frac{3}{4}$ $\frac{1}{1}$ $\frac{1}{4}$ $\frac{1}{4}$ $\frac{1}{2}$ $\frac{2}{2}$ $\frac{1}{2}$ $\frac{3}{4}$ $\frac{3}{4}$ $\frac{3}{4}$ $\frac{1}{2}$ $\frac{1}$	002 003 005 007 010 012 015 020 025 030 040 060 080	13/8 15/6 127/52 21/6 27/4 218/32 27/4 31/4 313/16 47/52 55/16 61/6 83/8	$ \begin{array}{c} 1^{15/16} \\ 1^{15/16} \\ 1^{15/22} \\ 1^{23/32} \\ \cdot 2^{1/46} \\ 2^{7/32} \\ 2^{1/2} \\ 3.0 \\ 3^{11/32} \\ 3^{15/32} \\ 3^{21/32} \\ 3^{21/32} \\ \end{array} $	$\begin{array}{c} 27/32\\ 1.0\\ 17/32\\ 11/2\\ 11/2\\ 3.1/2\\ 3.0\\ 35/2\\ 43/16\\ 4^{23}/32\\ 7^{21}/32\\ 3^{1}/2\\$	$ \begin{array}{c} 1/6 \\ 1/6 \\ 3/32 \\ 3/32 \\ 3/32 \\ 3/32 \\ 3/32 \\ 3/35 \\ 3/16 \\ 3/16 \\ 3/16 \\ 1/4 \\ 1$	FIG. 829 0.022 0.033 0.047 0.096 0.150 0.227 0.303 0.423 0.641 0.829 1.416 3.412 6.640	FIG. 835 0.023 0.035 0.065 0.086 0.145 0.218 0.261 0.342 0.675 0.958 1.468

RE CO	DUCING	FI	- N G 829-1 S x S 1		
SIZE	SIZE CODE	M	N		WEIGHT
⁵ ⁄4X ¹ ⁄2 1X ⁵ ⁄4 11⁄4X1	101 131 168 212	1 5/32 1 3/32 1 3/4 2 3/32	13/4 123/32 23/32 23/6	$ \begin{array}{c} 1^{31}/_{32} \\ 2^{11}/_{32} \\ 2^{11}/_{16} \\ 2^{3}/_{6} \end{array} $	0.064 0.101 0.176 0.211

84/13/1994 16:82

LI UT MED 14-CT

SIDENER SUPPLY CO (KC)

FAX NO. 9134695825

F. 02 PAGE 11

Selection Data – Hi-Strength Schedule 80¹¹ PVC & CPVC Fittings

1 2.2

an a same from a second	
operties	
PVC	CPVC
1.4	.1.54
0.8	1.7
4.2 x 104	4.23 x 10°
	8000
2000	2000
440	320
140°F	210°F
150	150
3.0	3.8
1.10	.96
	1.4 0.8 4.2 x 10 ⁴ 7200 2000 440 140°F 150 3.0

Flammsbility - Burns only when in contact with ignition source.

Compressed Air or Gases

R & G Sleane strongly recommends against testing easembled PVC or CPVC piping systems with compressed air or other compressed gases and against using FVC or CPVC stems for distribution of compressed air or gases.

Chemical R	esistance of PVC and CPVC	
Weak acids	Resistant	
Strong adds	Resistent in most situations	
Weak bases	Resistant	
Strong bases	Resistant	
Solvents	Assists elsonols, allphiatic hydrocarbons and oils. Soluble or swells in ketones and eators. Swells in aromatics.	
Halógens	Affacked by elemental halogans, Resists — water solutions.	

State of the second Sample Specification Schedule 80 Pressure Fittings and Pipe

Schedule 80 (PVC) (CPVC) pressure fmings_shall be manufactured by R & G Sloane, shall be made of (PVC 12454-B)(CPVC 23447-B) or better and shall contorm to the regulraments of (PVC - ASTM D 2484, threaded type and ASTM D 2487, solvent cemented type)(CPVC - ASTM F 441; ASTM F 437 threaded type; and ASTM-F 439, solvent cement type) except that the socket type fittings and the socket wall thickness over the threads of threaded type fittings shall be at least 100% of the wall of the equivalent size of Schodule 80 pipe and except that the body wall thickness shall be 125% of the wall of the equivalent Schedule 80 pipe. All Internal tapped threads shall be machined to the regultements of ANSI/ASME B1.201

Solvent Welded Pressure Rating vs. Service Temperature - CPVC and PVC

.	1		1	L	_					•								
		1			4	10 7	1004	3104		95	134	*	14	0 ₹	inf	1207	227	213-5
Nort.	Dinalda Dia	¥s]	DR . D	PvC 1=1 5=2000	CPVC 1+1 8+200	PVG 145,78 8+1500	FYC 1=5.82 \$01240	PVC 1=0.50 \$=1000	PYC 1=0.40 \$+ \$00	CAVC 1+0.65 8=1300	PVC 140.30	CPVC 140.57 \$=1123	PVC (=6.23 S=440	CPYC 1=6.30 8=1000	CPVC 1=0.40	CPVC 1=0.28 Su 500	CPYC 100.20	CPVC 1+E 14 6+320
Ä	.840	.347	5.714	848	848.	638	528	424	339	862	255	1 484	187	424	338	212	170	136
X	1.050	.154	-6.818	683	588	518	426	344	275	447	208	382	151	344	275	172	138	110
	1.315	.179	7.345	630	630	473	390	315	252	410	189	358	139	318-	252	158	128	101
13	1.660	.191	8.691	520	520	390	322	260	208	338	156	296	114	260	208	130	104	83
13	1,900	.200	9.500	471	471	353	292	235	168	308	741	258	104	235	188	118	94	75
2	2.375	218	10.894	404	4:74	303	251	202	162	263	121	230	89	202	162	101	81	85
24	2.875		10,417	425	425	318	263	212	170	276	127	242	93	212	170	106	85	68
	3.500	.300	11.667	375	375	261	293	198	150	244	113	214	83	188	150	94	75	60
4	4.500	.337	13.353	324	324	243	201	162	130	210	97	185	71	162	130	81	65	62
р В	6.625	A32	15.336	279	278	209	173	- 140	152	181 .	84	159	61	140	112	70	60	45
	8.625	.600	17.250	248	248	185	153	123	98	160	74	14D	- 54	123	28	62	49	39
Ρ.	251 D-t	25	- = P7	3.01	J				1		Pipa m	1 19 (hickr	:ess (In	ches)	ł			

P	•	251 D-t	Ŧ	<u>25</u> 08-1	= P73 p1
•	_	6			

Pressure rating of pipe at aervice temperatures (psi)

- Hydroatatic design stress (psl)

= Outside diameter of pipe (Inches)

1.) Fourse for pressure rating at 73°F are rounded of from actual calculated values. Pressure ratings for other temperatures are calculated from 73°F values. 2.) Pressure rating values are for PVC(12454-B) and CPVC(23-147-B) pipe and for most sizes are calculated from the experimentally determined iong term strength of PVC1 and CPVC extrusion compounds. Because molding compounds may differ in long term strength and elevated temperature proporties from the compounds, plping systems consisting of estinated pipe and molded littings may have lower pressure ratings All those shown here, particularly at the higher temperatures. Caution should be exercised when designing PVC systems operating above OO"F and CPVC systems openating above 180"F.

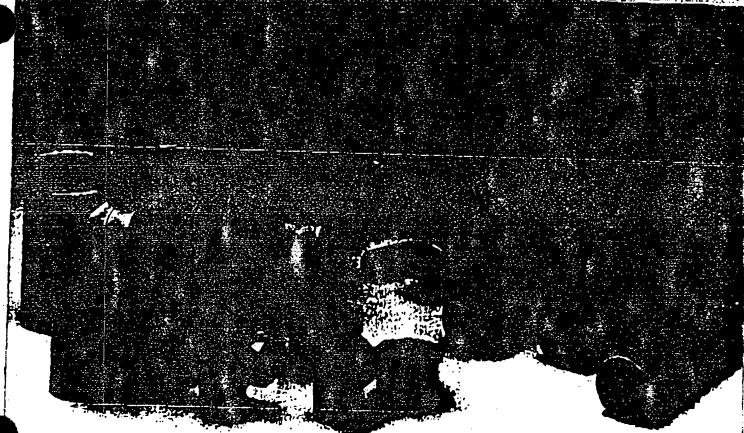
DR

The pressure ratings given are for extremined systems. When adding values, flanges or other components, the system must be derated to the rating of the pressure rating of the pressure ratinger, molded or out through an adding the systems. All the pressure rating at the pressure rating of the pressure of the pressure rating of the pressure rat are 150 pel: for valves, are manufacturar's recommendation.)

R & G SLOANE Lon Angeles - Factory, Customer

MANUFACTURING CO., INC- Starting Commer and General Offices

Cleveland - Factory and Sales Office


- Derating factor for service temperature

= Dimension retip (DA)

P73*# Prissure rating at 73*F

P. 03

Hi-Strength Schedule 80" Fittings and Pipe

Benefits of GSR Hi-Strength Schedule 80 Fittings and Pipe

- · Available in PVC and CPVC.
- PVC handles temperatures to 140°F
- CPVC handles temperatures
 to 210°F.
- * Stronger performance.
- · High chemical and corresion resistance.
- Lower installed cost.
- Meintenance free internal and external surfaces.

Stronger Fittings

The GSR Hi-Strength Schedule 80 fitting design puts extra material at the points of greatest stress concentration. Ould burst and long term tests show most tee and elbow fallres occur in the croten area side waits. Conversely, little o stress occurs in the socket while since these areas are reinforced by the pipe infilde them. Thus, by thickening the croten

Cor	npare
A & G 2isene Hi Sumeyin	

and alde walls (as shown in the diagram) the ability of the fitting to withstand pressure is substantially improved.

In fact, quick burst tests reveal GSR HI-Strength Schedule 80 fittings are at least 10% stronger than conventionally designed tees, 6.9% stronger than conventionally designed ells and 5.7% stronger than conventionally designed couplings

Outstanding Chemical Resistance

PVC and CPVC thermopiastics are highly resistant to acids, alkalls, alcohois and many other corrosive materials. Both materia ats are ideal for process plping installation and most service piping applications.

CPVC Offers Higher Temperature Rating

Engineers and contractors can now specify GSR Schedule 80 fittings and pipe made from CPVC high temperature thermoplastic. CPVC is capable of hanoling water supplies, hot water and process piping applications at any temperature up to 210°F.

Higher Flow Rating

Smooth Interior walls result in iower pressure Icas and higher volume. (Hazan Wijilame C. Factor = 150)

Maintenance Free Service

CPVC and PVC thermoptastics will not rust, scale, pit or corrode, not are they subject to electrolysis. You are assured many years of leak-free muintenance-free service. For buried applications. CPVC and PVC are not affected by soil conditions. Painting is not required for indoor non-exposed installations. For outdoor, sunlight exposed installations, painting with two coats of white colored water base latex paint provides added protection.

Lower installed Cost

Both PVC and CPVC have installed costs which are substantially lower than with steealloys of lined steel and are competitive with cerbon steel. Solvent cemented connections contribute to lower installed costs. The much lighter weight (about one-sixth as much as steel) speeds and simplifies handling during installation.

Versatility and Dependability

PVC and CPVC fittings and pipe have been found suitable for more than 50% of the cortosive and non-corrosive applications within the chemical process Industry.

R&G

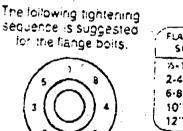
FAX NO. 9134695825

INSTALLATION INFORMATION

RECOMMENDATIONS FOR INSTALLERS AND USERS:

Plastic piping systems should be ENGINEERED, INSTALLED, and OPERATED in accordance with ESTAB-LISHED DESIGN AND ENGINEERING STANDARDS AND PROCEDURES for plastic piping systems Suitability for the intended service application should be determined prior to installation

SOLVENT WELD CONNECTIONS - Use a quality grade of primer and solvent cement formulated for the type of connection, with the CORRECT SIZE APPLICATOR. Read and follow all of the solvent cement MANUFACTURER'S APPLICATION INSTRUCTIONS.


THREADED CONNECTIONS - Spears Manufacturing Company recommends the use of a quality grade Tellon . tape. Choice of either Tetion tape, paste, or other pipe joint compound is at the discretion of the installer. The manufacturer's literature for these products should be reviewed for proper selection and application procedures WARNING: SOME PIPE JOINT COMPOUNDS OR TEFLON PASTES MAY CONTAIN SUBSTANCES THAT COULD CAUSE STRESS CRACKING TO PLASTIC.

1 to 2 turns beyond FINGER TIGHT is generally all that is required to make a sound plastic threaded connection Unriecessary OVERTIGHTENING will cause DAMAGE TO BOTH PIPE AND FITTING.

FLANGE MAKE-UP - Once a flange is joined to pipe, the method for joining two flanges is as follows

- A. Piping runs joined to the flanges must be installed in a straight line position to the flange to avoid stress at the flange due to misalignment. Piping must also be secured to prevent lateral movement which can create stress and damage the flange.
- B. Align the bolt holes of the mating flanges by rotating the ring into position.
- C. Insert all bolts.
- D. Make sure the faces of the mating surfaces are not separated by excessive distance prior to bolting down the
- E. Tighten the bolts on the plastic flanges by pulling down the nuts d'ametrically opposite each other using a torque wrench. Tighteri bolts according to sequence shown in diagram. Completed tightening should be accomplished in stages and the final torque values followed according to the size of the flange. See torque chart for recommended torque. Uniform pressure across the flange will eliminate leaky gaskets

CAUTION: UNNECESSARY OVERTORQUING WILL DAMAGE THE FLANGE

SIZE	AECOMMENDED TORQUE
-1%	10-15 Ft. Lbs.
4	20-30 Ft. Lbs.
8''	33-50 Ft. Lbs.
)	53-75 Ft. Lbs.
2"	80-110 Ft. Lbs.

Bolts and Gaskets are not furnished.

FLANGE SIZE	HOLES	BOLT DIAMETER	BOLT LENGT
	4	~	21/1
14	4	1 1/2	2.7
		1	27,
11/2	4	~ ~	2',,
12	4	Y1	3.0
_2		\$1	3.5
2%	4	1. T.	3/1
3	7	- 3	3/2
		34	3%
	8	5/0	4.0
		····	
	8	3/6	S.C.
10	:2	14	5%
12	12	1	5%

Based on use of two has washers and to Thick Gasket

NORMALLY A NEOPRENE FULL FACE GASKET, 16" THICK, IS RECOMMENDED MORE RESISTANT GASKET MATERIALS SHOULD BE USED ON SYSTEMS HANDLING HIGHLY AGGRESSIVE CHEMICALS.

IMPORTANT

WATER HAMMER --- Spears Manufacturing Company, Inc., recommends that all PVC and CPVC plastic piping systems be designed and constructed to AVOID EXCESSIVE WATER HAMMER, Water hammer can cause amage, and failure to pipe, valves, and fittings within the piping system.

pears Manufacturing Company DOES NOT RECOMMEND the use of thermoplastic piping products for systems to transport or store compressed air or gases, or the testing of thermoplastic piping systems with compressed air or gases in above and below ground locations. The use of our product in exposed, compressed air or gas systems automatically voids our warranty for such products and its use against our recommandation is entirely the responsibility and liability of the installer.

Spears Manufacturing Company will not accept responsibility for damageor impairment of its products, or other

8

South States of

ĈORPS OF ENGINEERS EN CERING REVIEW COMMENTS

 $\sim \infty$

Section	Item Number	Corps Comments	OHM's Response	Comment Action
Comments by: K	Catie Watso	n and Mike Goreham		NAMES OF STREET
	1	Title could be a little more specific, such as Sewer Line Repair at Former Dry Cleaning Facility. (MG and KW)	The title has been changed.	А
Page 1-1, para. 1.1	2	Site history could provide details about why the line replacement was being made. Explain the lost sandbag and efforts to clean the pipe using a -et truck. (MG) (Fort Riley has provided this information as an enclosure.	The comment has been noted. The line was being replaced, because it was blocked. Fort Riley has not provided information relative to a lost sandbag or -et truck.	Α
Page 1-1, para 1-1	3	Indicate the potential contaminant of concern in soil. (MG)	The text has been changed.	А
Page 1-1	4	It would be beneficial to include in the site history that Fort Riley is on the NPL list.	The text has been changed.	Α
Section 1.1., 3rd line	5	The sewer line is currently being used, not formerly used. Please revise.	The text has been revised.	A
Page 2-2, para 2.4	6	Describe what was found when pipe was excavated (i.e. there was no apparent connection between the pipe and the manhole and that the inlet at the bottom of the manhole was not a drop inlet for the pipe being replaced. (MG) This discussion would be appropriate in 3.3.2.	The text has been changed.	A
Page 2-2, para 2.4	7	Describe the specific observation of a large void under the concrete. This is documented in Appendix D, Daily Report for 5/1/94. (MG)	The text has been changed.	Α

tion	Item Number	Corps Comments	OHM's Response	Comment Action
Page 2-2, para. 2.4	8	All construction debris was taken to the C/D landfill, not the Custer Hill Landfill. Revise throughout document. (MG)	The text has been changed.	Α
Page 2-3, para 2.6	9	Discuss the unexpected settlement of the fill after a rainfall. Also, indicate what caused the void and how it was dealt with. (MG)	The text has been changed.	Α
DWG 15747A20	10	 Provide a site map that includes the following: a. building 183, b. all of the storm and sanitary sewer lines and the area showing at least one manhole in each direction (or in the event of the storm sewer, where it daylights), c. label manholes with manhole number, d. show flow direction of storm and sanitary sewer lines, e. the storm sewer does not run to the sanitary sewer manhole, as the drawing indicates, f. indicate where the 2' x 2' grate flows to. This information is pertinent to understanding what was happening in this area. (MG) 	 a. DWG 15747A20 has been modified. b. Figure 2.3, provided by Fort Riley, has been added. c. Labels have been added. d. DWG 15747A20 has been modified. e. DWG 15747A20 has been modified. f. DWG 15747A20 has been modified. 	A
DWG 15747A1	11	Revise so that it is easier to see how where the green storm pipe was placed in relation to the sanitary sewer. (MG)	DWG 15747A1 has been revised.	Α
Section 2.3	12 	Diversion of the water is not mentioned as part of the site prep/teardown. Please include. Also include the problems encountered during diversion (i.e. water backing up in MH #363A)	Section 2.4 has been revised.	A

er syree er

•••••

1 (1989) - B

.

S	Item Number	Corps Comments	OHM's Response	Action
Section 2.3, para. 3	13	Please include purpose of the air monitoring/ meteorological station.	To provide support to the U.S. Army Corps of Engineers Kansas City District in their site investigation and subsequent preparation of a baseline risk, OHM used the air monitoring/ meteorological station.	A
			The text has been revised in Section 2.7.	
Section 2.4, para. 1	14	Indicate if there were any ancillary soils disposed with the construction debris.	The text has been revised.	A
Section 2.4, para. 3	15	Include what the "action limits that had been previously established for this site" were.	The text has been revised.	A
Section 2.4, para. 4	16	In addition to the damaged 18-inch storm sewer line (not sanitary storm sewer), please discuss the 8-inch clay pipe that was damaged, and upon consultation with DEH personnel, OHM was told that the line was abandoned, therefore it was not fixed. The line was indeed active and DEH replaced the line in June/July 1994, by connecting it the 18" green PVC placed by OHM. Full discussion of this information belongs in Section 3.3.2, but mention it here, also.	The text has been revised.	Α
Section 2.6		Indicate that excavated soils were placed into the hole as backfill. Minimal compaction was performed, and it settled into voids under the concrete after a rain event, therefore gravel had to be brought in.	The text has been revised.	Α

S	Item Number	Corps Comments	OHM's Response	hment
Section 2.7 and throughout	18	The material containerized in the roll-offs was disposed of in the Fort Riley's active construction debris landfill. The small amount of hazardous waste generated from cleaning out manhole 363B was disposed through Fort Riley's Defense Reutilization and Marketing Office (DRMO). Please revise all references to T&D of hazardous waste.	The text has been revised.	Action
Figure 2.1	19	 Differentiate between storm and sanitary sewer lines. The storm line does not enter the manhole. Indicate the storm line running E-W. Include legend. Indicate how much of the storm line was replaced. 	The figure has been revised.	A
Figure 2.2	20	Needs a lot of work.	The comment has been noted.	A
Section 3.1.1, para. 1	21	Indicate date of work plans.	The text has been revised.	A
Section 3.3.2	22	Indicate if any ancillary soils were generated from the asphalt removal.	The text has been revised.	Α
Section 3.3.2, para. 4	23	Include analysis from roll-offs.	Refer to appendices and table. The text has been revised.	Α
Section 3.3.2, para. 5	24	The manhole materials were placed in a 10 gallon drum which was placed in a 55 gallon drum after it was damaged by another contractor. Subsequently, it was disposed of through DRMO.	The text has been revised.	Α

s hard	Item Number	Corps Comments	OliM's Response	Action
Section 3.3.2, para. 6	25	Indicate who "mutually assumed" the soil classification. Also, Fort Riley provided soil classification data from the area (See Daily Quality Control Reports dated 4/25/94). Also, shoring was 1.5 inches thick.	The text has been revised.	A
Page 3-5, para. 3.3.2		Discuss how soils were compacted. Describe and explain the sudden settlement and void in the filled trench. Also, discuss the other storm line which was damaged and thought to be abandoned, plus the storm water problems which occurred after this work. DEH has subsequently replaced the damaged line by connecting it to the 18 inch green PVC which OHM replaced. (MG)		
Page 3-5, para. 3.3.2	26	The last sentence states the asphalt removed was replaced. Earlier it was stated it was hauled to the C/D landfill. Please indicate that Custer Avenue was patched with new asphalt. (MG)	The text has been revised.	Α
Page 3-5, <u>Inspection,</u> para. 1	27	Indicate criteria for "successfully passing" the USACE inspection. Also, include why the backfill received minimal compaction (to aid our soil vapor extraction efforts). Gravel was also used as backfill.	The text has been revised.	A
Section 4.0	28	Discussion of the contractor's management of the sub-contractors and equipment/material procurement does not seem necessary or appropriate for inclusion in this report.	The section has been deleted.	A

1.10000

• *

. . .

 $g \in \{1, 2, \dots, n\}$

Sec	Item Number	Corps Comments	OHM's Response	Action
Page 4-1, last para.	29	Please include copies of the mentioned corrective action plans, or further clarify the purpose of them/what situations warranted them.	The section has been deleted.	Α
Section 6.0	30	There are no conclusions or recommendations concerning the large void discovered, lack of connection between the pipe and manhole, settlement problem, etc. The association of this discussion with the site is questionable. Please clarify and add discussion of conclusions on why the line was in such bad shape and recommendation on maintenance of the line and how the life of the line may be augmented.	The text has been revised.	Α
Appendix A, page 1-1, para. 1.2	31	Sewer line did not carry solvents. This was a sanitary sewer line that carried wash water from the laundry and dry cleaning plant. Wash water was contaminated with solvents. Please revise. (MG)	The comment has been noted.	Α
Appendix A, page 1-1, para. 1.3	32	The upper manhole (MH #365) was in Custer Ave., the lower manhole (MH #363) was in building 180 parking lot. (MG)	The comment has been noted.	Α
Appendix A, Page 1-2	33	Please include a site map that shows building 180/181 and 183. (MG)	The figures in the body of the text have been revised.	Α
Appendix G	34	Provide a caption for each photograph. Explain what photos 13-15 show. (MG)	Photos have been labeled.	Α
Comments by: Jo	oe Shields			· ·
Cover	1	This project was titled: Rapid Response Replacement of Sanitary Sewer Line, Building 180-183. Please put this title on the cover page. Also include the location: Fort Riley, Kansas.	The title have been revised.	A

Ć

	Item Number	Corps Comments	OHM's Response	mment: Action
Section 2.0	2	Refer to the Final SOW, not to the Draft SOW.	The text has been revised.	Α
Section 2.2	3	List personnel and equipment used, and their respective mobe/demobe locations. For personnel, also list job titles.	The text has been revised.	Α
Figure 2.2	4	I am not familiar with the term "Altitude Flow Line." Please remove and give the invest elevation. Change to Inv. Elv.	Figure 2.2 has been revised.	Α
Figure 2.2	5	The figure shows the elevation drop in the lower manhole being accomplished through a vertical section of PVC pipe located in the interior of the manhole. This method is not industry standard practice. Is this figure accurate? If so, why was the drop located in the interior of the manhole. If not, please revise the figure. Attached is a figure showing a typical drop manhole. NOTE: Replaced as in the field.	The figure is accurate, and the replacement sewer line was installed in the same manner as the old sewer line.	Α
Section 3.2.2, page 3-4	6	Define "LWD."	The text has been rewritten.	Α
Section 3.3.2, page 3-5	7	Your assumption that a leakage test was not required because PVC pipe was used instead of vitrified clay pipe is wrong.	The text has been rewritten.	Α
General	8	Include results of compaction tests, graduation and proctor for select granular fill and state how many compaction tests were accomplished, where, and the method used.	The text has been rewritten. Compaction tests were not completed per the direction of the USACE OSR because of the pending SVE remediation project for that area.	A

and the second
n na Maria na

Sec	Item Number	Corps Comments	OI Response	Action
General	9	Document use of marking tape and color, assuming this was done. It was required by SOW.	The backfill operation was done in extreme haste due to the IMMINENT approach of a severe thunderstorm. In the urgency of the moment, all personnel on site simply forgot to use the marking tape to mark the various utilities.	A
General	10	Include a section listing modifications and describe the requirements of each mod. Also, provide a discussion on what was done in the field to meet requirements of the mod.	A section has been added addressing the modifications.	A
Appendix H	11	I don't thing "Janet Wade Letter" is an appropriate title for an appendix. Entitle this appendix, "Correspondence" and include other correspondence pertinent to the project.	The title of the appendix has been changed.	Α
Appendix G	12	Please include a narrative with the photo documentation stating what each photo is showing and at what stage of the project was the photo taken.	Photos have been labeled.	A
General	13	The SOW, Section 3.9 required the contractor to submit 3 Category III submittals, none of which were ever sent. Include each of these submittals in the Final Report.	The submittals have been included.	A
Comments by: Ji	im Woolcot	it		
Section 2.4, page 2-3, para. 1	1 .	Old sewer line excavation My name is correctly spelled "Jim Woolcott," not "Jeff Wolcott."	The text has been revised.	A
Section 3.3.2, page 3-4	2	Shoring Operations - The dimensions of the wood reinforcement sheets is given as 4 ft. x 8 ft. x 1.5 ft. Shouldn't this be $4 \times 8 \times 1.5$ inches?	The text has been revised.	A

.

388 1995

and the second
	Item Number	Corps Comments	OHM's Response	Comment
General	3	I thought this report was well prepared and written.	The comment has been noted and appreciated.	Action A